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ABSTRACT

Real-time group editors allow a group of users to view and
edit the same document at the same time from geographi-
cally dispersed sites connected by communication networks.
Consistency maintenance is one of the most significant chal-
lenges in the design and implementation of these types of
systems. Research on real-time group editors in the past
decade has invented an innovative technique for consistency
maintenance, called operational transformation. This paper
presents an integrative review of the evolution of operational
transformation techniques, with the goals of identifying the
major issues, algorithms, achievements, and remaining chal-
lenges. In addition, this paper contributes a new optimized
generic operational transformation control algorithm.
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INTRODUCTION

Real-time group editors allow a group of users to view and
edit the same text/graphic/image/multimedia document at
the same time from geographically dispersed sites connected
by communication networks. These types of groupware sys-
tems are not only very useful tools in the areas of CSCW [5],
but also serve excellent vehicles for exploring a range of fun-
damental and challenging issues facing the designers of real-
time groupware systems in general. One such issue is consis-
tency maintenance of shared documents under the constraints
of short response time, and support for free and concurrent
editing in distributed environments [17].

Research on real-time group editors in the past decade
has invented an innovative technique for consistency mainte-
nance, under the name of operational transformation, which
was pioneered by the GROVE (GRoup Outline Viewing Ed-
itor) system in 1989 [3]. Since then, several research groups
have independently extended the operational transformation
technique in their design and implementation of these types
of systems. Major representatives in this area include the
REDUCE (REal-time Distributed Unconstrained Coopera-
tive Editing) system [14, 15, 16, 17], the Jupiter system [11],
and the adOPTed algorithm [13]. This paper will present an
integrative review of the evolution of operational transforma-
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tion techniques, with the goals of identifying the major issues,
algorithms, achievements, and remaining challenges. In ad-
dition, this paper will contribute a new optimized generic
operational transformation control algorithm. This paper
will focus exclusively on transformation-based consistency
maintenance algorithms. For discussion of alternative con-
sistency maintenance techniques, such as turn-taking, lock-
ing, serialization, and transactions, the reader is refereed
to [5, 7, 8, 10, 17).

The rest of this paper is organized as follows: First, some
basic concepts and terminologies are introduced. Then, the
operational transformation algorithm in the GROVE system
is reviewed to see where the original work was started and
what problems were left unsolved. Next, the problems with
the original GROVE transformation algorithm are analyzed,
and three different approaches to solving them are discussed
one by one, including the REDUCE approach, the Jupiter
approach, and the adOPTed approach. Furthermore, a new
optimized generic operational transformation control algo-
rithm is proposed. Finally, the paper is concluded with a
summary of the major achievements so far and remaining
challenges for future research.

PRELIMINARIES

In this section, some basic concepts and terminologies are in-
troduced. Following Lamport [9], we define a causal (partial)
ordering relation on operations in terms of their generation
and execution sequences as follows.

Definition 1: Causal ordering relation “—”
Given two operations O, and Oy, generated at sites ¢ and
J, then Oq — Oy, ifft (1) ¢ = 7 and the generation of O,
happened before the generation of Oy, or (2) 1 # 7 and the
execution of O, at site 3 happened before the generation of
Oy, or (3) there exists an operation O, such that O, — O
and O; — Oyg. [}

Definition 2: Dependent and independent operations
Given any two operations O, and O. (1) Oy is dependent
on Oq iff Oy — Oy. (2) O, and Oy are independent (or con-
current), expressed as Qg || Oy, iff neither O, — O, nor
Op = O,. a

To illustrate, consider a real-time group editing session
with three sites, as shown in the time-space graph of Figure 1.
There are four editing operations in this scenario: operation
O, generated at site 0, operations Oz and O3z generated at
site 1, and operation O4 generated at site 2. It is assumed
in this scenario that an operation is executed immediately at



site 0 site 1 site 2

X ‘K

time

p O4

03

Fig. 1. A scenario of a real-time group editing session.

the local site, then propagated to remote sites and executed
there upon their arrival. The arrows in the graph represent
the propagation of operations from the local site to remote
sites. Each vertical line in the graph represents the activities
performed by the corresponding site. At site 1, for example,
O- is executed first, followed by O1, Oz, and Oy.

According to Definitions 1 and 2, there are three pairs of
dependent operations in this scenario: O; — Os, Oz — Os,
and Oz — Oy because the execution of O; happens before
the generation of Os, the generation of O, happens before
the generation of Os, and the execution of O happens be-
fore the generation of O4. Moreover, there are three pairs of
independent operations in this scenario: O; || Oz, O; || Ox,
and Os || O4 because for any pair, neither operation’s exe-
cution happens before the other operation’s generation. As
will be seen in the following discussion, several fundamental
inconsistency problems are embedded in this scenario. More-
over, the seemingly simple independence relationship among
operations in this scenario is actually quite intricate, and has
given significant technical challenges to the design of correct
operational transformation algorithms [17].

THE GROVE APPROACH

To achieve good responsiveness and avoid a single-point of
failure in the system, a replicated architecture has been
adopted by GROVE: the shared documents are replicated at
the local storage of each participating site. An (update) oper-
ation is executed on the local replica of the shared document
immediately after its generation, then broadcast to remote
sites for execution (after some delay and transformation).

Divergence and causality-violation problems
Suppose remote operations are executed upon their arrival
and in their original form, two inconsistency problems which
may occur in a concurrent editing session have been identified
in GROVE: one is divergence, and the other is causality-
violation.

For example, consider the scenario shown in Fig. 1. The
four operations arrive and are executed in the following or-
ders: O1, Oz, O4, and Os at site 0; Oz, O1, O3, and Oy at site
1; and O2, O4, O3, and O; at site 2. If operations are not com-
mutative, final editing results would not be identical among
cooperating sites. This problem is called divergence. Clearly,
the divergence problem should be prohibited for applications
where the consistency of the final results is required.

Moreover, since each cooperating site generates and broad:
casts operations without synchronization, operations may ar-
rive and be executed in an order different from their natural
causal order. As shown in Fig. 1, operation Os is generated
after the arrival of O; at site 1, so Os; — O;. However, since
O3 arrives before O; at site 2, the execution of Oz before O,
may result in an undefined operation Os, which refers to a
nonexistent context to be created by Op, or a confused user
at site 2, who observes the effect in Os before observing the
cause in Op. This problem is called causality-violation. Out
of causal order execution should be prohibited for applica-
tions where a synchronized interaction among multiple users
is required.

Consistency correctness criteria

Based on the identification of the two inconsistency problems,
the GROVE consistency correctness criteria were defined by
the following two properties:

1. Convergence property: copies of the shared docu-
ment are identical at all sites at quiescence (i.e., all gen-
erated operations have been executed at all sites).

2. Precedence property: if one operations O, causally
precedes another operation Op, then at each site the

execution of O, happens before the execution of Oy.

In search of a solution where the only constraint on execu-
tion order is the causal ordering among operations, GROVE
invented the late well-known distributed OPerational Trans-
formation (dOPT) algorithm. GROVE’s solution consists
of two components: one is the state-vector timestamping
scheme for ensuring the precedence property, and the other
is the dOPT algorithm for ensuring the convergence prop-
erty. The basic idea of the dOPT algorithm is that when
an operation satisfies the precedence condition for execution,
it is transformed against independent operations in the Log
(which saves all executed operations in the order of their ex-
ecution) in such a way that executions of the same set of
properly transformed independent operations in different or-
ders produce identical document states, thus ensuring the
convergence property.

A transformation property
To ensure convergence, the dOPT algorithm requires the

transformation function 7' to satisfy the following condition:
For any two independent operations O, and Oy, suppose that

O, = T(0q4,0y), and Oy = T(Oy, Oy), it must be that

anO{,EOboO;

[T

where “=” means the two sequences of operations O, o O}
and Oy o0 O], are equivalent in the sense that when applied
on the same input document state they produce the same
output document state.

In addition to the above formally specified condition,
GROVE also recognized there were some circumstances, in
which the transformation function should achieve an effect
which is non-serializable. For example, suppose O, and Oy
are two independent (character-wise) delete operations re-
ferring to the same position, then 7" must ensure only one
character is eventually deleted no matter in which order O,
and Oy are executed. This non-serializable effect is, however,
not captured by the above formal condition for 7.



A sketch of the dOPT algorithm

The transformation function 7T relies on the semantics of the
editing operations and hence is application-dependent. The
dOPT algorithm, however, is generic and takes care of select-
ing operations for transformation and determining the trans-
formation order. The basic control structure of the dOPT
algorithm is simple: Given a causally ready operation O, the
dOPT algorithm scans the Log to transform O against any
operation in the Log which is independent of O; then the
transformed O, denoted as EO (i.e., the execution form of
0), is executed and saved in the Log. The dOPT algorithm
is sketched below.

dOPT(0, Log) {
E0 = 0;
for (1 = 1; 1 <= n; i++) {
if (Log[il Il 0)
then EO = T(EQ, Logl[il);
}
Execute EO;
Append EO at the end of the Log;
}

An unsolved dOPT puzzle

In [3] (Fig. 4 in Section 6: Discussion of Correctness), one
scenario was identified, where the dOPT algorithm could not
ensure convergence. This scenario’ is re-displayed in Fig. 2.

site 3 site 1 site 2
time
03 Insert[z,1] Insertly, 11} o2
Insert[x,l] o1
Fig. 2. The mixed priority example, in which the dOPT algorithm

failed to ensure convergence.

Suppose the GROVE transformation function uses the
following priority rule: when two insert operations have
the same position parameter, the position of the operation
with a lower priority (i.e., smaller site identifier) will be
shifted®. According to the generic dOPT algorithm and the
application-dependent transformation function in [3], the op-
eration transformation and the final document states at the
three sites are as follows (assume the initial document is
empty).

At site 3, Os first inserts “z” into the document®. When

1In fact, the scenarios in Fig. 2 can be obtained by removing Oy from the
scenario illustrated in Fig. 1.

21t should be noted that this priority rule is actually opposite to the one
used in the definition of transformation function Ty; in [3]. This change
is necessary to correctly illustrate the problem the GROVE designers really
intended to illustrate.

31n this paper, the sequence of characters in a text document are referred
to (or addressed) from 1 to the end of the document.

3
O, arrives, it inserts “x” in front of “z” to get a document

with “xz”. Finally, when O; arrives, since Oz || Os and
Oz || O, it is first transformed against Os and becomes
O3 = Insert[y,?2] due to its lower priority than Os; then
it is transformed against O; and becomes O} = Insert[y, 3].
After the execution of O%, the document contains “xzy”?.
At site 1, the process of operation transformation and the
final result are the same as that at site 3. At site 2, O first
inserts “y” into the document. When Os arrives, it has to
be transformed against O since O3 || O3, but no change has
been made to O3 due to its higher priority than O,. After
the execution of Os, the document contains “zy”. Finally,
when O; arrives, it has to be transformed against O; since
O1 || Oz. The transformation of O, against O, will produce
O] = Insert[r,2] due to its lower priority than O,. O] does
not need to be transformed against O3 since O3 — Oy. After
the execution of Of, the document contains “zxy”, which is
not identical to “xzy” at sites 3 and 1.

The problem illustrated in Fig. 2 is fundamental to the
correctness of operational transformation approach. As cor-
rectly pointed out in [3], this problem could not be fixed by
simply reversing the priority rule, since this patch works in
this case but fails in other rather similar cases. In search of a
correct solution to this problem, the simple-minded priority
scheme (using a single site identifier) was thought to be root
of the problem, thus a sophisticated (and complicated) prior-
ity scheme (using a list of site identifiers) was proposed in [3].
This new priority scheme did not prove to be successful in
solving the problem, thus leaving one unsolved puzzle to the
groupware research community.

The innovative idea of maintaining consistency by opera-
tional transformation, as well as the unsolved dOPT puzzle,
has been a major inspiration and stimulation to a number
of research groups in the area of real-time groupware sys-
tems. In fact, several research groups [1, 11, 13, 17], have
independently re-discovered that the dOPT algorithm did
not work whenever an operation is concurrent with two or
more dependent operations, and different approaches have
been proposed to fix it. In the following sections, three alter-
native approaches will be discussed, including the REDUCE
approach [14, 15, 17] using an I-dimensional data structure
for keeping track of executed operations, the Jupiter ap-
proach [11] using a 2-dimensional data structure for main-
taining executed operations, and the adOPTed approach [13]
using a N-dimensional data structure (where N is number
of cooperating sites in the system) for maintaining executed
operations.

THE REDUCE APPROACH

REDUCE follows GROVE in adopting a fully distributed and
replicated system architecture. A linear History Buffer (HB),
which is the same as the Log in GROVE, is used to keep track
of all executed operations. In addition, a garbage collection
scheme was devised to remove useless operations from the

HB [17].

The intention-violation problem
Apart from divergence and causality-violation problems, one
special kind of inconsistency problem — intention-violation —

has been identified in REDUCE [14].

41t should be pointed out that this result is different from what was pre-
sented in [3].



To illustrate, consider the two independent operations O,
and O in the scenario shown in Fig. 1. At site 0, O; is
executed on a document state which has been changed by
the preceding execution of O;. Therefore, the subsequent
execution of Oz may refer to an incorrect position in the new
document state, and result in an editing effect different from
the O»’s intention, which is defined as the editing effect which
could be achieved by applying Oz on the document state from
which O, was generated [14].

For example, assume the shared document initially con-
tains the following sequence of characters: “ABCDE”. Sup-
pose Oy = Insert[“127,2], which intends to insert string
“12” at position 2, i.e., between “A” and “BCDE”; and
02 = Delete[2,3], which intends to delete the two charac-
ters starting from position 3, i.e., “CD”. After the execution
of these two operations, the intention-preserved result (at all
sites) should be: “A12BE”. However, the actual result at site
0, obtained by executing O; followed by executing Oz, would
be: “A1CDE”, which clearly violates the intention of O; since
the character “2”, which was intended to be inserted, is miss-
ing in the final text, and also violates the intention of O; since
characters “CD”, which were intended to be deleted, are still
present in the final text. A serialization protocol might be
used to ensure that all sites execute O; and O in the same
order to get an identical result “A1CDE”, but this identical
result is still inconsistent with the intentions of both O; and
0.

It 1s important to recognize that intention violation is an
inconsistency problem of a different nature from the diver-
gence problem. The essential difference between divergence
and intention violation is that the former can always be re-
solved by a serialization protocol, but the latter cannot be
fixed by any serialization protocol if operations were always
executed in their original forms.

A consistency model

Due to the distinction of the intention-violation problem from
the divergence problem, one additional consistency correct-
ness criteria — intention-preservation — was proposed in RE-
DUCE [14]. The REDUCE correctness criteria for consis-
tency maintenance has been defined in the form of a consis-
tency model as follows.

Definition 3: A consistency model
A cooperative editing system is consistent if it always main-
tains the following properties:

1. Convergence: when the same set of operations have
been executed at all sites, all copies of the shared docu-
ment are identical.

2. Causality-preservation: for any pair of operations
O, and Oy, if O, — Op, then O, is executed before Oy
at all sites.

3. Intention-preservation: for any operation O, the ef-
fects of executing O at all sites are the same as the
intention of O, and the effect of executing O does not
change the effects of independent operations.

[m]

To support the three properties of the consistency

model, REDUCE adopted the same state-vector timestamp-
ing scheme as that in GROVE for achieving causality-
preservation (or precedence in GROVE’s terminology). With
the distinction of intention-preservation from convergence,

two separate schemes were devised for supporting these two
different properties: an undo/do/redo scheme for achieving
convergence, and an operational transformation algorithm for
achieving intention-preservation.

To achieve convergence, a total ordering relationship “="
among operations is defined [14]. However, operations are al-
lowed to be executed in any order as long as their causality is
preserved. When a new operation O is causally-ready for ex-
ecution, (1) undo operations in the HB which totally follow
O to restore the document to the state before their execu-
tion; (2) do O; and finally (3) redo all operations that were
undone from the HB. It should be noted that the undo/redo
operations involved in this scheme are internal operations,
rather than external operations initiated from the user in-
terface [12]. Therefore, the undo/do/redo scheme should be
implemented in such a way that only the final result (in-
stead of the intermediate ones) produced at the end of the

undo/do/redo process is reflected on the user interface.

Transformation pre-/post-conditions

Since transformation functions in REDUCE are not responsi-
ble for ensuring convergence, they are not required to satisfy
the same condition as in GROVE. In REDUCE, when oper-
ation O, is transformed against operation Oy, it is required
that the effect of the transformed operation O on the doc-
ument state that contains the impact of O should be the
same as the effect of O, on the document state that does
not contain the impact of Op. This type of transformation
is called Inclusion Transformation (IT), since it transforms
an operation O, against another operation Oy in such a way
that the impact of Oy is effectively included. The GROVE
transformation functions can be regarded as a kind of in-
clusion transformation. Most importantly, it was recognized
that the correctness of this inclusion transformation relies on
the condition that both O, and O are defined on the same
document state [17], so their parameters are comparable and
can be used to derive a proper adjustment to O,. Failing
to recognize and to ensure this condition is the root of the
unsolved dOPT puzzle.

In search of a correct and sophisticated solution to
intention-preservation, REDUCE introduced another type of
transformation, called Ezclusion Transformation (ET), which
transforms O, against another operation O in such a way
that the impact of Oy is effectively excluded from O, [17].
For example, O4 and O; are independent operations but gen-
erated from different documents states, as shown in Fig. 1.
When Oy arrives at site 0, it is incorrect to simply transform
O, against O;. Instead, exclusion transformation should be
applied on Oy against its causally preceding operation O; to
produce O} in such a way that O2’s impact on Oy is excluded.
Consequently, O} effectively shares the same document state
with Op, and then can be applied with the inclusion trans-
formation against O;.

To capture the required relationship between operations
for correct transformation, the notion of operation contextis
introduced. The context of a document state is the sequence
of operations executed on the initial document state to ar-
rive at the current document state. Given an operation O,
the definition context of O, denoted as DC(O), is the con-
text of the document state on which O is defined; and the
ezecution context of O, denoted as EC(O), is the context of
the document state on which O is to be executed. The inten-



tion of an operation can be preserved if its definition context
matches its execution context, i.e., DC(0) = EC(0).
REDUCE uses two primitive transformation functions —
IT(Oq, Oy) and ET(Oq,0p) — to make an operation’s defini-
tion context equivalent to its execution context. For specify-
ing pre-/post-conditions of the transformation functions, two
context-based relations are defined below (Note: a context is
expressed as an operation list in the rest of the paper).

Definition 4: Context equivalent relation “ U7
Given two operations O, and O, O, and O; are contexi-

equivalent, i.e., Oq U Oy, iff DC(0.) = DC(Os). |

Definition 5: Context preceding relation “—”
Given two operations O, and Oy, O, is context preceding Oy,
ie., Oqa = Oy, iff DC(0s) = DC(04) + [Oa] (where “+7

expresses the concatenation of two lists). a

With the context-based relations, the pre-/post-conditions
of the two transformation functions are specified as follows.

Specification 1: IT(O,,0) : O}
1. Precondition for input parameters: O, U Op.
2. Postcondition for output: O, + O, and the effect of
O, in DC(0,) is the same as the effect of O, in DC(O,).
(]
Specification 2: ET(Oq,0s) : O,
1. Precondition for input parameters: Op +— O.
2. Postcondition for output: Oy L O),, and the effect of O,
in DC(0,) is the same as the effect of O, in DC(Oy).
]

The design of a pair of IT/ET functions for string-wise
operations, which satisfy the specified post-conditions, can
be found in [16, 17].

The GOT control algorithm

To ensure transformation pre-conditions a Generic Opera-
tional Transformation (GOT) control algorithm has been de-
vised [17]. Taking a causally-ready operation O and its execu-
tion context EC(O) (i.e., the current contents of the HB) as
input parameters, the GOT control algorithm uses the I'T/ET
functions to transform O into EO (the execution form of O)
such that DC(EO) = EC(O).

Three cases have been distinguished and handled dif-
ferently in the GOT control algorithm, as illustrated in
Fig. 3. In this example, we assume EC(0O) = HB =
[EO:1, EO2, EOs].

Case 1 : All operations in EC(O) are causally preceding
O. Tt must be that DC(0O) = EC(0), so that EO = O
(no transformation is performed).

Case 2 : Operations causally preceding O are listed in
EC(O) before operations independent of O. Since
EO, — O, EO; || O, and EOs; || O, by transforming
O against EFOy and EOs in sequence, we get F'O such
that DC(EQO) = EC(O).

Case 3 : At least one causally-preceding operation is posi-
tioned after an independent operation in EC(O). This
is the case that the dOPT algorithm failed to handle
correctly. Since EOy — O, EO; || O, and EOs — O, it
must be that DC(O) = [FO, EO;], where EOj is the

Inputs:
O: a causally-ready operation
O’s execution context: EC(O) =[EO1, EO2, EO3]

Output: O’s execution form EO

Casel. EO1->0, EO2->0, EO3->0

DC(0) = [EO1, EO2, EO3 ] f

EC(O) = [EO1, EO2 EO3] EO
Case2. EO1->0,EO2|| O, EO3]|| O

DC(O) = [EO1]— O

EC(O) = [EO1, Efz, EO3] EO

P

Case 3. EO1->0,EO2 || O, EO3->0

o

DC(O) = [EO1l,| EO3'] O

e
I

Fig. 3. Three cases analysis and handling by the GOT control algo-
rithm

m

EC(0) = [EOL1,

original form of FOs; when O was generated. Transform-
ing O directly against any operation in EO(O) would vi-
olate the pre-conditions for I'T/ET functions. The strat-
egy taken by the GOT algorithm is as follows: (1) ap-
ply exclusion transformation on KOs against £O- (both
EO; and EO; are available in EO(O)) to obtain EOj,
(2) apply exclusion transformation on O against EOj to
get an intermediate O'; and finally (3) apply inclusion
transformation on O’ against KO, and FOs3 in sequence,
we get EO such that DC(EQO) = EC(O).

To describe the GOT algorithm, a few notations need
to be introduced: Given a list of operations L, L[z, j] de-
notes a sublist of L containing the operations from EO;
to EO; inclusively; and L~' denotes the reverse of L.
LIT(O,L)/LET(O, L) is used to denote the application of
IT/ET function on operation O against a list of operations
in L in sequence from left to right.

Algorithm 1: GOT(O, L): EO
O: a causally-ready operation
L: the list of operations [EO1, EOx, ...
FO: the execution form of O.

1. Scan L[1, m] from left to right to find the first operation
EOy. such that EOy || O. If no such an operation is
found, then return FO := O.

2. Otherwise, scan L[k + 1, m] to find operations causally

,EO,,] in EC(O).



preceding O. If no single such operation is found, then
return EO := LIT(O, L[k, m]).
3. Otherwise, let L = [FO.,,..., EO.,] be the list of op-
erations in L[k, m] which are causally preceding O.
(a) Get Ly =[FEO,,, ..., EO. ] as follows:
i. EO., := LET(EO.,, L[k,c1 —1]7").
ii. For2 <<,
O; := LET(EO.,, L[k,c; —1]7");
EO,, .= LIT(O:,[EO.,,...,EO.,_.,]).
(b) O’ := LET(O, L").
(c) return FO := LIT(O', L[k, m]).
[m]
It can be shown that the pre-conditions required by the
transformation functions are always guaranteed by the GOT
control algorithm. Therefore, if the post-conditions are
always ensured by the transformation functions, then the
GOT control algorithm will transform O into FO, so that
the execution of EO on EC(O) will preserve the inten-
tion of O. To achieves both intention-preservation and con-
vergence, the GOT control algorithm has been integrated
with the undo/do/redo scheme to form an undo/transform-
do/transform-redo scheme [17].

A solution to the dOPT puzzle
In this section, we show how REDUCE solves the dOPT puz-

zle. We assume, without losing generality, the total ordering
relationship “=" among the three operations in Fig. 2 is:
0Os; = 01 = 03. Also, we assume the the REDUCE transfor-
mation function IT(Og,Os) uses the following shifting rule:
if both O, and Oy are insertions and have the same position
parameter, the position of O, will be shifted. This shifting
rule is consistent with the priority rule used in GROVE.
Under REDUCE, the operation transformation and the fi-
nal document states (i.e., “xzy”) at sites 3 and 1 are the
same as they are under GROVE. The situation at site 2,
however, is different: O; first inserts “y” into the document.
Next, when Os arrives, Oz has to be undone since Oz = Os.
Then Os is executed as is, and Oz is inclusively transformed
against Os (according to Oz || Oz and Case 2 in the GOT
algorithm) to become O3 = Insert[y,2] according to the
shifting rule. After the execution of both Os and O}, the
document contains “zy”. Finally, when O; arrives, O} has
to be undone since O; = 0O4. Then O is executed as is
(since Os — O1), and O} is inclusively transformed against
0, (according to Oz || Oy and Case 2 in the GOT function)
to become O = Insert[y,3]. After the execution of O}, the
document contains “xzy”, which is identical to the document
state at sites 3 and 1, and the intentions of all three opera-
tions are preserved. In this particular example, the exclusion
transformation is not used, but in more complex scenarios,
such as the one shown in Fig. 1, exclusion transformation is

needed (see [17]).

THE JUPITER APPROACH

The Jupiter collaboration system was developed at Xerox
PARC [11]. Since Jupiter has already had a central server
for maintaining the states of objects (e.g., White-board, text
documents, etc.) in the shared persistent virtual world, it is
natural to use this central server for supporting consistency
maintenance of shared objects as well. The Jupiter consis-
tency maintenance algorithm was derived from the dOPT al-
gorithm. The most interesting part of the Jupiter approach

is the adaptation of the dOPT optimistic algorithm to an
environment with multiple replicated clients sites plus one
centralized server site.

In Jupiter, the shared documents are replicated at all co-
operating client sites, which is the same as in GROVE. The
difference is that the shared documents are also maintained
at the central server and communications happen only be-
tween a client and the server (i.e., a 2-way communication).
When an updating operation is generated at a client site, it is
immediately executed at the local client site (for fast response
to user actions), and then propagated to the central server.
The server first transforms the incoming operation if neces-
sary, then executes the transformed operation on its copy of
the shared document, and finally broadcasts the transformed
operation to all other client sites. Upon receiving an oper-
ation propagated from the central server, a client site may
transform this operation if necessary, and then executes it on
the local copy of the document. This star-like topology of
communication eliminates the concern for ensuring causality
(i.e., causality-violation never occurs). It also substantially
simplifies the operational transformation control algorithm.

To achieve convergence, the Jupiter transformation func-
tion is required to satisfy the same property as that re-
quired by the dOPT algorithm. However, Jupiter uses a 2-
dimensional state space graph, instead of a linear Log/HB,
to keep track of all possible operation transformation paths
to guide the selection of right operations for transformation.
The Jupiter algorithm ensures that any pair of operations
involved in a transformation must have originated from the
same starting state in the state space graph, which is es-
sentially the same as ensuring the context equivalent pre-
condition by the GOT algorithm in the REDUCE approach.
Therefore, the Jupiter algorithm is able to correct the dOPT
algorithm under the condition that only 2-way communica-
tions are allowed in the system. An alternative approach to
correcting the dOPT algorithm for the 2-way communication
special case can be found in [1].

THE ADOPTED APPROACH

The adOPTed algorithm adopted the same correctness cri-
teria from GROVE for consistency maintenance: conver-
gence and precedence (i.e., causality-preservation). It also
followed GROVE in using a fully distributed and replicated
architecture. What is different in the adOPTed algorithm
is that it requires an additional property for transformation
functions to satisfy. Given two operations O, and Oy, let
O, = T(Oq4,04), and O, = T(Oy, O,), the transformation
function T is required to possess the following two proper-
ties:

Transformation Property 1 (TP1) :
Og 0 O{) =00 O;
Transformation Property 2 (TP2) : For any O,
T(T(0, 0a), 0}) = T(T(O, Oy), 0L)

TP1 is the same as that required by the dOPT algorithm
and the Jupiter algorithm, but TP2 is new in the adOPTed
algorithm. TP2 ensures that the transformation of opera-
tion O along different paths will yield the same resulting op-
eration. These two properties can be illustrated by using a



directed graph, called interaction model [13], as shown in Fig-
ure 4.
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Fig. 4. Interaction model illustration of transformation properties.

The vertices of the interaction model graph are labeled
by document states, and the edges are labeled by opera-
tions. For example, the four vertices of the square in Fig-
ure 4-(a) are labeled by four document states: Sp, Si, S2,
and Ss, respectively; the two solid edges are labeled by two
original operations: O, and Oy, respectively; and the other
two dashed edges are labeled by two transformed operations:
O, = T(04,0s), and Oy = T(Os, O,), respectively. Essen-
tially, TP1 ensures the unique vertices labeling, whereas TP2
ensures the unique edge labeling in the interaction model
graph. It has been shown in [13] that TP1 and TP2 are the
necessary and sufficient conditions for ensuring convergence
in systems which allow N-way communication (where N is
the number of cooperating sites).

The adOPTed algorithm used an N-dimensional interac-
tion model graph to keeps track of all valid paths of opera-
tion transformations. The N-dimensional interaction model
graph can be viewed as a generalization of the 2-dimensional
state space in the Jupiter algorithm, and it also plays the
same role in guiding the selection of the right path and right
operations for transformation. The adOPTed algorithm en-
sures that any pair of operations involved in a transformation
are defined on the same document state.

Using the adOPTed algorithm and the same transforma-
tion function 717 from GROVE, the solution to the dOPT

Path taken by site 3 and 1 7
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Fig. 5. The adOPTed solution to the dOPT puzzle

puzzle can be illustrated in Figure 5. At sites 3 and 1, the
operation transformation and execution follow the same path:
O3 and O, are executed as is, but Oy is transformed against
Oz and O; in sequence, resulting in 05 = Ins[y,2], then
03 = Ins[y,3] (In the meantime, the adOPTed algorithm
also produces O} = Ins[z,1], and O] = Ins[z,1], which are
of no use at sites 3 and 1). The execution of Os, Oy, and OF
in sequence results in the final document state “xzy”. At site
2, a different path in the interaction model graph is taken.
First, Oz is executed as is. When Os arrives, it is trans-
formed against O to become O} = Ins[z,1]. Meanwhile, the
adOPTed algorithm also transforms O, against Os to pro-
duce 05 = Ins[y,2], and both Of and O} are maintained
at proper positions in the interaction model graph. When
O, arrives, the adOPTed algorithm searches the interaction
model graph to find the right operation O} (instead of Ox,
which was used in the dOPT algorithm) for transformation
to get O] = Ins[z,1]. In the meantime, the adOPTed algo-
rithm also produces and maintains OY = Ins[y, 3] at site 2
(04 is of no use in this example). The execution of Oz, Of,
and O] in sequence results in an identical document state

AN OPTIMIZED ALGORITHM: GOTO

Without requiring TP1 and TP2, the GOT control algorithm,
integrated with the undo/do/redo scheme [17], is the only
known solution for achieving both intention-preservation and
convergence. An interesting question is: what could the GOT
algorithm achieve if TP1 and TP2 are satisfied by IT/ET
functions? In this section, we will answer this question and
propose a new optimized GOT' control algorithm.

To take advantage of the two additional post-conditions
TP1 and TP2, we modify the original context-based rela-
tions in Definitions 4 and 5 as follows: replace the equal sign
“=" with the equivalence sign “=”. Obviously, the equal re-
“=" between operation contexts is a special case of the
equivalence relation “=”. With this generalization of context-
based relations and the extension of pre-/post-conditions for
IT/ET functions, we found that the original GOT control
algorithm can ensure both intention-preservation and con-
vergence, without integrating with the undo/do/redo scheme
or using a multi-dimensional graph. The verification of this
claim can follow similar reasonings as used in [13], which is,
however, beyond the scope of this paper.

Moreover, the two additional post-conditions TP1 and
TP2 can be employed to optimize the GOT control algorithm

lation



by reducing the number of I'T/ET transformations. The op-
timized algorithm, named as GOTO (GOT Optimized), re-
sembles the original GOT algorithm in handling the first and
the second cases (see Fig. 3). For the third case, the handling
is different. In addition to performing transformations on the
definition context of O, we also perform transformations on
the execution context of O to make the two contexts equiv-
alent. This can be achieved by executing the following two
steps:
1. Transform execution context £C(O) into such an equiv-
alent EC(O)' that all operations causally preceding
O are positioned before independent operations in
EC(0)'. Let EC(0) = EC(0O)'left+ EC(O)’.right,
where EC(O)'.left is the sublist of causally preceding
operations, and EC(O)’.right is the sublist of indepen-
dent operations.
2. Apply the inclusion transformation on O against
the list of independent operations in EC(O)’.right.
The transformation pre-condition is satisfied because

EC(0) left = DC(O).

The question now is: how to transform EC(O) into such

an equivalent EC(0)'?

By using IT and ET functions, the Transpose function is
defined to transform and swap two operations in an execu-
tion context.

Function 1: Transpose(Oq,04) : Oy, O

O, := ET(Oy, Os);
0, :=IT(O4, Oy);
return (O, O,);

}

The pre-condition for O, and Oy is: O, +— O. The
post-condition for O} and Oj is: O, ~ O). Based on
the Transpose function, function LTranspose(L) is defined,
which transforms and circularly shifts the list of operations

in L.
Procedure 1: LTranspose(L)

for (i=|L};7> 1;i- -)
(L[z — 1], L[4]) := Transpose(L[i — 1], L[1]);

According to TP1 and TP2, and the definition of Trans-
pose, it must be that L = L', where L' is the list of operations
after calling LTranspose(L).

As an example, the handling of case 3 by the GOTO algo-
rithm is shown in Fig. 6. In this example, we can transpose
EO; and EO; in EC(O) by calling Transpose(EO;, EOs),

so that an equivalent execution context FEC(0) =

[EO1, EO4, EOj] can be obtained. Then, since DC(O) =
[FO1, EO;], we can apply an inclusion transformation on O
against FOj to get FO, such that DC(EO) = EC(0)'. To
transform O into FO in this example, three I'T/ET transfor-
mations (one Transpose function costs one IT and one ET
transformations) are needed under the GOTO control algo-
rithm, whereas four IT/ET transformations are needed under

Case 3. EO1->0,EO2]| O, EO3->0

EC(O) = [EO1l, EO2, EO3 ]

,,,,,,,,,,,,
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EC(O)’ = EO2" ] EO
]
DC(O) = [EO1, EO3'] o

Fig. 6. The handling of mixed independent and dependent operations
by the GOTO control algorithm

the GOT control algorithm.

Algorithm 2: GOTO(O, L): EO
O: a causally-ready operation
L: the list of operations [EO1, EOa, ...
FO: the execution form of O.

1. Scan L[1, m] from left to right to find the first operation
EOy such that EOg || O. If no such an operation is
found, then return FO := O.

2. Otherwise, scan L[k + 1, m] to find operations causally
preceding O. If no single such operation is found, then
return FO := LIT(O, L[k, m]).

3. Otherwise, let Ly = [EO,,, ..., EO..] be the list of op-
erations in L[k, m] which are causally preceding O.

(a) For1<:i<r:
LTranspose(L[k +1 —1,¢:]);
(b) return EO := LIT(O, L[k + r, m]).

,EO,,] in EC(O).

0

It can be shown that the pre-conditions required by
the transformation functions are always guaranteed by the
GOTO control algorithm. Therefore, if the post-conditions,
including TP1 and TP2, are always ensured by the trans-
formation functions, then the GOTO control algorithm will
transform O into EO, so that the execution of EO on EC(O)
will preserve the intention of O and ensure convergence.

CONCLUSIONS AND FUTURE DIRECTIONS

Many people have experiences of using various editors. Not
so many people have recognized that there would exist many
interesting research issues in an editor when used in a real-
time collaborative context. Even less people have come to
learn that some research issues in real-time group editors,
such as consistency maintenance, would be so challenging
that a decade exploration would not be enough to exhaust
their research potential. In this paper, we have reviewed a
number of major operational transformation algorithms for
consistency maintenance in real-time group editors, including
the dOPT algorithm, the GOT algorithm, the Jupiter algo-
rithm, and the adOPTed algorithm, and have proposed a new
optimized transformation control algorithm — the GOTO al-
gorithm. In this concluding section, we summarize the major
achievements in the past decade on the transformation-based



consistency maintenance techniques and point out the major
open issues for further exploration.

Major achievements

Three inconsistency problems - divergence, causality-
violation, and intention-violation — have been identified and
explored. Particularly, the non-serializable intention viola-
tion problem has been distinguished from the serializable
divergence problem. Corresponding to these three prob-
lems, consistency correctness criteria consist of three prop-
erties: convergence, causality-preservation, and intention-
preservation. It is useful to integrate these three properties
in a consistency model, which effectively specifies what con-
sistency has been promised to the system users and what
properties must be supported by the underlying system algo-
rithms.

The discovery of the necessary transformation pre-
conditions has been a significant step toward the design
of correct transformation control algorithms. The notion
of operation context is very useful in capturing the re-
quired relationship between operations for correct transfor-
mation. Alternative approaches to ensuring transformation
pre-conditions include the GOT/GOTO control algorithms
working on an 1-dimensional history buffer, the Jupiter algo-
rithm working on a 2-dimensional state space graph, and the
adOPTed algorithm working on a N-dimensional interaction
model graph.

Two types of transformation functions have been proposed:
inclusion and exclusion transformations. For algorithms that
use a multi-dimensional data structure to keep track of oper-
ations in their original, intermediate, and executed forms,
such as the Jupiter and adOPTed algorithms, only inclu-
sion transformation is needed. For algorithms that use an
1-dimensional history buffer to save operations in their ex-
ecuted form only, such as the GOT and GOTO algorithms,
apart from inclusion transformation, exclusion transforma-
tion is needed to recover operations’ original and intermedi-
ate forms from their executed forms.

The identification of proper
formation post-conditions has played a crucial role in the
design of both the generic transformation control algorithms
and application dependent transformation functions. By re-
quiring context-based post-conditions, the GOT control algo-
rithm can achieve intention-preservation. The context-based
post-conditions, however, do not capture the conditions for
ensuring convergence, so the GOT control algorithm must be
integrated with an undo/do/redo scheme to achieve conver-
gence. In essence, undo/redo can also be viewed as a kind
of transformation, which is performed directly on the doc-
ument states rather than on the operations. By requiring
TP1 only, the Jupiter algorithm can achieve convergence in
systems which are restricted to 2-way communication. By re-
quiring both TP1 and TP2, the adOPTed algorithm achieves
convergence in systems which allow N-way communication.
Neither TP1 nor TP2, however, captures the conditions for
ensuring intention-preservation, so intention-preservation has
been implicitly handled by transformation functions in the
dOPT algorithm, the Jupiter algorithm, and the adOPTed
algorithm. By requiring both TP1 and TP2, in addition
to the context-based post-conditions, the GOT control al-
gorithm alone is able to achieve both intention-preservation
and convergence. By performing transformations on both

trans-

definition and execution contexts, the GOTO algorithm is
able to optimize the GOT algorithm by reducing the number
of transformations.

Open issues and future directions

The correctness of the whole operational transformation
scheme relies on the satisfaction of both transformation pre-
conditions and post-conditions. Lots of work have been done
on the design of correct generic transformation control al-
gorithms to ensure transformation pre-conditions. However,
not much work has been done on the design of application-
dependent transformation functions which could really ensure
transformation post-conditions [16]. We have learned that
TP1 and TP2 have to be satisfied by transformation functions
in order to ensure convergence, but we know little about how
to verify whether an existing transformation function really
satisfies TP1 and TP2. In fact, as illustrated in [17], some
seemingly correct transformation functions do not really sat-
isfy TP1 and TP2. More serious attention should be given to
the design of transformation functions to better understand
the intrinsic interactions (in the form of pre-/post-conditions)
between transformation functions and transformation control
algorithms.

Research should also be directed toward formal specifica-
tion and verification of operational transformation concepts,
properties, and algorithms. This formalization and verifica-
tion is necessary for rigorously proving the correctness of the
algorithms and for analyzing and improving the time and
space complexities of existing algorithms. In [1], a Calcu-
lus for Concurrent Update (CCU) has been derived from the
dOPT algorithm as a tool for the purpose of formal mod-
eling and verification of consistency-preserving operational
transformation. The Team Automata [6] is another mathe-
matical model for describing the interaction of a groupware
system components. More work needs to be done in devel-
oping and applying innovative theoretical tools to verify op-
erational transformation algorithms and systems.

Future research should distinguish and explore two types of
consistencies: one is syntactic consistency, which is concerned
with whether all sites have the same view of the shared ob-
jects, regardless of whether the common view makes sense
in the application context; and the other is semantic consis-
tency, which is concerned with whether all sites have the same
view of the shared objects, as well as whether the common
view makes sense in the application context. There may exist
many levels of syntactic consistency and semantic consistency
in a particular application context. Previous work has mainly
explored issues related to syntactic consistency. Particularly,
the term intentionas defined in [14, 17] and used in this paper
has captured only a small piece of the much richer meaning of
intention from the human user’s perspective. This brings up
interesting areas of research concerned with characterization
and preservation of the human user’s intentions in collabora-
tive contexts, or group intentions. It may be infeasible for the
system alone to automatically determine the human group in-
tentions for different groups with divergent group goals. The
system, however, could and should have mechanisms to help
the group users decide their group intentions and resolve their
conflicts. In general, we advocate a groupware system design
paradigm, which builds a sufficient amount of generic sup-
porting mechanism into the system, but leave the high level
collaboration policy decisions up to the system users. A good



groupware system should be easily tunable by its users for
supporting various collaboration needs [2, 10].

A lot of efforts have been putted on achieving the short-
est response time (as short as single user editors), but not
much research has been done on notification policy — when
and how to make local updates public to achieve global con-
sistency. Alternatives to notifying remote sites immediately
after executing an operation at the local site include periodic
notification, notification on demand, greying out the screen
to tell user that the displayed information is out-of-date, etc.
Future research should be conducted on mechanisms for sup-
porting alternative notification policies and their applicabil-
ity in different application environments.

Operation granularity is another unexplored issue. Cur-
rent transformation algorithms are only capable of handling
fine-grain primitive operations, such as Insert and Delete.
Useful editors, however, must offer to the end user higher
level compound operations, such as Move, and Replace. On
one hand, the system needs additional mechanisms to support
coarse-grain compound operations as an atomic sequence of
primitive operations while still ensuring consistency proper-
ties. The richer semantics of the compound operations, on
the other hand, could help the system to better understand
and preserve the user’s intentions.

A number of prototype group editors have been built in
the past by various research groups for testing the feasibility
of transformation-based consistency maintenance algorithms,
and for investigating system design and implementation is-
GROVE has been used in several real groups for a
variety of design activities to evaluate the system from users
perspective and to gain usage experience [4, 5]. Since then,
however, little has been reported on using this type of sys-
tem in real-life collaborative environments to study the user’s
working modes in using the system, and to conduct statistics
analysis of conflicts. Much more research efforts should be
directed toward better understanding the potential effects of
this type of system on people, their work and interactions.

sues.

Although all the transformation-based consistency main-
tenance algorithms and functions were designed in the con-
text of text editing, many of them are actually quite general
and potentially applicable in other domains of group edit-
ing. It would be interesting and useful to apply operational
transformation in graphics/image/multimedia editors to fur-
ther validate the generic algorithms and to gain more in-
sights in the design and application of these types of systems.
Even techniques used in transforming a sequence of charac-
ters could potentially be applicable in other real-time group-
ware systems, which allow concurrent insertion/deletion of
any sequence of objects with a linearly ordered relationship.
Moreover, operational transformation has been found very
useful in supporting user-initiated collaborative undo opera-
tions [12, 13].

Consistency maintenance is a fundamental issue in many
areas of computing systems, including operating systems,
databases systems, distributed shared memory systems,
and groupware systems. Research on real-time group ed-
itors, as a special class of distributed systems support-
ing human-computer-human interactions, has drawn inspira-
tions from traditional distributed computing techniques (e.g.,
causal/total ordering of events, state-vector timestamping,
serialization, etc.), and has also invented the non-traditional
operational transformation technique to address its special is-

sues, such as intention-preservation. The generalization and
application of this unique operational transformation tech-
nique to other areas of distributed computing and CSCW is
an exciting direction for future exploration.
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