The Essentials of Leo

Leo’s window, outlines & clones

Leo organizes all data into nodes containing a headline, an expandable page of body text and a (possibly empty) subtree of
descendant nodes. The contents of a node are its headline and body text. Leo’s main window contains an outline pane at
the top left, a log pane at the top right, and a body pane at the bottom. The outline pane shows headlines; the body pane shows
the body text of the selected headline. The log pane displays messages from Leo.

Small red arrows mark cloned nodes (clones). Clones share the same content and descendants. All clones of the same node are
equivalent, so changing the contents of one node (call it node N) changes the contents of all clones of N. Furthermore, inserting,
deleting or changing any descendant of node N causes the corresponding insertion, deletion or change in all other clones of N.

Relations: organizer nodes, views, tasks and metadata
Clones allow you to organize data in multiple ways within the same outline. You do not have to choose a single ‘correct’ organiza-
tion: you can organize your data in as many ways as you like.

You can use organizer nodes to create explicit relations (relationships) among the data in your outline. The headline of the
organizer node is the relationship’s name. Now make clones of nodes from other parts of the outline that participate in the
relation. Drag the newly created clones so they become children of the organizer node. You may want to create other (non-cloned)
children of the organizer node that contain data found nowhere else in the outline. Voila: you have just created the set of all nodes
that pertain to the relationship. The organizer node is the relation; the terms relation, relationship and organizer node are
interchangeable.

Three kinds of relations deserve special mention. A view is a relation (an organizer node) containing all nodes related to a desired
view (or slice) of the data in the outline. Similarly, a task is an organizer node containing all nodes related to a task. Relations are
not limited to tasks or views: the notion of relationship is completely general. Headlines naturally describe the data in body text.
That is, nodes relate metadata (descriptions of data) to data. Separating data from metadata is useful for humans. Itiseven
more valuable for scripts: scripts can access data and metadata without complex parsing.

Plugins
Plugins are Python (.py) files contained in Leo’s plugins folder. Users can write plugins to change how Leo works and to add new
features without changing Leo’s core code. We'll discuss plugins in more detail later.

Derived files and special nodes
Leo can generate many external files called derived files from an outline. Leo outlines can organize files throughout your
computer’s file system. Nodes whose headlines start with ‘@’ are special nodes. Several special nodes indicate the root of a tree
that generates a derived file:

@asis filename Creates a derived file. Ignores all markup in body text.

@file filename Creates a derived file. Duplicates outline structure in .leo file.

@noref filename Creates aderived file. Ignores all section references.

@nosent filename Createsa derived file without sentinels.
@thin filename (Recommended) Like @file, but thin derived files contain all outline structure.

Leo recognizes several other special nodes:

@settings Defines settings local to the .leo file.
@url url Double-clicking the node’s icon opens the url in Leo or in a browser.

The scripting plugin scans for the following nodes when opening an outline:

@button Creates a button in the icon area at the top of the Leo window.
@plugin plugin Enables a plugin if the plugin has not already been enabled.
@script Executes a script when opening the outline. This is a security risk: it is disabled by default.

Plugins, @button nodes and @script nodes can create other kinds of special nodes:

@suite Creates a suite of unit tests from script in body. Requires scripting plugin.
@test Creates a unit text from script in body. Requires scripting plugin.
@rst Outputs a tree containing markup for reStructuredText. Requires rst2 plugin.

@run command Double clicking the node’s icon executes the command. Requires run_nodes plugin.

Markup for scripts

Leo’s Execute Script command preprocesses the script to be executed by scanning a node N and its descendents looking for
markup. Markup is special syntax that controls this preprocessing. If node N contains no markup, the resulting script is just N's
body text. Otherwise, the preprocessed script will include text from descendent nodes as described below. The main kinds of
markup are section references, directives and doc parts.

1. Section references have the form:
<<section name>>

The << and >> must appear on the same line. Conversely, any line containing << and >> is a section reference, regardless of
context. However, section references are not recognized in doc parts. Any characters may appear between << and >>.

Section references are functional pseudo-code: while preprocessing a script, Leo replaces section references by the actual text of
the section’s definition. Sections are defined in section definition nodes, whose headlines start with a section reference and
whose body text defines the section. Each section definition node must descend from the node containing the section reference.

2. Directives start with ‘@’ in the leftmost column of body text. Directives specify options and control Leo’s operation.

The @others directive is the minimal markup needed to organize scripts. @others tells Leo to insert the preprocessed text of all
descendent nodes (except section definition nodes) at the spot at which the @others directive occurs. Nodes are inserted in
outline order, the order in which nodes appear in the outline. Important: Leo adds the whitespace preceding the @others
directive to the indentation of all preprocessed text.

Using @others is more convenient than using section references. Use @others when the order of included text does not matter:

class myClass:

@others # Include the methods of the class. Order doesn’t matter.

Use section references when the order of included text does matter. In the following script, for example, << imports >> ensures
that imports come first. The @others directive then includes the body text of all other descendent nodes.

@language python

<< imports>>

@others # Define classes & functions in child nodes.
main ()

Here is a list of all of Leo’s standard directives. Important: plugins may define other directives.

@whitespace (or @doc) Starts a doc part & ends code part.

@all Like @others, but includes all descendent nodes.
@c, @code Starts a code part and ends a doc part.

@color Enables syntax coloring.

@delims Temporarily changes comment delims.
@nocolor, @killcolor Disables syntax coloring.

@comment Sets comment delimiters in external (derived) files.

@language languagename
@lineending lineending
@others

Sets language for syntax coloring and comments.
Sets ending of lines in derived files.
Inserts body text of all descendents except definition nodes.

Sets page width for justifying comments in doc parts.

Sets prefix to use in relative file names in @file nodes, etc.
Marks the root of a tree that creates an external file.
Inhibits sections references in a range of text. (@file only.)
Sets width of tabs (negative widths convert tabs to spaces.)
Controls wrapping of text in body pane.

@pagewidth n
@path path
@root filename
@raw, @end raw
@tabwidth n
@wrap, @nowrap

3. Doc parts start with the ‘@’ directive and continue until the end of the body text or until the ‘@c’ directive. Body text not in a
doc part is in a code part. Here is an example of a doc part.

@ This is a doc part. Doc parts may span many lines. Leo converts doc parts to comments.

Leo reformats the doc part by justifying lines so they are no longer than the page width.

@c
Leo reformats doc parts by justifying the text into comment lines. The @pagewidth directive controls the length of these comment
lines. The @language and @comment directives specify the comment delimiters used in doc parts.

Scripting Leo

The Execute Script command preprocesses the selected text of the presently selected outline node, or the entire text of the node
if there is no selected text. See the section called “Markup for Scripts” for a discussion of how Leo preprocesses scripts. That
section also discusses how Leo organizes scripts using outlines. Conversely, scripts can use outlines to organize their data. To
write such scripts you must understand at least the basics of Leo’s modules and classes...

Leo’s modules and classes

Leo’s source code is organized as a collection of modules. The following paragraphs describe five of the most important
modules. See LeoPy.leo (Leo’s full source code) for more details: scripts have full access to all of Leo’s classes and data.

1. The leoGlobals module contains utility functions. By convention, in Leo’s code g is always the leoGlobals module.

2. The leoApp module defines a class representing the entire Leo application. g.app is the singleton object of this class: the
application object. The instance variables (ivars) of the application object are Leo’s global variables.

3. The leoCommands module defines the Commands class. A commander is an instance of this class. Commanders contain
the operations that can be performed on a particular outline. Each open Leo outline has its own commander. By convention, in
Leo’s code c is always a commander.

4. The leoFrame module defines the base leoFrame class for objects that create and manage the visual appearance of Leo’s
windows and panes. The leoTkinterFrame and leoTkinterTree modules contain subclasses of the base classes in the leoFrame
module.

A frame (an instance of the leoFrame class, or a subclass) contains all the internal data needed to manage a Leo window.
c.frame is the frame associated with commander c. If f is a frame, f.c is the frame’s commander, f.body is the frame’s body
pane, f.tree is the frame’s outline pane, and f.log is the frame’s log pane.

5. The leoNodes module defines several classes that implement Leo’s fundamental data structures. These classes are complex.
Happily, scripts can and should ignore these complications by accessing nodes using high-level methods of the position class.

A position (an instance of the position class) is the state of some traversal of an outline. Equivalently, a position is a particular
visual place in an outline. Cloned nodes may appear many times in an outline. Non-cloned nodes may also appear in many
places: consider a non-cloned descendant of a cloned node. By convention, in Leo’s source code p is a position.

Predefined symbols in scripts
When executing scripts Leo predefines the following three symbols: c is the commander of the outline in which the script is
defined, g is the leoGlobals module and p is the position of the selected node in c's outline, i.e., c.currentPosition().

Accessing data
Scripts should get and set data using high-level access methods. Here are some important getters:

g.app The application object. Its ivars are Leo’s global variables.
g.app.windowList The list of all open frames.
c.currentPosition () The position of the selected node.
c.rootPosition () The position of the first node in the outline.
p.headString() The headline of position p.

p.bodyString() The body text of position p.

p.childIndex () The number of siblings that precede p.
p.numberOfChildren () The number of p’s children.

p.level() The number of p’s ancestors.

p.hasChildren () True if p has children.

p.1isAncestorOf (p2) True if p2 is a child, grandchild, etc. of p.
p.isCloned() True if pis aclone.

p.isDirty () True if p’s contents have been changed.
p.isExpanded () True if p has children and p’s outline is expanded.
p.isMarked() True if p’s headline is marked.

p.isVisible() True if all of p’s ancestors are expanded.

And here are some important setters:

p.setBodyStringOrPane (s) Setbody textofptos

p.

setHeadString (s)

Set headline of p to s.

Traversing outlines
Scripts can visit some or all of the nodes of a Leo outline using the following iterators:

c.allNodes iter All positions in the outline, in outline order.
p.children iter() All children of p.

p.parents iter() All parents of p.

p.siblings iter() All siblings of p, including p.
p.following siblings iter() All siblings following p, not including p.

The following prints all the nodes of an outline, properly indented:

for p in c.allNodes iter():
print ' '"*p.level(), p.headString()

Executing commands from scripts
Scripts may open other Leo outlines, or execute any of Leo’s commands. Here are some examples:
ok, frame = g.openWithFileName (path,c) Opens the .leo file found at path.

c.deleteOutline () Deletes the selected node.
c.insertHeadline () Inserts a new node after present position.

For more examples, see Chapter 7: Scripting Leo with Python, in Leo’s Users Guide.

Bringing scripts to data

The scripting plugin creates two buttons in the icon area at the top of the Leo window. The Run Script button executes the script
in the selected node just like the Execute Script command. The Script Button button creates a new button whose headline is the
headline of the presently selected node, call it node N. Pressing this button executes the script in node N with p predefined as
c.currentPosition() at the time the script is executed. This clever trick brings the script to the data in the selected outline.

Unit Testing with @test and @suite nodes

test.leo contains all of Leo’s unit tests. An @button node in test.leo creates a blue Unit Test button in the icon area. This button is
an excellent example of bringing scripts to data. The Unit Test button executes all the unit tests specified by @test and @suite
nodes in the selected outline. Important: @button, @test and @suite nodes require the scripting plugin to be enabled.

@test nodes greatly simplify unit testing. The Unit Test button creates a unit test from the body text of each @test node. In effect,
the Unit Test button automatically creates an instance of unittest. TestCase whose run method is the body text of the @test node.
There is no need to create TestCase objects explicitly!

@suite nodes support legacy unit tests. When the Unit Test script button finds an @suite node it executes the script in its body
text. This script should create a suite of unit tests and set:

g.app.scriptDict['suite'] = suite

where suite is the created suite. The Unit Test button then runs that created suite of unit tests.

Plugins and hooks

Plugins are Python (.py) files in Leo’s plugin subdirectory. It is easy to create new plugins: Leo’s users have contributed dozens of
plugins that extend Leo’s capabilities in new ways. Leo imports all enabled plugins during startup. The file pluginsManager.txt
lists all enabled plugins. You can use the plugin manager plugin to control plugins without updating pluginsManager.txt by hand.

Plugins can override any class, method or function in Leo’s core, the files in Leo’s src subdirectory (the files derived from
LeoPy.leo). Besides altering Leo’s core, plugins can register functions called hooks that Leo calls at various times during Leo’s
execution. Events that trigger hooks include key pressed events, screen drawing events, node selection events and many others.
When importing a plugin, Leo will call the top-level init() function if it exists. This function should register the plugin’s hooks by
calling leoPlugins.registerHandler.

For full details about hooks and events see Chapter 8: Customizing Leo, in Leo’s Users Guide. The file leoPlugins.leo contains all
plugins that are presently distributed with Leo; studying these plugins is a good way of learning to write your own plugins.
Contacts

Leo’s home page: google edreamleo or http://webpages.charter.net/edreamleo/front.html
Edward K. Ream: edreamleo@charter.net, 166 N. Prospect Ave., Madison W1 53726, (608) 231-0766

