A Generic Operation Transformation Scheme for
Consistency Maintenance in Real-time
Cooperative Editing Systems

Chengzheng Sun

School of Computing & Information Technology

Griffith University
Brisbane, Qld 4111, Australia

scz@cit.gu.edu.au

Yanchun Zhang

Department of Mathematics & Computing

University of Southern Queensland
Toowoomba, Qld 4350, Australia

yan@usq.edu.au

Abstract — In real-time cooperative editing systems,
independent operations on any part of the shared docu-
ment may be generated from multiple cooperating sites.
It is very important and technically challenging to ensure
that the effect of executing an operation at remote sites,
in the presence of concurrent execution of independent
operations, achicves the same effect as executing this op-
eration at the local site at the time of its generation, thus
preserving its intention and maintaining system consis-
tency. In this paper, we investigate the technical issues
mvolved in preserving intentions of concurrent opera-
tions, erplain the reasons why traditional serialization-
based concurrency control strategies and existing opera-
tional transformation strategies failed to solve these prob-
lems, and propose a generic operation transformation
scheme for intention preservation and consistency main-
tenance in real-time cooperative editing systems. The
proposed scheme has been implemented in an Internet-
based prototype REDUCE (REal-time Distributed Un-
constrained Cooperative Editing) system.

Keywords: intention preservation, consistency main-
tenance, distributed computing, cooperative editing,

CSCW.

Appeared in the Proceedings of International ACM SIG-
GROUP Conference on Supporting Group Work, pp.425
-434, Phoenix, Arizona, USA, Nov. 16-19, 1997.

Xiahua Jia
Department of Computer Science
City University of Hong Kong
Kowloon, Hong Kong
jiaQcs.cityu.edu.hk

Yun Yang
School of Computing & Mathematics
Deakin University
Geelong, Vic 3217, Australia

yun@deakin.edu.au

I. INTRODUCTION

Cooperative editing Sys-
tems allows physically dispersed people to view and edit
shared textual/graphical/multimedia documents at the
same time [2, 8, 9]. They are very useful facilities in the
rapidly expanding area of CSCW (Computer-Supported
Cooperative Work) applications [3]. The goal of our re-
search is to investigate, design and implement cooper-
ative editing systems with the following characteristics:
(1) Real-time requirements — the response to local user
actions is quick (idealy as quick as a single-user editor)
and the latency for remote user actions is low (deter-
mined by external communication latency only). (2)
Daustributed environments — cooperating users may reside
on different machines connected by different communi-
cation networks. (3) Unconstrained collaboration — mul-
tiple users may concurrently and freely edit any part of
the document at any time, as advocated in [2, 8, 9].

To achieve good responsiveness and unconstrained col-
laboration, we have adopted a replicated architecture re-
garding the storage for shared documents: the shared
documents are replicated at the local storage of each
participating site, so editing operations (updates only)
are first performed at local sites and then propagated to
remote sites. One of the most significant challenges in
designing and implementing real-time cooperative edit-
ing systems with a replicated architecture is concurrency
control to maintain consistency of the replicated docu-
ments under the constraints of a short response time, a
short notification time, and unconstrained collaboration
in a distributed environment. To illustrate, consider a
scenario in a cooperative editing system with three coop-
erating sites, as shown in Fig. 1. Suppose that an opera-

tion is executed on the local replicate of the shared doc-
ument immediately after its generation, then broadcast
to remote sites and executed there in its original form
upon its arrival. Three inconsistency problems manifest

themselves in this scenario.
site 0 site 1 site 2

o1 uoz\

time

» O4

03

Flg 1. A scenario of a real-time cooperative editing session.

First, operations may arrive and be executed at differ-
ent sites in different orders, resulting in divergent final
results. As shown in Fig. 1, the four operations in this
scenario are executed in the following orders: 01, Os,
O4, and Os at site 0; Oy, O1, Oz, and O4 at site 1; and
O3, O4, O3, and O, at site 2. Unless operations are com-
mutative (which is generally not the case), final editing
results would not be identical among cooperating sites.
Apparently, divergent final results should be prohibited
for applications where the consistency of the final re-
sults is required, such as real-time cooperative software
design and documentation systems. This inconsistency
problem can be solved by a convergence scheme [5, 9], or
any serialization protocol [1, 6], which ensures the final
result 1s the same as if all operations were executed in
the same total order at all sites.

Secondly, due to the nondeterministic communication
latency, operations may be executed out of their natural
cause-effect order. As shown in Fig. 1, operation O3 is
generated after the arrival of O; at site 1, so O3 may be
dependent on Oy (See Section 1T for a definition about de-
pendency). However, since Ogz arrives (and is executed)
before O at site 2, the user at site 2 could be confused
by observing the effect in Os before observing the cause
in O;. For example, suppose the user at site 0 issues
O, to pose a question by inserting “What public holi-
day is held in Victoria Australia on the first Tuesday in
November ?” into the shared text document,! and then
the user at site 1 issues O3 to answer this question by
inserting “Melbourne Cup” into the shared document,
the user at site 2 would be puzzled by seeing the an-
swer before the question. Out of causal order execution
should be prohibited for applications where a synchro-
nized interaction among multiple users is required. This

I Throughout this paper, text editing systems and operations
are used for illustration, but many of the illustrated concepts and
schemes are generally applicable to other editing systems.

causality violation problem can be solved by selectiveb%
delaying the execution of some operations to enforce a
causally ordered execution based on state vector times-
tamps [2, 9].

Thirdly, due to concurrent generation of operations,
the actual effect of an operation at the time of its exe-
cution may be different from the intended effect of this
operation at the time of its generation. As shown in
Fig. 1, operation O; is generated at site 0 without any
knowledge of Oy generated at site 1, so Oy is indepen-
dent of Oy, and vice versa (See Section II for a definition
about independence). At site 0, Oz is executed on a doc-
ument state which has been changed by the preceding
execution of Q1. Therefore, the subsequent execution of
O- may refer to an incorrect position in the new docu-
ment state, resulting in an editing effect which is differ-
ent from the intention of O3 (See Section II for a defini-
tion about intention). For example, assume the shared
document initially contains the following sequence of
characters: “ABCDE”. Suppose O = Insert[“12” 1],
which intends to insert string “12” at position 1, i.e., be-
tween “A” and “BCDE”; and O5 = Delete[2,2], which
intends to delete the two characters starting from po-
sition 2, i.e., “CD”. After the execution of these two
operations, the intention-preserved result (at all sites)
should be: “A12BE”. However, the actual result at site
0, obtained by executing O followed by executing Oa,
would be: “ATCDE”| which apparently violates the in-
tention of Oq since the character “2”, which was intended
to be inserted, is missing in the final text, and also vi-
olates the intention of O since characters “CD”, which
were intended to be deleted, are still present in the final
text. It should be pointed out that even if a conver-
gence scheme or serialization-based protocol was used to
ensure that all sites have an identical result “A1CDE”,
but this identical result is still inconsistent with the in-
tentions of both O; and O;. Unlike the divergent final
results and causality violation problems, which are all
related to the execution order of operations and could
be fixed by properly re-scheduling the operations, the
intention violation problem cannot be fixed by any seri-
alization protocol if operations were always executed in
their original forms.

It should be pointed out that the above three identi-
fied inconsistency problems are independent in the sense
that the occurrence of one or two of them does not al-
ways result in the others. Particularly, intention vio-
lation is an inconsistency problem of a different nature
from the divergent final results problem. Although the
issue of consistency maintenance has attracted a great
deal of attention in the areas of CSCW and distributed
computing [2, 4, 5, 8], the nature and the complications
of the intention violation problem have not been well
understood, and the issue of preserving intentions of op-
erations has often been mixed with the issue of ensur-
ing convergence of the final results, which we believe

is one of the major reasons why some existing systems
failed to correctly solve these problems (see Section VI
for discussions of related work). In this paper, a novel
and integrated approach to correctly solving the inten-
tion violation problem (in combination with the prob-
lems of divergent final results and causality violation) is
proposed.

Apart from the syntactic inconsistency problems iden-
tified above, there are still other semantic inconsistency
problems. For example, suppose a shared document con-
tains the text:

“There will be student here.”

In this text there is an English grammar error, i.e. in the
text it should be “a student”, or “students” or the like.
Assume that one user at site 0 issues an operation O; to
insert “a ”at the starting position of “student”; another
user at site 1 issues an operation O, to insert “s” at
the ending position of “student”. Suppose the system
preserves the intentions of independent operations (by
means of an intention-preserving scheme as presented
in this paper). Then, after the execution of these two
operations at all sites, the text would be:

“There will be a students here.”

This result is syntactically consistent (since all sites have
the same document contents and the syntactic editing
effects of all operations are achieved), but semantically
inconsistent (since there is still a grammar error in it). In
other words, the system is able to ensure the plain strings
be inserted at proper positions, but unable to ensure
these strings make a correct English sentence. This kind
of semantic inconsistency problem cannot be resolved by
underlying concurrency control mechanisms without the
intervention of the people in collaboration. To the best
of our knowledge, none of existing cooperative (and even
single-user) editing systems has attempted to maintain
semantical consistency automatically. The consistency
maintenance algorithms to be discussed this paper will
not address the semantic consistency maintenance prob-
lem either.

The organization of this paper is as follows. First some
previous results on a consistency model and concurrency
control schemes will be briefly described in Section II.
Next, the basic 1ssues and complications involved in re-
solving the intention violation problem will be analyzed
in Section ITI. Then, a novel intention-preserving scheme
will be presented in Section TV, and it will be integrated
with the convergence scheme to provide a solution to
both the intention-violation and the divergent final re-
sults problems in Section V. Our work will be comparied
with other related approaches in Section VI. The ma-
jor contributions and future work of our research will be
summarized in Section VII.

II. PREVIOUS WORK 3

In this section, some relevant results obtained in pre-
vious work are briefly introduced. For more detailed
discussion of them, the reader is referred to [9, 10].

A. A consistency model

Following Lamport [6], we first define a causal (par-
tial) ordering relation on operations in terms of their
generation and execution sequences as follows.

Definition 1: Causal ordering relation “—”
Given two operations O, and Oy, generated at sites i
and j, then O, — Oy, iff.

1. i = j and the generation of O, happened before the
generation of Oy, or

2. 1 # j and the execution of O, at site j happened
before the generation of Oy, or

3. there exists an operation O, such that O, — O,
and O, — Oy. O

Definition 2: Dependent and independent operations

Given any two operations O, and Op.

1. Op 1s said to be dependent on O, iff Oy — Oy.

2. O, and Oy are said to be independent (or concur-
rent) iff neither O, — Op, nor Op — O, which is
expressed as O, || Os. O

For example, the dependency/independency relation-
ship among operations in Figure 1 could be expressed
as: 01 || 02, 01 || 04, 03 || 04, 01 — 03, 02 — 03,
and Oy — Oy4.

In [9], the notion of intention of operations was first
introduced and a consistency model was defined as fol-
lows.

Definition 3: Intention of an operation

Given an operation O, the intention of O is the exe-
cution effect which could be achieved by applying O on
the document state from which O was generated. o

Definition 4: A consistency model

A cooperative editing system is said to be consistent

if it always maintains the following properties:

1. Convergence: when all sites have executed the
same set, of operations, the copies of the shared doc-
ument at all sites are identical.

2. Causality-preservation: for any pair of opera-
tions O, and Oy, if O, = Oy, then O, is executed
before O at all sites.

3. Intention-preservation: for any operation O,

(a) both the local and remote execution effects of O
equal to the intention of O, and

(b) if there exists an operation O, such that O, || O,
then the execution effect of O, does not interfere

with the execution effect of O, and vice versa. O

In essence, the convergence property ensures the con-
sistency of the final results at the end of a cooperative
editing session; the causality-preservation property en-
sures the consistency of the execution orders of depen-
dent operations during a cooperative editing session; and
the intention-preservation property ensures that the ef-
fect of executing an operation at remote sites achieves
the same effect as executing this operation at the local
site at the time of its generation, regardless the concur-
rent execution of independent operations and the non-
deterministic latency of propagating local operations to
remote sites. The consistency model effectively specifies
what assurance a cooperative editing system gives to its
users and what properties the underlying concurrency
control schemes must support.

B. Achieving causality-preservation and
convergence

To capture the causal relationship among all opera-
tions in the system, a timestamping scheme based on a
data structure — State Vector (SV) — can be used [2, 9].
Let N be the number of cooperating sites in the system.
Assume that sites are identified by integers 0, ..., N — 1.
Each site maintains an SV with N components. Initially,
SV :=0, forall i € {0,..., N — 1}. After executing an
operation generated at site 7, SV[i] := SV[{]+ 1. An
operation is executed at the local site immediately after
its generation and then multicast to remote sites with a
timestamp of the current value of the local SV.

Definition 5: Conditions for executing remote opera-
tions

Let O be an operation generated at site s and times-
tamped by SVo. O is causally-ready for execution at site
d (d # s) with a state vector SV only if the following
conditions are satisfied:

1. SVo[s] = SV4[s] + 1, and

2. SVoli] < SV4[i], for all ¢ € {0,1,...,N — 1} and

i % s.

O

The first condition ensures that O must be the next
operation in sequence from site s, so no operations orig-
inated at site s have been missed by the site d. The
second condition ensures that all operations originated
at other sites and executed at site s before the generation
of O must have been executed at site d. Altogether these
two conditions ensure that all operations which causally
precede O have been executed at site d.

The causality-preserving scheme imposes causally or-
dered execution only for dependent operations and al-
lows an operation to be executed at the local site imme-
diately after its generation (for achieving good respon-
siveness). This implies that the execution order of in-

dependent operations may be different at different sites’
To achieve convergence in the presence of different exe-
cution order of independent operations, we first define a
total ordering relation among operations as follows.

Definition 6: Total ordering relation “="

Given two operations O, and Oy, generated at sites 7
and j and timestamped by SVp, and SVp, , respectively,
then O, = Oy, iff:

1. sum(SVp,) < sum(SVp,), or

2. i < j when sum(SVp,) = sum(SVop,),
where sum(SV) = Zf\;?)l SVi. O

In addition, each site maintains a history buffer (HB)
for saving executed operations at each site. Based on the

total ordering relation and the history buffer, the follow-
ing undo/do/redo scheme is defined [9].

Algorithm 1: The undo/do/redo scheme

When a new operation Oy, is causally-ready, the fol-

lowing steps are executed:

1. Undo all operations in HB which totally follow
Ojnew to restore the document to the state before
their execution.

2. Do O, and save it in HB.

3. Redo all operations that were undone from HB. O

Obviously, when all sites have executed the same set of
operations under the undo/do/redo scheme, the editing
effect will be the same as if all operations were executed
in the total order “=” at all sites, thus ensuring the
convergence property.

III. BASIC ISSUES AND
COMPLICATIONS IN ACHIEVING
INTENTION-PRESERVATION

Achieving intention-preservation is much harder than
achieving convergence and causality-preservation. This
is because that the intention violation problem cannot
be resolved by just re-scheduling operations, as in the
case of achieving convergence and causality-preservation.
To achieve intention-preservation, a causally-ready op-
eration has to be transformed before its execution to
compensate the changes made to the document state by
other executed operations.

To transform an operation against another operation,
an inclusion transformation strategy (see Section TV-
A) may be applied, which transforms an operation O,
against another independent operation Op in such a way
that the impact of Oy is effectively included into O,. To
illustrate, consider the two independent operations O
and Os in Figure 1. When O arrives site 0, it needs
to be transformed against O; before its execution. Sup-
pose the shared document initially contains “ABCDE”

01 = Insert[“127,1], and Oy = Delete[2,2]. Based on
the comparison of the position parameters of O and Os,
i.e., 2 > 1, and the length 2 of the string inserted by Oq,
the underlying inclusion transformation system at site 0
is able to correctly derive that Oy should be transformed
into O% = Delete[2,4]. The execution of O} at site 0 will
result in the document state: “A12BE”, which appar-
ently preserves the intentions of both O, and O;. The
correctness of this inclusion transformation relies on the
fact that both O; and O, are generated from the same
document state, so their position parameters are compa-
rable and can be used to derive a proper adjustment to
0.

The inclusion transformation could have been always
directly applicable if independent operations were all
generated out of the same document state, like O; and
O- in Figure 1. Unfortunately, it is possible that some
independent operations are generated from different doc-
ument states in an unconstrained cooperative editing en-
vironment. To illustrate, consider the relationship be-
tween another pair of independent operations O; and
O4 in Figure 1. Since O4 is generated after the exe-
cution of O, at site 2, the document state at site 2 at
the time of O4’s generation is different from the docu-
ment state at site 0 at the time of O1’s generation. For
independent operations generated from different docu-
ment states, it 1s no longer possible to correctly reason
about their relative positions by simply comparing their
position parameters. For example, suppose the initial
document state is “ABCDE” |, O1 = Insert[“12”,1], and
O = Insert[“23”,0], After the execution of Oy at site
2, the document state becomes “23ABCDE”. Suppose
O, = Insert[“45”,2], which is to insert “45” between
“23” and “ABCDE”. When O, arrives at site 0, if the
inclusion transformation is directly applied, i.e., O4 is
transformed against Oy based on the comparison of the
position parameter “2” in O4 and the position parame-
ter “1” in Oy, O4 would be incorrectly transformed into
O}, = Insert[“45” 4]. After the execution of O} at site
0, the document state would become “23A1452BCDE”
at site 0, instead of “2345A12BCDE” which is what the
document state should be if intentions of O, O5, and O4
are all preserved. The trouble here is that the position
parameter “2” in O4 and the position parameter “1” in
O1 refer to different document states and hence are not
comparable.

How to make two independent operations generated
from different document states, such as O4 and Oy, ef-
fectively share the same document state so that the in-
clusion transformation can be applied 7 Our approach
is to apply another ezclusion transformation (see Sec-
tion TV-A) to transform O, against its causally preced-
ing operation Oy to produce O} in such a way that Os’s
impact on Oy is excluded. Consequently, O effectively
shares the same document state with Oy, and then can
be applied with the inclusion transformation against O;.

Life would have been much easier if the dependency re
lationship among operations is always as simple as the re-
lationship between O; and O, which could be expressed
by a single dependency expression: O; || (O2 — Oa).
Consider another pair of independent and incomparable
operations O3 and Oy in Figure 1. Their dependency re-
lationship is rather irregular and could only be expressed
by two dependency expressions: (O; || O2) = Og, and
Os — O4. Under this circumstance, it is not obvious
how to apply proper transformations to make Oy effec-
tively share the same document state with Oz before
applying the inclusion transformation to O4 against O3
(e.g., at site 1). Tt is this diverse and irregular depen-
dency relationship among operations that necessitates a
sophisticated control scheme to determine when and how
to apply the inclusion/exclusion transformation to which
operations against which others.

To cope with the complexities involved in the design
(and discussion) of the intention-preserving scheme, we
divide the whole scheme into two parts: one is a generic
part, which can be applied to different cooperative edit-
ing systems and determines which operations need to
be transformed against which others and in what order
based solely on the causal and total ordering relation-
ships among operations; and the other is an application-
dependent part, which relies on semantics of the oper-
ations involved, and does the real operation transfor-
mation. This paper will focus on the generic intention-
preserving scheme, and the design of the concrete in-
clusion/exclusion transformation algorithms for a text
editing system can be found in another paper [12].

IV. THE GENERIC
INTENTION-PRESERVING SCHEME

Since operations may be transformed before their ex-
ecution, their execution form in HB may be different
from their original form at the time of their generation.
To stress this fact, the list of operations in HB is de-
noted as HB = [EO1, EOs, ..., EO,)]. where EO; is the
execution form of O;. Moreover, all operations in HB
are sorted according to their total ordering relation, i.e.,
EO; = FO;4+1. Apparently, the document state at any
instance of time can be determined by sequentially exe-
cuting operations in HB in their total order on the initial
document state (maybe empty).

To facilitate the following discussion, some special no-
tations are introduced below. Let L, Ly, and L3 be lists
of executed operations. |L| denotes the length of L; L=1
denotes the reverse of L; L[i, j], i < j, denotes a sublist
of I containing the operations from FO; to £EO; inclu-
sively; L[], 1 < i < |L|, denotes the ith operation in
L; Tail(L) denotes all operations in L except the first
one; and by concatenating operations in Ly, and Ls. For
example, if L = [EOy, EOy, EO3], then |L| =3, 7! =
[EOs, EOy, EO4], L[1,2] = [EO4,EQO,], L[1] = EOq,

and TCLZZ(L) = [EOQ,EOg] If L1 = [EOl,EOg], and
L2 = [EOg], then Ll + L2 = [EOl, EOQ, EOg]

A. Pre-/post-conditions for transforma-
tion functions

Conceptually, an operation O is associated with a con-
tert, denoted as C'To, which is the list of operations that
have affected the document state from which O is gen-
erated. The significance of context is that the meaning
of an operation can be correctly interpreted only in its
own context. When an operation is generated, it is as-
sociated with an original context, which is the list of
operations in HB at the site and the time of its gen-
eration. The original context of an operation does not
change unless it is explicitly transformed. For specifying
pre-/post-conditions for transformation functions, two
context-based relations among operations are defined be-
low.

Definition 7: Context equivalent relation “ U ”

Given two operations O, and Oy, associated with con-
texts C'Tp, and CTp,, respectively. O, and O, are
contert-equivalent, i.e., Oq U Oy, iff CTo, = CTop,. 0O

Apparently, the context equivalent relation is transi-
tive, i.e., given operations Og4, Op, and O.. If O, U Oy
and OpUUO,, then O,UO0.. In contrast, the independence
relation is not transitive, i.e., given operations O, Oy,
and O.. If Oy || Op and Oy || O, it is not guaranteed
that O, || O.. For example, in Fig. 1, Oz || O1, and
01 || 04, but 02 — 04.

Definition 8: Context immediate preceding relation
“H‘”

Given two operations O, and Oy, associated with
contexts C'Tp, and CTp,, respectively. O, is context
immediate preceding Oy, 1.e., Of — Oy, iff CTo, =
CToa + [Oa]. O

From the definition of “U” and “—”, we know that
given operations O,, Op, and O.. If O, — O and
04 — O, then we can derive that Op, U O.. It should
be noted that the context immediate preceding relation
“—” is different from the dependence (i.e. the causal
ordering) relation “—”: the dependence relation is tran-
sitive whereas the context immediate preceding relation
is not transitive by definition.

The current list of operations in HB at any site de-
termine the current document state at that site and de-
fine an environment for executing new operations. Obvi-
ously, the execution environment at a site keeps chang-
ing as new operations are executed at that site. When
a causally-ready operation has its original context being
the same as the current environment at the destination
site, it can be executed as it is since the document state

determined by the current environment is the same as
the document state determined by the operation’s orig-
inal context and the operation’s intention is automati-
cally guaranteed. However, when a causally-ready op-
eration has its original context being different from the
current environment (due to preceding executions of in-
dependent operations), this operation needs to be trans-
formed before its execution in the current environment in
order to preserve its intention. The intention-preserving
scheme uses the following two primitive transformation
functions to include/exclude one operation into/from the
context of another operation to produce a new operation.

To include operation Op into the context of O,, the in-
clusion transformation function IT(O4, Op) is called to
produce O, as specified below.

Specification 1: IT(Og4,0p) : O}

1. Precondition for input parameters: O, U Op.

2. Postconditions for output: (1) Op — O, and (2)
the execution of O in the environment of HB =

CTo: achieves the same editing effect as the execu-
tion of O, in the environment of HB = CTp,. O

To exclude operation O from the context of O, the
exclusion transformation function ET (0,4, Op) is called
to produce O, as specified below.

Specification 2: ET(Oq4, 0) : O},

1. Precondition for input parameters: Op +— O,.

2. Postcondition for output: Op U OF,. i

In addition to the postconditions, the two primitive
transformation functions must meet the reversibility re-
quirement as defined below.

Definition 9: Reversibility requirement

Given two operations O, and Op.

1. If Oq U Oy and O}, = IT(Og4, Op), then, it must be
that O, = ET(O%, Op).

2. If Op = Oy and O}, = ET(Og4, Op), then, it must
be that O, = I'T(O%, Os). O

To simplify the expression of applying the two primi-
tive transformation functions repeatedly to a list of oper-
ations, two additional utility functions LIT() and LET()
are defined below.

To include a list of operations OL into the context of
operation O, the following function LIT(O,OL) can be
called.

Function 1: LIT(O,0L)
ifOL =[] O :=0;
else O .= LIT(IT(0,0L[1]), Tail(OL));

return O’;

}

The preconditions for input pa-
rameters of LIT(O,0L) are: (1) O U OL[1], and (2)
for any two consecutive operations OL[i] and OL[i + 1]
in OL, OL[i] = OL[i + 1].

To exclude a list of operations OL from the context of
operation O, the following function LET(O,OL) can be
called.

Function 2: LET(0O,0L)

{
ifOL=[] O :=0;
else O' .= LET(ET(0,0L[1]),Tail(OL));
return O’;

}

The preconditions for input parameters
of LET(O,0L) are: (1) OL[1] = O, and (2) for any
two consecutive operations OL[i] and OL[i 4+ 1] in OL,
OL[i + 1]+~ OL[:].

Preconditions are required by these transformation
functions to ensure the correct derivation of the adjust-
ment to one operation’s parameters according to the im-
pact of the other operation. How to ensure the pre-
conditions of the input operations is one of the main
tasks of the higher level control algorithm to be dis-
cussed in Section IV-B. Given the input operations sat-
isfying the preconditions, how to produce the output
operation which satisfies the postconditions and meets
the reversibility requirement is the responsibility of the
lower level inclusion and exclusion transformation func-
tions. The concrete definitions of IT and ET depend
on the semantics of the input operations and hence
is application-dependent. The inclusion and exclusion
transformation functions for a text editing system with
two string-wise primitive operations — Insert and Delete,
and the corresponding LIT and LET functions capable
of handling exceptional cases, such as lost information
saving/recovery for ensuring reversibility, and relatively
addressing for undefined ranges?, can be found in [12].

B. The generic operation transformation
control scheme

Based on the concept of context and the specifica-
tions of inclusion and exclusion transformation func-
tions, the Generic Operation Transformation (GOT)
control scheme is proposed in this section.

Let Opew be a new causally-ready operation, asso-
ciated with its original context CTp and HB =
[EO1, EO,, ..., EO,,]. Assume:

new)

2Generally, when Oy is causally preceding O, and (1) Op is an
insert operation, and (2) O, inserts a string or delete some char-
acters within the string inserted by Oy, the application of exclu-
sion transformation on O, against Oy will result in O,’s operation
range undefined.

1. FO1 = FO2 = ... = EOn = Opew, and

2. FO1— FEO2— ... EOp,.

The objective of the GOT control scheme is to determine
the execution form of Oy, denoted as FO,q, such
that

1. EO,, — EOyew, and

2. executing EQOpey 1n the environment of HB =

CTEgo,,, achieves the same editing effect as exe-
cuting Opeqy 1n the environment of HB = C'Tp,, ., -

Let us start with the simplest case: all operations in
H B are causally preceding O,ey. This case could occur
(1) if Opew is a newly generated local operation, or (2)
Ojew 18 a remote operation and its original context con-
tains the same list of operations as the local HB at the
time when O,¢, becomes causally-ready for execution.
In this case, it must be that CTp, ., = HB. Therefore,
EO,, = Opew, and Ojeqy can be executed in its original
form without transformation, 1.e., FOy,ew := Onew.

If, however, there exists any operation FO; in HB,
such that FOy || Onew, then operation EOp must not
be in the context of Opey, so CTop,., # HB. There-
fore, Opew needs to be transformed in order to include
the impact of FOj, and other operations in H B which
are independent of Opey. The technical challenge here
is how to ensure that the preconditions required by the
primitive transformation functions are always met in the
process of including independent operations into the con-
text of Oy ey -

Suppose HB = [EOy, ..., EOg, ..., EOy,], where EOy
is the oldest operation in HB which is independent of
Ohpew, so that all operations in the range of HB[l,k —
1] are causally preceding Opew. FOj can be identified
by scanning operations in H B from left to right until
an operation independent of O,y is met3. Obviously,
HBI[l,k — 1] must prefix the original context of Oy,
ie., CTp,., = HB[l,k— 1]+ FOL', where EOL' is a
list of operations executed after the execution of FOj_1
but before the generation of Oy ey .

If all operations in the range of H B[k, m] are inde-
pendent of Opey, then it must be that EOL' = []
and hence CTp, ., = HB[l,k — 1]. Under this spe-
cial circumstance, we have O,¢p U EQOp and EFOy —
EOky1 — ... = EOp, so we can directly apply the
list inclusion transformation function to produce EOy, ¢y,
i.e., FEOpey := LIT(Onpew, H B[k, m]).

The complication comes when there is a mixture of
independent and dependent operations in the range of
HB[k,m]. Let EOL = [FO,,..., FO.,], which is the
list of operations in the range of HB[k + 1,m] and
they are causally preceding O,¢y. Under this circum-
stance, FOL' must be equal to [EO, , ..., EO, |, where

cy1) "

EO], is the corresponding form of EO,, at the time of

3If no such an FOy is found in HB, then the situation is the
simplest case as discussed before.

Opew’s generation. Apparently, C’TEOIc + CTEO% be-
cause there exists at least one operatioﬁ FEOy, which is
n CTEOCl but not in C'Tgo: . The dilemma we are fac-
ing here is that on one hanci, we cannot directly apply
the list inclusion transformation function to include all
operations in H B[k, m] into CTop,_,, because CTop
contains a non-empty list of operations in FOL’ and
hence O,y 18 not context-equivalent with FOy. On the
other hand, we cannot directly apply the list exclusion
transformation function to exclude all dependent oper-
ations in FOL (in reverse order) from CTp,_,, to make
Ohpew context-equivalent with EOy, either, because (1) it
is not the case that EO., — Opey; and (2) there is no
guarantee that £O.; = EO.,,, for 1 <i < r, due to
the mixture of independent and dependent operations in
the range of H B[k, m].

To make Oy ey context-equivalent with EQy, what we
should do is to apply the exclusion transformation func-
tion to exclude the operations in FOL', instead of EOL,
from the context of Opeyw, because (1) EO, +— EOpcw;
and (2) it is assured that EO;, — EO;, , for 1 <i <r.
However, we have only EOL, not EOL’, available in
HB. Then, the problem becomes: how to obtain each
operation FO;, in EOL’ from the corresponding opera-
tion EQ,, in EOL ?

For the first operation in FOL, i.e.;, FO.,, we have
observed that CTgo, = HB[l,k— 1]+ HB[k,c; — 1],
but CTgo, = HB[l,k — 1]. Therefore, EO;, can
be obtained by excluding operations in the range of
H B[k, c1—1] (in reverse order) from the context of FO,,,
ie., EO, := LET(EO.,, HBlk,c; —1]71).

For the second operation in FOL, i.e., EO.,, we ob-
served that CTro,, = HB[l,k— 1]+ H B[k, cy — 1], but
CTgo; = HB[l, k — 1]+ [EO,]. Therefore, EO;, can
be obtained by first excluding operations in the range
of HB[k,ca — 1] (in the reverse order) from the context
of EO.,, and then including FO,, into the intermediate
result. So, the following two steps need to be executed:

1. TO* := LET(EO.,, HB[k,cqs — 1]71);

2. EO,, =IT(TO,EO,,).

Generally, for the ith operation in EOL, i.e., FO,,,
2 <1 < r, the following two steps need to be executed:

1. TO := LET(EO,,, HBlk,c; — 1]71);

2. EO,, = LIT(TO,[EO,,,...,EO,,_]).

Once EOL' has been obtained from FOL, we can
now apply the list exclusion transformation function to
exclude all operations in FOL’ (in reverse order) from
CTo,., to produce an O}, which is context-equivalent
with EOp, and then apply the list inclusion transforma-
tion function to include all the operations in H B[k, m]

new

into CTp,,.,,, 1.€.,
1. O, := LET(Opnew, EOL'71);

2. EOpew = LIT(O!

new)

H B[k, m]).

4TO stands for Temporary Operation — a notation used to rep-
resent an intermediate result during transformation.

Based on the above discussion and reasoning, the GOT
control scheme is derived below.

Algorithm 2: The GOT control scheme

Given a new causally-ready operation Ojey, and
HB = [EO4,EOs,...,EOy,]. The following steps are
executed to obtain FO, .y :

1. Scanning the HB from left to right to find the first
operation EOy such that FOy || Oney. If no such
an operation FOy is found, then FOpey := Opeyw.

2. Otherwise, search the range of H B[k + 1, m] to find
all operations which are causally preceding Op ey,
and let FOL denote these operations. If FOL =[],
then FOney = LIT(Onew, H B[k, m]).

3. Otherwise, suppose FOL = [EO,, ...
following steps are executed:

(a) Get EOL' = [EO,,, ..., EO,] as follows:
i. EO., = LET(EO,.,, HBlk,c; —1]71).
. For2<i<r,

TO = LET(EO.,, HBlk,c; — 1]71);

,EO.,], the

EO, = LIT(TO,[EO,,, ..., EO, _]).
(b) O}y = LET(Opew, EOL'7Y).
(¢) EOnew = LIT(OL,.,,, HBlk, m]).]

According to the above analysis and description of the
GOT control scheme, we know that the preconditions re-
quired by the transformation functions are always guar-
anteed by the GOT control scheme. Therefore, if the
postconditions are always ensured by the transforma-
tion functions, then FO,, ¢, obtained by the GOT control
scheme will have the following property: the execution
of FOyey in the environment of HB = CTge,,, will
achieve the same effect as the execution of Oy in the
environment of HB = C1p,,_,,, thus preserving the in-
tention of Opey. Finally, it is worth pointing out that
the GOT control scheme works solely on a linear HB, and
no additional data structures need to be maintained for

deriving context-based relationship among operations.

V. INTEGRATING THE GOT
CONTROL SCHEME WITH THE
UNDO/DO/REDO SCHEME

In this section, we discuss how to achieve both in-
tention preservation and convergence by integrating the
GOT control scheme with the undo/do/redo scheme.

Let Opew be a new causally-ready operation, and
HB = [EOq,...,EOp, ..., EO,], where FQ1 is the oldest
operation in HB, EQ,, is the youngest operation which
is totally preceding Oper, and EO,, is the youngest op-
eration in H B.

The integrated scheme starts by undoing all executed
operations in the range of HB[m + 1,n] to restore the
document to the state before their executions. Then,
Opew 18 transformed into EQOje, by the GOT control

scheme such that CTgo,., = HB[l,m], and executed.
Finally, all undone operations are transformed and re-
done one by one to take into account of the impact of
EOpey. The strategy for transforming and redoing un-
done operations is discussed below.

For the first operation in the range of HB[m + 1, n],
i.e., EOmy1, we observed that CTgo,,,, = HBI[l, m]
and also CTgro,., = HB[l,m], so EOpmt1 U EOp .
Therefore, the new execution form of EO,,41, denoted
as EO,,.;, can be obtained as follows: FO,,,, =
IT(EOm41, EOpey).

For the second operation in H B[m+1,n],i.e., EOp42,
we observed that CTgo,,, = HB[l,m] 4+ [EOn41],
but CTgo,., = HB[l,m], so FOpn42 is not context-
equivalent with FO,c,. Therefore, we need to first ex-
clude EO, 41 from the context of EO,, 49, and then in-
clude FO, ¢ and E07/n+1 into the context of the inter-
mediate result. So, two steps are needed:

1. TO := ET(EOm+2,EOm+1);

2. EO), 5 = LIT(TO,[EOpew, FO;, 1)

Generally, for the ith operation in HB[m + 1,n], i.e.,
EOmyi, 2 <1 < (n— m), the following two steps are
executed:

1. TO :== LET(EOm4i, HBim 4+ 1,m +i — 1]71);

2. EO),,; = LIT(TO,[EOpew,

EOL, 41, EO, (i _1]).

It can be shown that FO;, ,, obtained in the above
way will have the following property: the execution of
EO;,,; in the environment of HB = C’TEO;W will
achieve the same effect as the execution of FOpy; in
the environment of HB = CTgo,, ;-

Based on the above analysis, the integrated scheme is

defined below.

Algorithm 3: The undo/transform-do/transform-redo
scheme

Given a new causally-ready operation Opey, and
HB = [EOy, ..., EOy, ..., EO,], the following steps are
executed:

1. Undo operations in HB from right to left until an
operation FQO,, is found such that FO,, = Opey.
2. Transform O,., into EOp., by applying the

GOT control scheme. Then, do EO, ¢y .
3. Transform each operation EOp,4; in HB[m+1,n]
into the new execution form EO;, . ; as follows:
o EO, 1 :=IT(EOmt1, EOpew).
o For 2<i< (n—m),
(1) TO := LET(EOmyi, HB[m+1,m+i—1]71);
(2) EO,,y; == LIT(TO,[EOycw,
EO, 11, EO, i 4]).
Then, redo EO,,,,,EO;, ..., EO;, sequentially.
After the execution of the above steps, the contents
of the history buffer becomes: HB = [EOq, ..., EOp,
EOnew, EO;, 1, ..., EO]]. O

It can be shown that when all sites have executed thé
same set of operations, their HBs must have the same list
of executed operations in the same order and in the same
format, resulting in the same document state, hence con-
vergence is ensured. Moreover, each executed operation
in HB is obtained by either the GOT control scheme
or by step 3 of the undo/transform-do/transform-redo
scheme, hence intention-preservation is ensured.

An example — To illustrate how the
undo/transform-do/transform-redo scheme works, con-
sider the scenario shown in Fig 2, with each site aug-
mented with the causality-preserving scheme and the
undo/transform-do/transform-redo scheme. The values
of state vectors after executing an operation at each site

are indicated explicitly as well.

site 0 site 1 site 2
time [0,0,0] o [0,0,0] [0,0,0]
[1,0,0] [0,1,0 "02\
[0,1,0]
» 04
[0,1,1]
[1,1,0]
[1,1,1]
[1,2,1] delayed

[1,1,1]
[1.2,1]

Flg 2. A scenario of a real-time cooperative editing session
augmented with both the causality-preserving scheme and the
undo/transform-do/transform-redo scheme.

The sequence of events happening at each site are ex-
plained below.

Site O:

1. When O is generated, it is executed as it is (since
it is local), i.e., EO;, := O1, and HB = [FO].

2. When Os arrives, it needs to be applied with the
inclusion transformation against FO; before its ex-
ecution, i.e., FOq := IT(042, EO1), since EO || O4
and FO; U Oy. After the execution of FOy, HB =
[EO1, EO3].

3. When O, arrives, it needs to be transformed be-
fore its execution since EO; || O4. However, Oy
is not context-equivalent with FO; since the con-
text of O4 contains O, but the context of FO;
does not. Therefore, 04 needs to be first applied
with the exclusion transformation against Oy, which
can be obtained by applying the exclusion transfor-
mation on FQy against E£Oq. Therefore, EQ4 =
L[T(ET(O4, ET(EOQ, EOl)), [EOl, EOQ]) After
the execution of FO4, HB = [EO1, EOy, EOy4].

4. When Os arrives, it needs to be applied with the

inclusion transformation against £QOy, 1.e., FO3 :=
IT(Og,EO4), since 03 || EO4 and 03 U EO4 Fi-
nally, HB = [EOl, EOQ, EO4, EOg]

Site 1:

1. When Os is generated, it i1s executed as 1t is, 1.e.,
E02 = 02, and HB = [EOQ]

2. When O; arrives, FO, needs first to be undone
since 07 = FQO,. Secondly, O1 is executed as it
is, FO1 := O;. Thirdly, the new execution form of
O3 becomes: FOy := IT (O3, EO;) since EO1 U Os.
Finally, HB = [EO,, EOs].

3. When Os; is generated, it is executed as it is, i.e.,
E03 = 03, and HB = [EOl,EOQ,EO:g].

4. When O, arrives, FO3 needs first to be undone
since 04 = FEO3. Secondly, O4 needs to be trans-
formed to get £, in the same way as step 3 at site
0. Thirdly, the new execution form of O3 becomes:
EO% := IT(EO3, EQ4),° since EO3 U EQy4 due to
the fact that Oy — O3z and FO5 — EQO,4. Finally,
HB = [EO;, EO4, EO4, EO%].

Site 2:

1. When O, arrives, it is executed as it is, 1.e.;, EQ5 :=
02, and HB = [EOQ]

2. When Oy, is generated, it is executed as it is, i.e.,
EO4 = 04J and HB = [EOl,EO4]

3. When Oj arrives, it is suspended since Oy — O3

but O; has not yet executed at site 2, which is
detected by comparing the values of the state vec-
tor (i.e., [1,2,0]) associated with Og and the local
state vector (i.e., [0,1,1]), according to the causality-
preserving scheme.
When O, arrives, both EO4(= O4) and EOz(= O3)
need first to be undone since O = Oy = O4. Sec-
ondly, O; is executed as it is, 1.e., EO; = O;.
Thirdly, the new execution form of Os; become:
EO; = IT(O3, EOy), since EOy U Oy. To ob-
tain the new execution form of O4, O4 needs first
to be applied with the exclusion transformation
against Oy to become context-equivalent with EOq,
and then to be applied with the inclusion trans-
formation against £O; and FOs in sequence, i.e.,
EO4 = LIT(ET(O4, 02), [EOl, EOQ]) Finally,
HB =[EO1, EO4, FO4].

4. After the execution of Oy, the suspended O3 can
be executed and its execution form is: FQOs3 :=
IT(03, EO4), since O3 U FEO4 due to the fact that
FOs — Oz and EO; — FQO4. Finally, HB =
[EO1, EO5, EOy4, EO3].

From this example, we can see that convergence
and intention-preservation are ensured by the fact that
all sites have effectively executed the same sequence
of properly transformed operations: FEO:, EOy, EOa,
and FOsz, where EO; = O, EO2: = IT(O1, EOy),
EO4 = LIT(ET(O4,02), [EOl,EOQ]), and EO3 =

5EO§ here equals to O3 at site 0 since they both equals to
IT(03,EOy).

IT(O3, EO4), and causality is preserved by suspendinlé)
O3 until the execution of O4 at site 2.

VI. DISCUSSIONS OF RELATED WORK

Traditional serialization-based concurrency control
strategies have found successful application in database
management systems [1], and they can also be applied
to achieve convergence in real-time cooperative editing
systems, such as the undo/do/redo scheme in our ap-
proach. However, without changing the operations’ orig-
inal forms, intentions of concurrent operations in real-
time cooperative editing systems cannot be achieved by
serializing concurrent operations in any order.

Using operational transformation to maintain consis-
tency in real-time cooperative editing systems was pio-
neered by the GROVE system [2], to which our work is
most closely related. The GROVE system used the dis-
tributed operational transformation (dOPT) algorithm
for transforming independent operations. Essentially,
the dOPT algorithm adopted an inclusion transforma-
tion strategy. Their basic idea was to perform the in-
clusion transformation on each causally-ready operation
against all precedingly executed independent operations
in the Log (i.e., the history buffer in our terminology)
in the order from the oldest to the most recent. In
the initial stage of our research, we tried to incorporate
the dOPT algorithm into our early experimental pro-
totype system, but we found the dOPT algorithm did
not always produce identical and desired (i.e., intention-
preserved) results at all sites. In fact, it took us a
long time to find the root of the problem: the relation-
ship among independent operations is diverse in an un-
constrained cooperative environment, but the inclusion
transformation algorithm works correctly only if the pair
of input operations were generated (either originally or
by transformation) from the same document state. In
recognizing this problem, we introduced an additional
exclusion transformation, specified the pre and postcon-
ditions for the inclusion and exclusion transformations,
and devised the GOT control scheme which determines
when and how inclusion/exclusion transformation is ap-
plied to which operations and ensures the preconditions
are always met. As long as the application-dependent
transformation functions satisfy the specified postcondi-
tions, the GOT control scheme is able to preserve the in-
tentions of all independent operations no matter whether
they are generated from the same or different document
states.

In parallel with our work, another research group also
discovered that the dOPT algorithm did not work if one
user issues and executes more than one operation concur-
rently with an operation of another user, and proposed
a different approach, called the adOPTed algorithm, to
solve the problem [8]. The adOPTed algorithm added

to the original dOPT algorithm a multi-dimensional in-

teraction graph, which keeps track of all valid paths of
transforming operations, and a double recursive function
(similar in functionality to our GOT control algorithm),
which determines which operations should be applied
the L-Transformation (similar to our Inclusion Transfor-
mation) against which others. If the L-Transformation
functions could always satisfy the properties specified
in [8], the adOPTed approach would be equivalent to our
approach in the sense that the execution of the same set
of operations on the same initial document by the two al-
gorithms will produce the same outcome document. The
proof (or disproof) of the equivalence between the two
approaches 1s an interesting topic but beyond the scope
of this paper. In the following, we will discuss the impor-
tant differences between our approach and the adOPTed
approach.

Firstly, our algorithm works on a linear history buffer
containing operations in their executed forms, whereas
the adOPTed algorithm works on an N-dimensional
(where N is the number of cooperating sites) interac-
tion graph containing all operations in various possi-
ble forms (i.e., the original, intermediate, and executed
forms) in addition to a linear Log (the same as our his-
tory buffer) with operations in their original forms. The
interaction graph provides a very useful model for vi-
sualizing the transformation relationship among origi-
nal and transformed operations, but maintaining and
searching a dynamically growing and potentially large
N-dimensional graph at run time is inefficient and un-
necessary (as proved by our approach). Moreover, the
adOPTed algorithm uses a serial number k, in addition
to the state vector, to identify each operation, but our
algorithm does not need this k.

Secondly, the way of ensuring convergence is dif-
ferent in the two approaches. Our approach distin-
guishes the convergence issue from the intention preser-
vation issue, and ensures convergence by the higher level
undo/transform-do/transform-redo scheme®. In essence,
undo/redo is also a kind of transformation, which is
performed directly on the document states rather than
on the operations, and which is generic rather than be-
ing application-dependent. The correctness of our con-
vergence scheme is established by the fact that the fi-
nal document states at all sites will be the same as if
all operations were executed in the same total order.
In contrast, the adOPTed approach achieves both con-
vergence and intention preservation at the application-
dependent transformation algorithm level. The correct-
ness of the adOPTed approach can be ensured by requir-
ing L-Transformation functions to guarantee the unique-
ness of the labeling of vertices (for document states)
and edges (for original/transformed operations) of the

6Tn [5], another undo/redo-based scheme was proposed to ensure
convergence of cooperative graphical editing systems. However,
the issues of causality-preservation and intention-preservation were
not addressed by that scheme.

interaction graph. However, due to the mixed complli1
cations in both convergence and intention-preservation
and the application-dependent nature of transformation
functions, it is difficult to verify whether a given L-
Transformation function satisfies the properties required
in [8]. In fact, it is fairly easy to propose seemingly
correct L-Transformation functions which do not really
guarantee the uniqueness of the labeling of vertices and
edges of the interaction graph.

To 1illustrate, consider three operations: 07 =
Insert[“17,2], Os = Insert[“2”,1] and O3z =
Delete[l, 1], generated from the same initial document
state “ABC” at site 1, 2, and 3 respectively. Accord-
ing to the adOPTed algorithm and the L-Transformation
functions for text editing given in [8], we constructed the
interaction graph for these operations, shown in Fig. 3.
As illustrated, the graph contains two ambiguously la-

Ing"1".1] A1z Del[L2]

|
Ing"2" 2] Ing["2"
De[L2) o("2'2] ! Ing("2",1
Ing["2",1] AZBC A2BIC

| Ing"1",3]
|

Ing"1",1] !

AC AlC
Del[L1] | Ing"2"1]
03=DA[11] 02=Ing["2",1]
ABC OI=Ing"1".2] ABIC

Flg 3. An interaction graph with ambiguously labeled edges
and vertices.

beled edges (denoted as dashed arrows: one is labeled
by Insert[“1”, 2] and Insert[“1”, 1], and the other is
labeled by Insert/[“2”, 2] and Insert[“2”, 1]), and one
ambiguously labeled vertices (labeled by “A12C” and
“A21C”), which means that transforming and executing
the three operations along different paths may result in
different final states ! One may be tempted to fix this
problem by reversing the following rule used in [8]: when
two insert operations have the same position parameter,
the position of the operation with a larger site identi-
fier will be shifted. Unfortunately, this quick fix works
only in this case, but it fails in another rather similar
scenario obtained by simply reversing the site identifiers
of O1 and Os: the root of the problem is deeper than
this and requires a more sophisticated solution than just
using the site identifier. From our experience, the dis-
tinction between convergence and intention-preservation
has greatly helped us to understand the nature of both
issues and to verify the correctness of the solutions to
both issues.

Finally, the adOPTed algorithm has been applied to
support user-initiated undo operations, similar to that
in [7]. We have also investigated this issue and found
the inclusion and exclusion transformation functions for
consistency maintenance can be directly used to support

collaborative undo in unconstrained cooperative environ-
ments, in which no lock is used. Our results on this topic
will be reported in a forthcoming paper.

VII. CONCLUSIONS

In this paper, we have proposed and discussed in detail
a generic operation transformation scheme for intention
preservation and consistency maintenance in real-time
cooperative editing systems. Unique contributions made
by this work include: the specification of the pre-/post-
conditions for a pair of reversible inclusion and exclu-
sion transformation functions, the design of the GOT
control scheme, and the integration of the GOT con-
trol scheme with the undo/do/redo scheme to achieve
both intention-preservation and convergence. The algo-
rithms presented in this paper have been implemented in
an Internet-based prototype REDUCE (REal-time Dis-
tributed Unconstrained Cooperative Editing) system us-
ing programming language Java [11]. The current proto-
type system has been developed mainly to test the feasi-
bility of our approach and to experiment with alternative
strategies and algorithms. Efforts are being directed to-
wards building a more useful and robust system, which
will be used by external users in real application contexts
to evaluate the research results from end-users’ perspec-
tive.

Without the experimental effort to construct work-
ing prototype cooperative editing systems, we would not
have learned some of the real challenges involved and
would not have been motivated to devise new models and
techniques to address the challenging problems. On the
other hand, our theoretical effort in formalizing the iden-
tified problems and the proposed solutions has played
a crucial role in enabling us to understand the nature
and complexity of the intention-preservation problem,
to design and verify the algorithms to solve the prob-
lem, and to efficiently implement the algorithms. In
fact, our prototype implementation has directly followed
the algorithms formally described in this paper. We will
continue to apply this experimental and theoretical com-
bined approach in our ongoing work on the models and
techniques for supporting user-initiated undo operations
and group-awareness in highly concurrent and uncon-
strained cooperative environments.

ACKNOWLEDGEMENTS

The work reported in this paper has been partially
supported by an NCGSS Grant from Griffith University
and a Strategic Research Grant (Ref No:7000641) from
City University of Hong Kong.

REFERENCES

[1] P. Bernstein, N. Goodman, and V. Hadzilacos: Concurrency
control and recovery in database systems, Addison-Wesley,
1987.

10]

(11]

(12]

12
C. A. Ellis and S. J. Gibbs: “Concurrency control in group-

ware systems,” In Proc. of ACM SIGMOD Conference on
Management of Data, pp.399-407, 1989.

C. A. Ellis, S. J. Gibbs, and G. L. Rein: “Groupware: some
issues and experiences,” CACM 34(1), pp.39-58, Jan. 1991.
S. Greenberg and D. Marwood:“Real time groupware as a
distributed system: concurrency control and its effect on the
interface,” In Proc. of ACM Conference on Computer Sup-
ported Cooperative Work, pp. 207-217, Nov. 1994.

A. Karsenty and M. Beaudouin-Lafon: “An algorithm for
distributed groupware applications,” In Proc. of 15th Inter-
national Conference on Distributed Computing Systems, pp.
195-202, May 1993.

L. Lamport: “Time, clocks, and the ordering of events in a
distributed system,” CACM 21(7), pp.558-565, 1978.

A. Prakash and M. Knister: “A framework for undoing ac-
tions in collaborative systems,” ACM Trans. on Computer-
Human Interaction, 4(1), pp.295-330, 1994.

M. Ressel, D. Nitsche-Ruhland, and R. Gunzenbauser:“An
integrating, transformation-oriented approach to concurrency
control and undo in group editors,” In Proc. of ACM Confer-
ence on Computer Supported Cooperative Work, pp 288-297,
1996.

C. Sun, Y.Yang, Y. Zhang, and D. Chen: “A consistency
model and supporting schemes for real-time cooperative edit-
ing systems,” In Proc. of the 19th Australian Computer Sci-
ence Conference, pp. 582-591, Melbourne, Jan. 1996.

C. Sun, Y.Yang, Y. Zhang, and D. Chen: “Distributed concur-
rency control in real-time cooperative editing systems,” Proc.
of the 1996 Asian Computing Science Conference, Lecture
Notes in Computer Science, #1179, Springer-Verlag, Singa-
pore, pp.84-95, Dec. 1996.

C. Sun, X. Jia, Y. Yang, and Y. Zhang: “REDUCE: a proto-
typical cooperative editing system,” In Proceedings of the 7th
International Conference on Human-Computer Interaction,
San Francisco, pp.89-92, Aug. 1997

C. Sun, et al:“Reversible inclusion and exclusion transfor-
mation for string-wise operations in cooperative editing sys-
tems,” CIT-97-07. School of Computing & Information Tech-
nology, Griffith University, 1997.

