Reversible inclusion and exclusion
transformation for string-wise operations in
cooperative editing systems

Chengzheng Sun David Chen Xiaohua Jia
School of Computing & Information Technology Department of Computer Science
Griffith University City University of Hong Kong
Brisbane, Qld 4111, Australia Kowloon, Hong Kong
{C.Sun,D.Chen}@cit.gu.edu.au jia@cs.cityu.edu.hk

Abstract. Operation transformation has been recognized as a promising
approach to intention preservation and consistency maintenance in coop-
erative editing systems. To deal with the complications caused by the fact
that independent operations may come from different document states,
we propose a pair of mutually reversible inclusion and exclusion trans-
formation functions, which can be used to effectively include/exclude the
impact of one operation into/from another operation so that the pre-
/post-conditions of transformation functions can be satisfied and correct
transformation results can be achieved. The technical issues and strate-
gies in the design of inclusion and exclusion transformation functions for
string-wise operations in cooperative text editing systems are discussed in
detail in this paper '

Keywords: intention preservation, cooperative editing, CSCW.

1 Introduction

Cooperative editing systems allow physically dispersed people to view and edit
shared textual/graphical/multimedia documents at the same time[l, 2, 3, 4].
They are very useful facilities in the rapidly expanding area of CSCW (Computer-
Supported Cooperative Work) applications. The goal of our research is to inves-
tigate, design and implement cooperative editing systems with the following
characteristics: (1) Real-time requirements — the response to local user actions
is quick (ideally as quick as a single-user editor) and the latency for remote
user actions is low (determined by external communication latency only). (2)
Distributed environments — cooperating users may reside on different machines
connected by different communication networks. (3) Unconstrained collaboration
— multiple users may concurrently and freely edit any parts of the document at
any time, as advocated in [1, 3, 4].

To achieve good responsiveness and unconstrained collaboration, we have
adopted a replicated architecture regarding the storage for shared documents:
the shared documents are replicated at the local storage of each participating
site, so editing operations (updates only) are first performed at local sites and

! To appear in Proc. of The 21st Australasian Computer Science Conference, 1998.

then propagated to remote sites. Three inconsistency problems have been iden-
tified in a real-time cooperative system with a replicated architecture in the
absence of proper concurrency control [1, 4, 6]. First, operations may arrive and
be executed at different sites in different orders, resulting in divergent final re-
sults. This inconsistency problem can be solved by any serialization protocol,
which ensures the final result is the same as if all operations were executed in
the same total order at all sites [4]. Secondly, operations may be executed out
of their natural cause-effect order, which could cause confusing to the system
users. This causality violation problem can be solved by selectively delaying the
execution of some operations to enforce a causally ordered execution based on
state vector timestamps [1, 3, 4]. Thirdly, due to concurrent generation of op-
erations, the actual effect of an operation at the time of its execution may be
different from the intended effect of this operation at the time of its generation.
The intended effect or intention of an operation is defined as the editing effect
which can be achieved by executing this operation on the document state from
which it was generated [4, 6].

To illustrate the intention-violation problem, consider the following coopera-
tive text editing scenario: the initial document contains a string: “ABCDE”,
and the users at site 0 and site 1 concurrently issue two operations: O; =
Insert[“12”,1], which intends to insert string “12” at position 1, i.e., between
“A” and “BCDE”; and Oy = Delete[2, 2], which intends to delete the two charac-
ters starting from position 2, i.e.; “CD”. Each operation is executed immediately
at the local site after its generation and then propagated to the remote site. Af-
ter the execution of these two operations, the intention-preserved result (at both
sites) should be: “A12BE”. However, the actual result at site 0, obtained by
executing O; followed by O, would be: “A1CDE”, which apparently violates
the intention of O; since the character “2”, which was intended to be inserted,
is missing in the final text, and also violates the intention of Os since characters
“CD”, which were intended to be deleted, are still present in the final text. It
should be pointed out that even if a serialization-based protocol was used to en-
sure that both sites have an identical result “A1CDE”, but this identical result
is still inconsistent with the intentions of both O; and Os.

Unlike the divergent final results and causality violation problems, which
are all related to the execution order of operations and could be fixed by prop-
erly re-scheduling the operations, the intention violation problem cannot gen-
erally be fixed by any serialization protocol if operations were always executed
in their original forms. Pioneered by the GROVE system [1], operational trans-
formation has been used to adjust the parameters of one operation according
to the effects of other executed independent operations so that the execution
of the transformed operation on the new document state can achieve the same
effect as executing the original operation on the original document state. For
instance, in the previous example, when O arrives at site 0, it can be trans-
formed into Of = Delete[2,4]. The execution of O} at site 0 will result in the
intention-preserved document state: “A12BE”. This transformation strategy is
called inclusion transformation [6], since it transforms an operation O, against

another independent operation Op in such a way that the impact of Oy is effec-
tively included into O,. The correctness of this inclusion transformation relies
on the precondition that both O, and O are generated from the same document
state, so their position parameters are comparable and can be used to derive a
proper adjustment to O,. The GROVE system used a distributed operational
transformation (dOPT) algorithm to apply a kind of inclusion transformation
function on each operation against all executed independent operations in the
history buffer in the order from the oldest to most recent.

Unfortunately, the dOPT algorithm did not work if independent operations
were generated from different document states [6]. To achieve correct results in
transformation-based cooperative editing systems, we propose an additional ez-
cluston transformation, which transforms an operation O, against another opera-
tion Oy in such a way that the impact of Oy, is effectively excluded from O, . Based
on the inclusion and exclusion transformation strategies, we proposed a Generic
Operation Transformation (GOT) control algorithm in [6], which is responsi-
ble for determining which operations should be applied with inclusion/exclusion
transformation against which others and for ensuring the preconditions for trans-
formation functions are always satisfied. In this paper, we will focus on the design
of inclusion and exclusion transformation functions for text editing systems. For
the GOT control algorithm, the reader is refereed to [6].

In contrast to the character-wise text editing transformation algorithms pro-
posed in [1, 3], our inclusion and exclusion transformation functions are string-
wise. The extension from character-wise transformation to string-wise transfor-
mation is important and worthwhile since string-wise transformation is more
general and can greatly reduce the number of transformations and communica-
tions. This extension is also nontrivial since string-wise transformation involves
quite a few complications not occurring in character-wise transformation, as will
be shown in this paper. To our knowledge, there has been no published work
on string-wise transformation algorithms for the same purpose. We strongly be-
lieve that an in-depth and detailed investigation of transformation algorithms
deserve a serious attention because this level of investigation enables us to better
understand the intrinsic interactions (in the form of pre-/post-conditions) be-
tween transformation algorithms and higher level control algorithms. Without
a deep understanding of the interactions between algorithms at the lower and
higher levels, it would not have been possible for us to detect the hidden flaws
in existing systems and to devise correct solutions at both the lower and higher

levels [6].

The rest of the paper is organized as follows: First, the pre-/post-conditions
for the inclusion and exclusion transformation are specified in Section 2. Next,
the application environment in which the inclusion and exclusion transforma-
tion algorithms are designed are described in Section 3. Then, the definitions
and strategies in the design of the inclusion and exclusion transformation func-
tions for two primitive editing operations — Insert and Delete — are discussed in
Sections 4 and 5, respectively. Finally, the major contributions reported in this
paper are summarized in Section 6.

2 Specification of pre-/post-conditions

To support the operation transformation, each cooperating site maintains a lin-
ear history buffer (HB) for saving executed operations at each site. The docu-
ment state at any instance of time can be determined by sequentially executing
operations in HB on the initial document state. Conceptually, an operation O
is associated with a contert, denoted as C'Tp, which is the list of operations
executed before O is generated. When an operation is generated, it is associ-
ated with an original context, which is the list of operations in H B at the site
and the time of its generation. The context of an operation can be changed by
explicitly applying the following primitive transformation functions. For specify-
ing pre-/post-conditions of transformation functions, two context-based relations
among operations are defined below.

Definition 1 Contezt-equivalent relation “LU 7.
Given two operations O, and O, associated with contexts C'Tp, and CTp,,
respectively. O, and Oy are contert-equivalent, i.e., O, U Oy, iff CTo, = CTo,.

”

Definition 2 Context-preceding relation “—
Given two operations O, and O, associated with contexts C'Tp, and CTp,,
respectively. O, is context-preceding Op, i.e., Oy — Oy, iff CTo, = CTo, + [Oq)
(where operator “+”is the concatenation of two lists).

To include/exclude operation Op into/from the context of O, the inclu-
sion/ezclusion transformation function I7(Oq4, Op)/ ET(Oq, Op) is called to pro-
duce O, as specified below.

a?’

Specification 1 IT(Og4,0p) : O,
1. Precondition for input parameters: O4 LI O.
2. Postcondition for output: Op — O/, where O/’s execution effect in the envi-
ronment of HB = CTO; is the same as O,’s execution effect in the environ-
ment of HB = CTp,,.

Specification 2 ET(O,4,O) : O

1. Precondition for input parameters: O — O,.

2. Postcondition for output: O, LIO?, where O’’s execution effect in the environ-
ment of HB = C'To; 1s the same as O,’s execution effect in the environment

of HB = CTo, .

In addition to the postconditions, the two primitive transformation functions
are required to be reversible in the following sense: (1) If O, U Op, then O, =
ET(IT(OG,O()), Ob); (2) If Ob = Oa then Oa = IT(ET(OG, Ob), Ob)

Preconditions are required by the transformation functions to facilitate the
correct derivation of the adjustment to one operation’s parameters according to
the impact of the other operation. How to ensure the preconditions of the input
operations is one of the main tasks of the higher level GOT control algorithm [6].
Given the input operations satisfying the preconditions, how to produce the
output operation which satisfies the postconditions and meets the reversibility
requirement 1s the responsibility of the definitions of the concrete inclusion and
exclusion transformation functions.

3 Application environment

A text document data model A text document (with no formatting) is
modeled by a sequence of characters, referred to (or addressed) from 0 to the
end of the document. Each primitive editing operation on the document state has
one position parameter, which determines the absolute position in the document
at which the operation is to be performed.

It should be pointed out that the above text document data model is just
a conceptual view of the text document presented to the user, and it does not
dictate the actual data structure which 1s used to implement the document state.
This conceptual data model could be be implemented in various different internal
data structures, such as a single array of characters, the linked-list structures,
the buffer-gap structure, and virtual-memory blocks [7].

Two primitive editing operations It is assumed that the document state
can only be changed by executing the following two primitive editing operations:

1. Insert[S, P]: insert string S at position P.
2. Delete[N, P]: delete N characters started from position P.

It has been shown that practical text editing systems, such as vi and Emacs, can
be implemented on top of these two primitives [2, 3, 7].

Criteria for verifying intention-preserved effects Given an operation O
associated with context C'To. Let O’ be an operation obtained by applying an
inclusion/exclusion transformation to O against another operation, and CTgo:
be the context associated with O’. The execution of O’ in the environment of
HB = (CTo: achieves the same effect as the execution of O in the environment
of HB = CTp if the following criteria are satisfied:

1. In case that O = Insert[S, P] and O' = Insert[S’, P']. Tt must be that (1)
S" = S, which means the string S in its entirety appears in the document
after the execution of O’. (2) For any O, = Insert[Sy, P;] included in CTor,
if O, is independent of O, then S’ does not appear in the middle of S;. (3)
For any character C' which exists in both the document state determined by
CTo and the document state determined by CTo:, if C is at the left/right
side of position P in the document state determined by CTp, then C' must
be at left/right side of position P’ in the document state determined by
CTo:.

2. In case that O = Delete[N, P], and O’ = Delete[N’, P']. Let Ro = [Cp,Cpy41,
..., CpynN] be the list of characters within the deleting range of O in the doc-
ument state determined by C'To, and Ror = [Cpr,Cpiy1, ..., Cpipnt] be the
list of characters within the deleting range of O’ in the document state de-
termined by CTo-. It must be that (1) All characters in Ro disappear from
the document after the execution of O’. (2) For any O, = Insert[S;, P;]
included in CTo/, if O is independent of O, then R/ does not include any
character in S, .

When the above criteria are satisfied, the execution effects of independent
Insert/Delete operations will not interfere with each other in the sense that: (1)
An Insert operation may never insert a string into the middle of another string
inserted by an independent operation. (2) A Delete operation may never delete
characters inserted by independent operations.

Notations To facilitate the definition of transformation functions, the following
notations are introduced: (1) T(0): the type of operation O, i.e., Insert/Delete.
(2) P(O): the position parameter of O. (3) L(O): the length of O. For Insert,
it is the length of the string to be inserted. For Delete, it is the number of
characters to be deleted. (4) S(O): the string of the Insert operation O.

In a number of exceptional cases, some information in the parameters of input
operations may get lost during transformation and the information contained in
the parameters of the output operation may not be adequate to ensure the
reversibility of the inclusion and exclusion transformation functions. To cope
with these exceptional cases, each operation is assumed to have, in addition to
the explicit parameters, an internal data structure, which maintains whatever
information necessary for ensuring reversibility.

4 Inclusion transformation

The function IT(O,4, Op) is defined to perform the inclusion transformation on
0, against Op. After checking some special cases (to be explained in Section 5),
one of the four sub-functions is called to do the real transformation, according to
the operation types (Insert/Delete) of O, and Oyp. The definitions of IT(Og4, Op)
and its four sub-functions are given in Figure 1.

Basic transformation strategy A precondition for O, and Oy, i.e., Oy U Op,
is required to ensure that the relation of the operation ranges of O, and Oy
can be correctly determined by simply comparing their parameters, so that the
following basic inclusion transformation strategy can be applied: (1) compare
the parameters of O, and Oy to determine the relation of their operation ranges,
(2) assume that Op has been executed to find O,’s operation range in the new
document state, and (3) adjust O,’s parameters to make O/, according to the
comparison result in (1), the impact of the assumed execution in (2), and the
verification criteria.

For example, to apply the inclusion transformation to an Insert operation
0, against a Delete operation Op in IT_ID(Og4, 04), if P(O4) < P(Op), then O,
must refer to a position which is to the left of or at the position referred to by
Oy, so the assumed execution of Op should not have any impact on the intended
position of O,. Therefore, no adjustment needs to be made to O,. However, if
P(O4) > (P(Os)+ L(0s)), which means that the position of O, goes beyond the
right-most position in the deleting range of Oy, the intended position of O, would
have been shifted by L(O;) characters to the left if the impact of executing Oy
was taken into account. Therefore, the position parameter of O, is decremented
by L(Op). Otherwise, it must be that the intended position of O, falls in the

Function 1 I7(O,, Oy)

{
if Check_RA(O4)

if Check_BO(Oq,0,) O := Convert_AA(Oq, Oy);

else O :=0g;
else if (T'(Oq) = Insert and T'(Oy) = Insert) O, := IT_11(Oq4, Os);
else if (T(O.) = Insert and T(Oy) = Delete) O, := IT_ID(Oq, Oy);
else if (T(0,) = Delete and T(Oy) = Insert) O := IT_DI(Oq, Oy);
else /* (T(04) = Delete and T(Oy) = Delete) */ O := IT_DD(Oq, Os);
return O;

}

Function 2 IT_I1{0O,, Os)

{
if P(O.) < P(Oy) O} :=0g;
else O, := Insert[S(0.), P(O4) + L(Ob)];
return O;

}

Function 3 IT_ID (0., Oy)
{
if P(0,) < P(Oy) O :=Og;
else if P(04) > (P(Ob) + L(Oy)) Ol := Insert[S(0.), P(0,) — L(Oy)];
else O, := Insert[S(0,), P(Oy)]; Save_LI(O}, Oy, Oy);
return O;

}
f‘unction 4 IT_DI(O., O)

i P(04) > (P(Oa) + [(0)) Ol = Ou:
else if P(0,) > P(Oy) Ol := Delete[L(0.), P(Os) + L(Oy)];
else O] := Delete[P(Oy) — P(0,), P(0.)] &

Delete[L(04) — (P(Oy) — P(0,)), P(Oy) + L(Os)];
return OJ;

}
Function 5 IT_DD(O,, Oy)

{
if P(Oy) > (P(0a) + L(04)) Ol := Ou;
else if P(04) > (P(Oy) + L(Oy)) O, := Delete[L(0.), P(O4) — L(O)];
else
if P(Op) < P(Oa) and (P(Oa) + L(0a)) < (P(Os) + L(O))
0., := Delete[0, P(0.)];
else if P(Oy) < P(0,) and (P(0.) + L(04)) > (P(Os) + L(Oy))
0L == DACLe[P(On) + L(Ow) ~ (P(O0)+ L(O)), P(OW)]
else if P(Oy) > P(0.) and (P(Oy) + L(O3)) > (P(04) + L(0.))
O, := Delete[P(Oy) — P(0,), P(0.)];
else O] := Delete[L(04) — L(0Os), P(04)];
Save_LI(O}, Oq, Oy);
return O;

}

Fig. 1. Inclusion transformation functions.

deleting range of Op. In this case, the new inserting position should be P(O),
according to the verification criteria.

It should be pointed out that when two independent operations insert two
strings at the same position, the two strings will appear in the document state
as if they were inserted in some total order, which is enforced by a high level
control scheme(i.e., the undo/do/redo scheme in [6]). In case that one string,
e.g., “AB”, is a prefix of the other string, e.g., “ABCD”, the combined inserting
effects will be “ABABCD” (provided that “ABCD” was inserted before “AB” is
inserted), according to the definition of Function 2. This non-merged strategy is
the same as the strategy used in [3], but different from that in [1].

Operation splitting for split segments Normally, an inclusion transfor-
mation produces a single transformed operation. However, to apply the inclu-
sion transformation to a Delete operation O, against an Insert operation O in
IT_DI(O,4,0p), when the inserting position of Oy falls into the deleting range
of O4, O, should not delete any characters inserted by O according to the veri-
fication criteria. Therefore, the deleting range will be split into two segments on
the assumption that Op has been executed, and the outcome of this transforma-
tion will be an operation O, being split into two sub-operations, expressed as
0!, ®0/,. The context-based relationship among O, O, and Oy is: Oy — O/,
Oy — 0!, and O); L O),.

Lost information saving for reversibility According to the reversibility
requirement, if I'T(O,, Op) produces O, then ET(O,, Op) can be applied to get
the O, back. Normally, adequate information is available in the parameters of O,
(together with Op) to recover O,. However, when: (1) Oy is a Delete operation,
and (2) O, inserts a string or deletes some characters within the deleting range
of Op, some information in O, may get lost when being transformed into O, so
that O, cannot be recovered by only using the information in the parameters of
O}, and Oy.

For example, to apply the inclusion transformation to an Insert operation O,
against a Delete operation Oy in IT_ID(Og, Op), when the inserting position of
0, fallsinto the deleting range of O (including the boundary case that P(O,) =
P(Op) + L(O4)), the position parameter of O/, has to be P(Os), according to the
verification criteria. In this case, the information about the offset from P(Op)
to P(0O,) is lost, so there will be no way to recover the original P(0O,) by using
only P(Op) in later exclusion transformations.

As another example, to apply the inclusion transformation to a Delete oper-
ation O, against another Delete operation Op in IT_DD(Og4, Op), when the two
delete operations’ deleting ranges overlap, the transformed operation O will
have a deleting range shorter than that of O,, and the position parameter of
0!, may have to be P(O) if the position parameter of O, falls into the deleting
range of Oy, according to the verification criteria. In this case, the information
about the original length and position of O, is lost, and there will be no way to
recover O, by just using the parameters of Op and O,.

To ensure reversibility, a utility routine Save_LI(O%,O4, Op) is used to save
the lost information (e.g., the parameters of O, before this transformation, the

reference to Oy, etc) into an internal data structure associated with O, which
will be used by the exclusion transformation function to recover O, (see Sec-
tion 5).

Tt is worth pointing out that according to the definition of IT_DD(O,, Os),
if O, and Oy have overlapped deleting ranges, the combined deleting range will
be the union of the two individual deleting ranges — an effect which could not

be achieved by serializing independent operations in any order.

5 Exclusion transformation

The function ET(Og, Op) is defined to perform the exclusion transformation on
0, against Op. After checking some special cases (to be explained in Section 5),
one of the four sub-functions is called to do the real transformation, according to
the operation types (Insert/Delete) of O, and Oy. The definitions of ET(Og4, Op)
and its four sub-functions are given in Figure 2.

Basic transformation strategy A precondition for O, and O, i.e., Op — O,
is required to ensure that the relation of operation ranges of O, and O, can
be correctly determined by simply comparing the their parameters, so that the
following basic exclusion transformation strategy can be applied: (1) compare
the parameters of O, and Oy to determine the relation of their operation ranges,
and (2) assume that Op has been undone to find O,’s operation range in the
new document state, and (3) adjust O,’s parameters to make O/, according to
the comparison result in 1, the impact of the assumed undone in 2, and the
verification criteria.

For example, to apply the exclusion transformation to an Insert operation
O, against another Insert operation Op in ET_11(04, Op), if P(O4) < P(Os),
then O, must refer to a position which is to the left of the position referred
to by Oy, so the assumed undoing of Op should not have any impact on the
intended position of O,. Therefore, no adjustment needs to be made to O,. Else
if P(O4) > (P(Os) + L(Os)), which means that the position of O, goes beyond
the right-most position in the inserting range of O, the intended position of
O, would have been shifted by L(Op) characters to the left if the impact of
undoing Op was taken into account. Therefore, the position parameter of O, is
decremented by L(Op). Otherwise, it must be that the intended position of O,
falls in the middle of the string inserted by Op. In this case, the basic strategy
for the exclusion transformation is not applicable any more since undoing Oy
will result in O,’s operation range undefined.

Relative addressing for undefined ranges Generally, when Oy is executed
before the generation of O, (i.e., Oy is causally preceding O4[6]), and (1) Oy is an
insert operation, and (2) O, inserts a string or delete some characters within the
string inserted by Op, undoing Op will result in O,’s operation range undefined.

The technique used to deal with the undefined range problem is called relative
addressing: the outcome of ET(0,4,), i.e., O, is relatively addressed in the
sense that its position parameter is relative to the position parameter of the

Function 6 ET(O,, Oy)

{

}

if Check_RA(O,) O} := Oy;

else if (T(O.) = Insert and T(Oy) = Insert) O, := ET_I1(O, Oy);
else if (T(O,) = Insert and T(Oy) = Delete) O, := ET_ID(Oq, Oy);
else if (T'(O4) = Delete and T(Oy) = Insert) O, := ET_DI(Oq,Oy);
else /¥(T(O.) = Delete and T(Oy) = Delete)*/ O. := ET_-DD(O,, Oy);
return OJ;

Function 7 ET_I1(O,, Oy)

{

}

if P(0.) < P(Oy) Ol :=0y;

else if P(04) > (P(O) + L(Oy)) O := Insert[S(04), P(0O4) — L(Oy)];
else O := Insert[S(0,), P(0,) — P(Oy)]; Save_RA(O., Oy);

return O;

Function 8 ET_ID (0., Os)

{

}

if Check_LI1(O,,0y) O, := Recover_LI(O);
else if P(0,) < P(Oy) O, := Ou;

else O := Insert[S(0,), P(0,) + L(Oy)];
return O;

Function 9 ET_DI(0O,, Os)

{

}

if (P(04) + L(04)) < P(Oy) O, := Ou;
else if P(O.) > (P(Oy) + L(Oy)) O’ := Delete[L(O.), P(Ou) — L(Oy)];
else
if P(Os) < P(04) and (P(0.) + L(0.)) < (P(Os) + L(On))
Oy, := Delete[L(04), P(O4) — P(Os)];
else if P(Oy) < P(0,) and (P(0.) + L(04)) > (P(Os) + L(Oy))
O, := Delete[P(0s) + L(0s) — P(0.), (P(0.) — P(Oy))] &
Delete[(P(Oq) + L(Oa))— (P(Os) + L(Os)), P(Os)];
else if P(04) < P(0s) and (P(0s) + L(0s)) < ((P(04) + L(04))
0., := Delete[L(Oy),0] & Delete[L(O,) — L(Oy), P(0,)];

else O} := Delete[P(0,) + L(04) — P(04),0] @& Delete[P(Os) — P(0.), P(0.)];

Save_RA(O}, Oy);
return O;

Function 10 ET_DD (0., Oy)

{

if Check_LI1(O,,0y) Ol := Recover_LI(O);
else if P(Oy) > (P(04) + L(04)) O := Ou;
else if P(O,) > P(Oy) O := Delete[L(Oa), P(Ou) + L(Oy)];
else O, := Delete[P(Oy) — P(O4), P(0O4)] &

Delete[L(0g) — (P(0s) — P(04)), P(Oy) + L(Os)];
return O;

Fig. 2. Exclusion transformation functions.

base operation Oy, instead of being relative to the beginning of the document (or
absolutely addressed). In ET_DI(O4,0p) and ET_I1(0,, Op), a utility routine
Save_RA(O!, Op) is used to save in the internal data structure associated with
0! the fact that O is relatively addressed with respect to the base operation
Os.

Once an operation has become relatively addressed, it will skip all subse-
quent transformations except the one against its base operation. As shown in
Function 1, a utility routine Check_RA(O,) is used to check whether O, is rel-
atively addressed. If yes, another utility routine Check_BO(Oq, Op) is used to
check whether O, is O,’s base operation. If yes, then another utility routine
Convert_AA(Og,Op) is used to convert O, into an absolutely addressed oper-
ation O/. If, however, Oy is not O,’s base operation, then O, is returned as
O!, without transformation. Also, as shown in Function 6, if O, is relatively
addressed, it is returned as O without transformation. This strategy works be-
cause a relatively addressed operation is just an intermediate result of the top
level GOT control scheme [6], and it will only be used for subsequent exclu-
sion/inclusion transformations but never used for updating the document state.

Lost information recovery To reverse the effect of an inclusion transforma-
tionin ET_ID(O0g, Op) and ET_DD(0,, Op), a utility routine Check_LI(Og4, Op)
is used to check whether O, was involved in an information-losing inclusion trans-
formation which resulted in O,. If yes, another utility routine Recover_LI(O,) is
used to recover O, from the information saved in O,. Otherwise, the basic exclu-
sion transformation strategy is applied to construct O/, by using the information
in the parameters of O, and Oy.

Operation splitting for split segments Operation splitting may also occur in
the exclusion transformation under two circumstances. Firstly, in ET_DD(O0,, O),
when the position parameter of O falls into the deleting range of O,, the delet-
ing range will be split into two segments if O was undone, so the outcome of
this transformation will be two Delete operations, O, and O, corresponding
to the two split deleting segments. The context-based relationship among O,
0!, and Oy is: Op U Oy U OYs.

Secondly, in ET_DI(Og4, Os), when the deleting range of O, covers some char-
acters inserted by Op and also some characters outside the string inserted by Oy,
the outcome will consists of two Delete operations: O}, with a relative address
for deleting these characters inserted by Op, and O, with an absolute address
for deleting the characters outside the string inserted by Op. The relationship
among O, O, and Oy is: Oy is the base operation of 0%, and Oy Ll Ol,.

6 Conclusions

In this paper, we have proposed and discussed in detail a pair of reversible in-
clusion and exclusion transformation algorithms for string-wise operations in
cooperative text editing systems. Based on the specifications of the pre- and
post-conditions for general transformation functions, we defined criteria for ver-
ifying intention-preserved editing effects and concrete transformation functions

for string-wise Insert/Delete operations. In addition to the basic strategies for
normal transformation based on operations’ parameters, we devised strategies
to cope with special technical issues, such as lost information saving/recovery
for ensuring reversibility, relatively addressing for handling undefined ranges,
and operation splitting for handling split segments. The defined inclusion and
exclusion transformation functions in this paper have been implemented in an
Internet-based prototype REDUCE (REal-time Distributed Unconstrained Co-
operative Editing) system using programming language Java [5]. Our work con-
tinues on various aspects of the REDUCE system, including the application of
the inclusion/exclusion transformation functions for supporting user-initiated
undo operations.

Although the transformation algorithms were designed in the context of co-
operative text editing, they are actually quite general and potentially applica-
ble in other cooperative editing environments, which allow concurrent insert-
ing/deleting any sequence of objects with a linearly ordered relationship, such
as a sequence of pages in a document/book, a sequence of slides in a semi-
nar/lecture, a sequence of frames in a movie/video, etc.

Acknowledgments The work reported in this paper has been conducted in
the context of the REDUCE project, which has been partially supported by
an NCGSS Grant from Griffith University and a Strategic Research Grant (Ref
No:7000641) from City University of Hong Kong. The authors wish to thank Yun
Yang and Yanchun Zhang, the other two members of our search team, for their
contributions to the REDUCE project. Finally, the authors are very grateful to
the anonymous referees for their valuable comments, which helped improve the
final version of this paper.

References

1. C. A. Ellis and S. J. Gibbs: “Concurrency control in groupware systems,” In Proc.
of ACM SIGMOD Conference on Management of Data, pp.399-407, 1989.

2. M. Knister and A. Prakash: “Issues in the design of a toolkit for supporting multiple
group editors,” Journal of the Usenixz Association, Vol.6, No.2, pp. 135-166, 1993.

3. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenbauser:“An integrating,
transformation-oriented approach to concurrency control and undo in group ed-
itors,” In Proc. of ACM CSCW, pp 288-297, 1996.

4. C. Sun, Y.Yang, Y. Zhang, and D. Chen: “A consistency model and supporting
schemes for real-time cooperative editing systems,” In Proc. of the 19th Australian
Computer Science Conference, pp. 582-591, Melbourne, Jan 1996.

5. C. Sun, X. Jia, Y. Yang, and Y. Zhang: “REDUCE: a prototypical cooperative edit-
ing system,” Proceedings of the 7th International Conference on Human-Computer
Interaction, pp.89-92, San Francisco, Aug. 1997.

6. C. Sun, X. Jia, Y. Zhang, and Y. Yang: “A generic operation transformation scheme
for consistency maintenance in real-time cooperative editing systems,” To appear
in Proc. of International Conference on Supporting Group Work (GROUP’97),
ACM Press, Phoenix, Arizona USA, Nov. 1997.

7. Ray Valdes: “Text editors: algorithms and architectures, not much theory, but a lot
of practice,” Dr. Dobb’s Journal, pp. 38 43, April 1993.

