~martinal/ufl/1.0.1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
"""Compound tensor algebra operations."""

# Copyright (C) 2008-2011 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2008-03-14
# Last changed: 2011-06-02

from ufl.log import warning
from ufl.assertions import ufl_assert
from ufl.expr import Expr
from ufl.constantvalue import ConstantValue, Zero
from ufl.indexing import Index, indices
from ufl.algebra import AlgebraOperator
from ufl.precedence import parstr

def merge_indices(a, b):
    ai = a.free_indices()
    bi = b.free_indices()
    #free_indices = unique_indices(ai + bi) # if repeated indices are allowed, do this instead of the next three lines
    ri = set(ai) & set(bi)
    ufl_assert(not ri, "Not expecting repeated indices.")
    free_indices = ai+bi

    aid = a.index_dimensions()
    bid = b.index_dimensions()
    index_dimensions = dict(aid)
    index_dimensions.update(bid)

    return free_indices, index_dimensions

### Algebraic operations on tensors:
# FloatValues:
#   dot(a,b)      = a*b
#   inner(a,b)    = a*b
#   outer(a,b)    = a*b
# Vectors:
#   dot(u,v)      = u_i v_i
#   inner(u,v)    = u_i v_i
#   outer(u,v)    = A | A_ij = u_i v_j
# Matrices:
#   dot(A,B)      = C | C_ij = A_{ik} B_{kj}
#   inner(A,B)    = A_{ij} B_{ij}
#   outer(A,B)    = C | C_ijkl = A_ij B_kl
# Combined:
#   dot(A,u)      = v | v_i = A_{ik} u_k
#   inner(A,u)    = v | v_i = A_{ik} u_k
#   outer(A,u)    = C | C_ijk = B_ij u_k
#   dot(u,B)      = v | v_i = u_k B_{ki}
#   inner(u,B)    = v | v_i = u_k B_{ki}
#   outer(u,B)    = C | C_ijk = u_i B_jk
#
# Argument requirements:
#   dot(x,y):   last index of x has same dimension as first index of y
#   inner(x,y): shape of x equals the shape of y

# --- Classes representing compound tensor algebra operations ---

class CompoundTensorOperator(AlgebraOperator):
    __slots__ = ()
    def __init__(self):
        AlgebraOperator.__init__(self)

# TODO: Use this and make Sum handle scalars only?
#       This would simplify some algorithms. The only
#       problem is we can't use + in many algorithms because
#       this type should be expanded by expand_compounds.
#class TensorSum(CompoundTensorOperator):
#    "Sum of nonscalar expressions."
#    pass

# TODO: Use this similarly to TensorSum?
#       This would simplify some algorithms. The only
#       problem is we can't use / in many algorithms because
#       this type should be expanded by expand_compounds.
#class TensorDivision(CompoundTensorOperator):
#    "Division of nonscalar expression with a scalar expression."
#    pass

# TODO: Use this similarly to TensorSum?
#       This would simplify some algorithms. The only
#       problem is we can't use * in many algorithms because
#       this type should be expanded by expand_compounds.
#class MatrixProduct(CompoundTensorOperator):
#    "Product of a matrix with a matrix or vector."
#    pass

# TODO: Use this similarly to TensorSum?
#       This would simplify some algorithms. The only
#       problem is we can't use abs in many algorithms because
#       this type should be expanded by expand_compounds.
#class TensorAbs(CompoundTensorOperator):
#    "Absolute value of nonscalar expression."
#    pass

class Transposed(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        if isinstance(A, Zero):
            a, b = A.shape()
            return Zero((b, a), A.free_indices(), A.index_dimensions())
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        ufl_assert(A.rank() == 2, "Transposed is only defined for rank 2 tensors.")
        self._A = A

    def operands(self):
        return (self._A,)

    def free_indices(self):
        return self._A.free_indices()

    def index_dimensions(self):
        return self._A.index_dimensions()

    def shape(self):
        s = self._A.shape()
        return (s[1], s[0])

    def __str__(self):
        return "%s^T" % parstr(self._A, self)

    def __repr__(self):
        return "Transposed(%r)" % self._A

class Outer(CompoundTensorOperator):
    __slots__ = ("_a", "_b", "_free_indices", "_index_dimensions")

    def __new__(cls, a, b):
        ash, bsh = a.shape(), b.shape()
        if isinstance(a, Zero) or isinstance(b, Zero):
            free_indices, index_dimensions = merge_indices(a, b)
            return Zero(ash + bsh, free_indices, index_dimensions)
        if ash == () or bsh == ():
            return a * b
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, a, b):
        CompoundTensorOperator.__init__(self)
        self._a = a
        self._b = b
        self._free_indices, self._index_dimensions = merge_indices(a, b)

    def operands(self):
        return (self._a, self._b)

    def free_indices(self):
        return self._free_indices

    def index_dimensions(self):
        return self._index_dimensions

    def shape(self):
        return self._a.shape() + self._b.shape()

    def __str__(self):
        return "%s (X) %s" % (parstr(self._a, self), parstr(self._b, self))

    def __repr__(self):
        return "Outer(%r, %r)" % (self._a, self._b)

class Inner(CompoundTensorOperator):
    __slots__ = ("_a", "_b", "_free_indices", "_index_dimensions")

    def __new__(cls, a, b):
        ash, bsh = a.shape(), b.shape()
        ufl_assert(ash == bsh, "Shape mismatch.")
        if isinstance(a, Zero) or isinstance(b, Zero):
            free_indices, index_dimensions = merge_indices(a, b)
            return Zero((), free_indices, index_dimensions)
        if ash == ():
            return a*b
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, a, b):
        CompoundTensorOperator.__init__(self)
        # sort operands by their repr TODO: This may be slow, can we do better? Needs to be completely independent of the outside world.
        a, b = sorted((a,b), key = lambda x: repr(x))
        self._a = a
        self._b = b
        self._free_indices, self._index_dimensions = merge_indices(a, b)

    def operands(self):
        return (self._a, self._b)

    def free_indices(self):
        return self._free_indices

    def index_dimensions(self):
        return self._index_dimensions

    def shape(self):
        return ()

    def __str__(self):
        return "%s : %s" % (parstr(self._a, self), parstr(self._b, self))

    def __repr__(self):
        return "Inner(%r, %r)" % (self._a, self._b)

class Dot(CompoundTensorOperator):
    __slots__ = ("_a", "_b", "_free_indices", "_index_dimensions")

    def __new__(cls, a, b):
        ar, br = a.rank(), b.rank()
        ufl_assert((ar >= 1 and br >= 1) or (ar == 0 and br == 0),
            "Dot product requires non-scalar arguments, "\
            "got arguments with ranks %d and %d." % \
            (ar, br))
        if isinstance(a, Zero) or isinstance(b, Zero):
            shape = a.shape()[:-1] + b.shape()[1:]
            free_indices, index_dimensions = merge_indices(a, b)
            return Zero(shape, free_indices, index_dimensions)
        if ar == 0 and br == 0:
            return a * b
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, a, b):
        CompoundTensorOperator.__init__(self)
        self._a = a
        self._b = b
        self._free_indices, self._index_dimensions = merge_indices(a, b)

    def operands(self):
        return (self._a, self._b)

    def free_indices(self):
        return self._free_indices

    def index_dimensions(self):
        return self._index_dimensions

    def shape(self):
        return self._a.shape()[:-1] + self._b.shape()[1:]

    def __str__(self):
        return "%s . %s" % (parstr(self._a, self), parstr(self._b, self))

    def __repr__(self):
        return "Dot(%r, %r)" % (self._a, self._b)

class Cross(CompoundTensorOperator):
    __slots__ = ("_a", "_b", "_free_indices", "_index_dimensions")

    def __new__(cls, a, b):
        ash, bsh = a.shape(), b.shape()
        ufl_assert(len(ash) == 1 and ash == bsh,
            "Cross product requires arguments of rank 1.")

        if isinstance(a, Zero) or isinstance(b, Zero):
            free_indices, index_dimensions = merge_indices(a, b)
            return Zero(ash, free_indices, index_dimensions)

        return CompoundTensorOperator.__new__(cls)

    def __init__(self, a, b):
        CompoundTensorOperator.__init__(self)
        self._a = a
        self._b = b
        self._free_indices, self._index_dimensions = merge_indices(a, b)

    def operands(self):
        return (self._a, self._b)

    def free_indices(self):
        return self._free_indices

    def index_dimensions(self):
        return self._index_dimensions

    def shape(self):
        return (3,)

    def __str__(self):
        return "%s x %s" % (parstr(self._a, self), parstr(self._b, self))

    def __repr__(self):
        return "Cross(%r, %r)" % (self._a, self._b)

class Trace(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        ufl_assert(A.rank() == 2, "Trace of tensor with rank != 2 is undefined.")
        if isinstance(A, Zero):
            return Zero((), A.free_indices(), A.index_dimensions())
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return self._A.free_indices()

    def index_dimensions(self):
        return self._A.index_dimensions()

    def shape(self):
        return ()

    def __str__(self):
        return "tr(%s)" % self._A

    def __repr__(self):
        return "Trace(%r)" % self._A

class Determinant(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        sh = A.shape()
        r = len(sh)
        ufl_assert(r == 0 or r == 2,
            "Determinant of tensor with rank != 2 is undefined.")
        ufl_assert(r == 0 or sh[0] == sh[1],
            "Cannot take determinant of rectangular rank 2 tensor.")
        ufl_assert(not A.free_indices(),
            "Not expecting free indices in determinant.")
        if isinstance(A, Zero):
            return Zero((), A.free_indices(), A.index_dimensions())
        if r == 0:
            return A
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return ()

    def index_dimensions(self):
        return {}

    def shape(self):
        return ()

    def __str__(self):
        return "det(%s)" % self._A

    def __repr__(self):
        return "Determinant(%r)" % self._A

# TODO: Drop Inverse and represent it as product of Determinant and Cofactor?
class Inverse(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        sh = A.shape()
        r = len(sh)
        if A.free_indices():
            error("Not expecting free indices in Inverse.")
        if isinstance(A, Zero):
            error("Division by zero!")

        if r == 0:
            return 1 / A

        if r != 2:
            error("Inverse of tensor with rank != 2 is undefined.")
        if sh[0] != sh[1]:
            error("Cannot take inverse of rectangular matrix with dimensions %s." % repr(sh))
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return ()

    def index_dimensions(self):
        return {}

    def shape(self):
        return self._A.shape()

    def __str__(self):
        return "%s^-1" % parstr(self._A, self)

    def __repr__(self):
        return "Inverse(%r)" % self._A

class Cofactor(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        sh = A.shape()
        ufl_assert(len(sh) == 2, "Cofactor of tensor with rank != 2 is undefined.")
        ufl_assert(sh[0] == sh[1], "Cannot take cofactor of rectangular matrix with dimensions %s." % repr(sh))
        ufl_assert(not A.free_indices(), "Not expecting free indices in Cofactor.")
        ufl_assert(not isinstance(A, Zero), "Cannot take cofactor of zero matrix.")
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return ()

    def index_dimensions(self):
        return {}

    def shape(self):
        return self._A.shape()

    def __str__(self):
        return "cofactor(%s)" % self._A

    def __repr__(self):
        return "Cofactor(%r)" % self._A

class Deviatoric(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        sh = A.shape()
        ufl_assert(len(sh) == 2, "Deviatoric part of tensor with rank != 2 is undefined.")
        ufl_assert(sh[0] == sh[1],
            "Cannot take deviatoric part of rectangular matrix with dimensions %s." % repr(sh))
        ufl_assert(not A.free_indices(), "Not expecting free indices in Deviatoric.")
        if isinstance(A, Zero):
            return Zero(A.shape(), A.free_indices(), A.index_dimensions())
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return self._A.free_indices()

    def index_dimensions(self):
        return self._A.index_dimensions()

    def shape(self):
        return self._A.shape()

    def __str__(self):
        return "dev(%s)" % self._A

    def __repr__(self):
        return "Deviatoric(%r)" % self._A

class Skew(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        sh = A.shape()
        ufl_assert(len(sh) == 2, "Skew symmetric part of tensor with rank != 2 is undefined.")
        ufl_assert(sh[0] == sh[1],
            "Cannot take skew part of rectangular matrix with dimensions %s." % repr(sh))
        ufl_assert(not A.free_indices(), "Not expecting free indices in Skew.")
        if isinstance(A, Zero):
            return Zero(A.shape(), A.free_indices(), A.index_dimensions())
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return self._A.free_indices()

    def index_dimensions(self):
        return self._A.index_dimensions()

    def shape(self):
        return self._A.shape()

    def __str__(self):
        return "skew(%s)" % self._A

    def __repr__(self):
        return "Skew(%r)" % self._A

class Sym(CompoundTensorOperator):
    __slots__ = ("_A",)

    def __new__(cls, A):
        sh = A.shape()
        ufl_assert(len(sh) == 2, "Symmetric part of tensor with rank != 2 is undefined.")
        ufl_assert(sh[0] == sh[1],
            "Cannot take symmetric part of rectangular matrix with dimensions %s." % repr(sh))
        ufl_assert(not A.free_indices(), "Not expecting free indices in Sym.")
        if isinstance(A, Zero):
            return Zero(A.shape(), A.free_indices(), A.index_dimensions())
        return CompoundTensorOperator.__new__(cls)

    def __init__(self, A):
        CompoundTensorOperator.__init__(self)
        self._A = A

    def operands(self):
        return (self._A, )

    def free_indices(self):
        return self._A.free_indices()

    def index_dimensions(self):
        return self._A.index_dimensions()

    def shape(self):
        return self._A.shape()

    def __str__(self):
        return "sym(%s)" % self._A

    def __repr__(self):
        return "Sym(%r)" % self._A