~mrol-dev/mrol/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
'''Author: Julian Ryde'''
from __future__ import division
import numpy as np
import pylab
import sys
import mrol_mapping.pointcloud as pointcloud

# TODO generalise this so we can put it into MROL_mapping lib
def load_image(fname):
    ''' Load a depth image, generated from Blender '''
    di = pylab.imread(fname)
    # convert to ranges
    # blender map scale factor = 0.2
    blender_map = 0.2
    di /= blender_map
    return di

def image_to_points(di, max_range=5., fov=np.radians(75)):
    ''' Convert a depth image to point cloud'''
    
    # horizontal field of view setting in blender in degrees
    #fov = np.radians(75)

    # at edge tan fov/2 = 320 / a where a is the adjacent pixel length
    a = 0.5 * di.shape[1] / np.tan(fov/2)

    cols = np.arange(0, di.shape[1]) - di.shape[1]/2 + 0.5
    rows = np.arange(0, di.shape[0]) - di.shape[0]/2 + 0.5
    rows.shape = -1, 1

    f = di / a
    # scale factors between image plane and real space position of 
    # point, then by similar shapes, one is just a scale factor enlargement of the other
    # Blender z buffer returns not the range to the point but the distance from the camera plane, namely the z distance.

    # TODO could use a masked array for performance

    # camera looking along the x-axis
    if (len(di.shape) == 3):
        # adjust for broadcasting
        cols = np.reshape(cols, (-1, 1))
        rows = np.reshape(rows, (-1, 1, 1))

    Y = -f * cols
    Z = -f * rows
    X = f * a 

    #inds = np.logical_and(di < di.max(), di > 0)
    inds = np.logical_and(di < max_range, di > 0)
    
    xyzs = np.vstack((X[inds], Y[inds], Z[inds])).T
    assert(len(xyzs))
    pc = pointcloud.PointCloud(xyzs)
    return pc
    
def depth_discont_simple(di, tol=0.2):
    dx = np.diff(di, axis=0)
    #dx = np.vstack([np.zeros(di.shape[1]),dx])
    #dx = np.vstack([np.zeros(di.shape[1]),dx[:-1,:],np.zeros(di.shape[1])])
    dx = np.vstack([dx,np.zeros(di.shape[1])])
    dx = np.abs(dx)
    dx[dx < tol] = 0
    dy = np.diff(di, axis=1)
    #dy = np.hstack([np.atleast_2d(np.zeros(di.shape[0])).T,dy])
    #dy = np.hstack([np.atleast_2d(np.zeros(di.shape[0])).T,dy[:,:-1],np.atleast_2d(np.zeros(di.shape[0])).T])
    dy = np.hstack([dy,np.atleast_2d(np.zeros(di.shape[0])).T])
    dy = np.abs(dy)
    dy[dy < tol] = 0
    diff_im = np.sqrt(dx**2 + dy**2)
    di_diff = np.zeros(di.shape)
    di_diff[diff_im > 0] = di[diff_im > 0]
    import pylab
    pylab.ion()
    pylab.imshow(di_diff)
    import scipy.ndimage as ndimage
    #di_diff = ndimage.minimum_filter(di_diff, size=(1,1))
    #for i in range(di_diff.shape[0]):
    #    for j in range(di_diff.shape[1]-1):
    #        p1 = di_diff[i,j]
    #        p2 = di_diff[i,j+1]
    #        if p1 == 0 or p2 == 0:
    #           continue
    #        if p1 > p2:
    #            p1 = 0
    #        elif p2 > p1:
    #            p2 = 0
    #        di_diff[i,j] = p1
    #        di_diff[i,j+1] = p2
    return di_diff
    
def depth_discont_sobel(di, tol=0.5):
    import scipy.ndimage as ndimage
    dx = ndimage.convolve(di,[[-1,0,1],[-2,0,2],[-1,0,1]])
    dy = ndimage.convolve(di,[[-1,-2,-1],[0,0,0],[1,2,1]])
    diff_im = np.sqrt(dx**2 + dy**2)
    diff_im[diff_im < tol] = 0
    di_diff = np.zeros(di.shape)
    di_diff[diff_im > 0] = di[diff_im > 0]
    #import pylab
    #pylab.ion()
    di_diff = ndimage.minimum_filter(di_diff, size=(2,2))
    #for i in range(di_diff.shape[0]):
    #    for j in range(di_diff.shape[1]-1):
    #        p1 = di_diff[i,j]
    #        p2 = di_diff[i,j+1]
    #        if p1 == 0 or p2 == 0:
    #           continue
    #        if p1 > p2:
    #            p1 = 0
    #        elif p2 > p1:
    #            p2 = 0
    #        di_diff[i,j] = p1
    #        di_diff[i,j+1] = p2
    #pylab.imshow(di_diff)
    return di_diff

def depth_filt_min_non_zero(p1,p2):
    if p1 == 0 or p2 == 0:
        return
    if p1 > p2:
        p1 = 0
        return
    if p2 > p1:
        p2 = 0
        return
    return
    
def depth_disconts2(di, tol=0.2):
    import scipy.ndimage as ndimage
    ndimage.gaussian_filter(di,sigma=(5,5))
    ndimage.gaussian_derivative()
    ndimage.median_filter()
    return di_diff

if __name__ == '__main__':
    fname = sys.argv[1]
    xyzs = image_to_points(fname)
    import mrol_mapping.visualiser.dispxyz as dispxyz
    dispxyz.showpts(xyzs)
    print 'Escape to close window'