~mrol-dev/mrol/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
''' File to perform simple scan-to-map alignment and map creation.'''
from __future__ import division
import cProfile
import cPickle
import copy
import sys

import roslib; roslib.load_manifest('mrol_ros')
import rospy
import tf
import message_filters
from sensor_msgs.msg import PointCloud2, CameraInfo, Image

import mrol_mapping.poseutil as poseutil
import mrol_mapping.mrol as mrol
import mrol_mapping.util as util
import mrol_mapping.occupiedlist as occupiedlist
import mrol_mapping.mapper as mapper
import mrol_mapping.pointcloud as pointcloud
import numpy as np
import rosutils_mrol.rosutils_mrol as rosutils
from thread import allocate_lock
from threading import Thread
import Queue

CAMERA_FRAME_ID = "camera_rgb_optical_frame"
RESOLUTION_PARAM_DEFAULT=0.04#0.04#0.05
RESOLUTION_PARAM="~resolution"
"""Resolution for mapping using MROL

Resolution determines how fine the map is and also how accurate the alignment
is, but finer = slower
"""

MINIMAL_REQUIRED_OVERLAP_DEFAULT=0.50
MINIMAL_REQUIRED_OVERLAP="~min_overlap"
"""Minimal overlap required between global map and a new scan so that the new
scan can be included in the global map
"""

MROL_LEVELS_DEFAULT=4
MROL_LEVELS="~mrol_levels"
"""Multi resolution levels for mapping.

If the resolution is small then this should be increased because the overlap
is restricted to an are pow(2, levels) * resolution.  Levels determines region
of convergence, more = larger region of convergences.  smaller is faster, but
may not converge
"""

OUT_SCAN_TOPIC_DEFAULT="/mrol_scan"
OUT_SCAN_TOPIC="~mrol_out_scan_topic"
"""Topic on which MROL scan should be published"""

OUT_MAP_TOPIC_DEFAULT="/mrol"
OUT_MAP_TOPIC="~mrol_out_map_topic"
"""Topic on which MROL map should be published"""

ODOM_FRAME="/odom"
BEST_POSE_FRAME="/mrol_bestpose"
BEST_POSE_GUESS_FRAME="/bestposeguess"
GLOBAL_FRAME="/map"
"""Frame used as a static frame relative to which point clouds are
published.
"""

MAX_RANGE_DEFAULT=10.0
MAX_RANGE="~max_range"
"""The data beyond this range will be discarded"""

class RosMapper:
    def __init__(self, num_base_scans=2, use_ICP=False):
        rospy.loginfo("Initializing")
        # can use mrol's inherent alignment method, or ICP
        self.use_ICP = use_ICP
        if self.use_ICP:
            import icp_mrol.icp_mrol as icp
            rospy.loginfo("Using ICP for alignment")
            # make an ICP instance to do the alignment
            self.icp = icp.ICP(reciprocal=False, visualise=False)

        self.res = rospy.get_param(RESOLUTION_PARAM, RESOLUTION_PARAM_DEFAULT)
        self.levels = rospy.get_param(MROL_LEVELS, MROL_LEVELS_DEFAULT)
        self.min_overlap = rospy.get_param(MINIMAL_REQUIRED_OVERLAP,
                                           MINIMAL_REQUIRED_OVERLAP_DEFAULT)
        self.max_range = rospy.get_param(MAX_RANGE, MAX_RANGE_DEFAULT)

        # variable initialization
        self.listener = tf.TransformListener(
            1,                  # interpolate ?
            rospy.Duration(20)) # max_cache_time
        self.bestpose = None

        self.bestpose = self.bestpose
        self.bestpose_lock = allocate_lock()

        self.bestposeguess = None
        self.bestposeguess_lock = allocate_lock()

        self.odom_wrt_map = None
        self.odom_wrt_map_lock = allocate_lock()

        self.lastodompose = None
        self.use_odom = True
        self.pc_frame_id_lock = allocate_lock()
        self.pc_frame_id = None

        #self.mapper = mapper.VoxelMap(resolution=self.res, levels=self.levels)
        self.lock = allocate_lock() # lock to have thread-safety
        self.num_base_scans = num_base_scans

        self.pointcloud_queue = util.Queue(maxsize=1)

        self.bestpose_queue = util.Queue(maxsize=1)
        self.bestpose_queue.put_force(poseutil.Pose3D())

        self.voxel_queue = util.Queue(maxsize=1)
        self.scan_queue = util.Queue(maxsize=1)

        # Threads
        Thread(target=self.publish_map_thread).start()
        # Transform broadcast should be at a higher frequency then the map
        # scan building, so it's better to have a separate thread for this.
        Thread(target=self.broadcast_transform_thread).start()
        # Let the mapping be in another thread
        Thread(target=self.mapping_thread).start()
        if self.use_odom:
            Thread(target=self.reframing_thread).start()

    def reframing_thread(self):
        # For debugging information only
        rate = rospy.Rate(10.0)
        br = tf.TransformBroadcaster()
        while not rospy.is_shutdown():
            with self.odom_wrt_map_lock:
                if self.odom_wrt_map is None:
                    continue
                robot_wrt_odom = self.get_pose(CAMERA_FRAME_ID, None)
                robot_wrt_map = np.dot(self.odom_wrt_map, robot_wrt_odom)

            # # The /kinect_rgb_optical_frame gets updated a little later than
            # # we get information via lookupTransform via rospy.Time(0).
            # # This is probably because of the PointCloud that rviz receives
            # # over /kinect_rgb_optical_frame. Perhaps rviz tries to get the
            # # frame at the timestamp of PointCloud.
            # translation = tuple(robot_wrt_odom[:3, 3])
            # quat = tf.transformations.quaternion_from_matrix(robot_wrt_odom)
            # br.sendTransform(translation,
            #                  quat,
            #                  rospy.Time.now(),
            #                  "/robot_wrt_odom",
            #                  ODOM_FRAME)

            translation = tuple(robot_wrt_map[:3, 3])
            quat = tf.transformations.quaternion_from_matrix(robot_wrt_map)

            br.sendTransform(translation,
                             quat,
                             rospy.Time.now(),
                             "/robot_wrt_map",
                             GLOBAL_FRAME)
            rate.sleep()

    def publish_map_thread(self):
        counter = 0
        topic_name = rospy.get_param(OUT_MAP_TOPIC, OUT_MAP_TOPIC_DEFAULT)
        pub = rospy.Publisher(topic_name, PointCloud2)
        while not rospy.is_shutdown():
            rospy.loginfo("publisher: Waiting for map to be generated")
            voxel_data, voxel_res = self.voxel_queue.get()
            pointsROS = np.hstack([voxel_data[:,:3]*voxel_res, voxel_data[:,4:]])
            pcROS = rosutils.xyzs2pc2(pointsROS, rospy.Time.now(), counter,
                                      frame_id=GLOBAL_FRAME)
            pub.publish(pcROS)
            rospy.loginfo("pubisher: Map published")
            counter += 1

    def mapping_thread(self):
        def timeout_func():
            return 1 if rospy.is_shutdown() else 30
        self.pointcloud_queue.set_timeout(timeout_func)

        try:
            mapper.buildmap(self.pointcloud_queue,
                            self.res,
                            visualise=False, # visualise using rviz
                            odometry_map=False, # odometry is unreliable
                            bestpose_queue=self.bestpose_queue,
                            voxel_queue=self.voxel_queue
                           )
        except Queue.Empty:
            sys.exit(0)

    def PCcallback(self, msg):
        rospy.loginfo("callback: Recieved point cloud")
        xyzs = pointcloud.PointCloud(
            rosutils.pc22xyzs(msg, max_range=self.max_range))
        # Nick: re-align x fwd, z up
        # 
        # (xyzs.points[:,:3], _) = poseutil.transformPoints(xyzs.points[:,:3],
        #                                             [0,0,0,-np.pi/2.,0,-np.pi/2.])
        # adjustment = poseutil.Pose3D([0,0,0,-np.pi/2.,0,-np.pi/2.]).getMatrix()
        self.process_pointcloud(xyzs, msg.header.frame_id, msg.header.stamp)

    def DepthImageCallback(self, msg):
        rospy.loginfo("callback: Recieved depth image")
        xyzs = rosutils.imgmsg2xyz(msg, max_range=self.max_range)
        assert(len(xyzs.points) > 0)
        if msg.header.frame_id != CAMERA_FRAME_ID:
            if msg.header.frame_id != "kinect_rgb_optical_frame":
                rospy.logerr("frame:{0}".format(msg.header.frame_id))
            msg.header.frame_id = CAMERA_FRAME_ID

        # Nick: re-align x fwd, z up
        # Vikas: align CAMERA_FRAME_ID and kinect_rgb_optical_frame 
        (xyzs.points[:,:3], _) = poseutil.transformPoints(
            xyzs.points[:,:3], [0,0,0,-np.pi/2., -np.pi/2.,-np.pi])
        self.process_pointcloud(xyzs, msg.header.frame_id, msg.header.stamp)


    def process_pointcloud(self, xyzs, frame_id, timestamp):
        robot_wrt_odom = None
        # Get the transformation of PointCloud frame w.r.t. odom global frame.
        with self.pc_frame_id_lock:
            self.pc_frame_id = frame_id
        if self.use_odom:
            rospy.loginfo("Received pointclound on"
                          + " frame_id:{0}".format(frame_id))
            robot_wrt_odom = self.get_pose(frame_id, timestamp)
            rospy.loginfo("{0}: {1}".format(CAMERA_FRAME_ID,
                poseutil.posetuple(robot_wrt_odom)))
            with self.odom_wrt_map_lock:
                if self.odom_wrt_map is None:
                    self.odom_wrt_map = np.linalg.inv(robot_wrt_odom)
        else:
            # Without odometry maporigin_to_coincide with odom
            with self.odom_wrt_map_lock:
                self.odom_wrt_map = tf.transformations.identity_matrix()

        with self.odom_wrt_map_lock:
            odom_wrt_map = copy.deepcopy(self.odom_wrt_map)
        rospy.loginfo("/odom_wrt_map : {0}".format(
            poseutil.posetuple(odom_wrt_map)))

        # Get the bestpose as returned by the mrol nearest neighbour algorithm
        try:
            bestpose = self.bestpose_queue.get_nowait().getMatrix()
            # Creating a copy for publishing frame in a different thread
            with self.bestpose_lock:
                rospy.loginfo("/bestpose : {0}".format(
                    poseutil.posetuple(bestpose)))
                self.bestpose = copy.deepcopy(bestpose)
        except Queue.Empty:
            rospy.logerr("Unable to get bestpose from mrol")
            # If no new result is available, use the last bestpose
            with self.bestpose_lock:
                if self.bestpose is not None:
                    bestpose = self.bestpose

        bestposeguess = self.guess_pose(robot_wrt_odom, bestpose)

        # Creating a copy for publishing frame in a different thread
        with self.bestposeguess_lock:
            rospy.loginfo("/bestposeguess: {0}".format(
                poseutil.posetuple(bestposeguess)))
            self.bestposeguess = copy.deepcopy(bestposeguess)

        # Save this odometry pose for future use
        self.lastodompose = robot_wrt_odom

        xyzs.pose = poseutil.Pose3D()
        xyzs.pose.setMatrix(bestposeguess)
        self.pointcloud_queue.put_force(xyzs)
    
        rospy.loginfo("callback: Finished processing point cloud")

    def guess_pose(self, robot_wrt_odom, bestpose):
        if self.use_odom:
            # Use incremental change in odometry to correct the last bestpose, for
            # a new bestposeguess
            bestposeguess = self.guess_pose_incremental_odom(robot_wrt_odom,
                                                             bestpose)
            # # For absolute dependence on odometery. Just project robot in map
            # # frame
            # bestposeguess = np.dot(self.odom_wrt_map, robot_wrt_odom)
        else:
            if bestpose is not None:
                bestposeguess = bestpose
            else:
                # This is first time we are getting a point cloud.
                # bestposeguess best to be identity 
                bestposeguess = tf.transformations().identity_matrix()
        return bestposeguess

    def guess_pose_incremental_odom(self, robot_wrt_odom, bestpose):
        """
        Use incremental change in odometry to correct the last bestpose, for
        a new bestposeguess
        """
        if self.lastodompose is not None:
            change_in_position = np.dot(np.linalg.inv(self.lastodompose),
                                        robot_wrt_odom)
            bestposeguess = np.dot(bestpose, change_in_position)
        else:
            # This is first time we are getting a point cloud.
            # bestposeguess best to be identity 
            bestposeguess = tf.transformations.identity_matrix()

        return bestposeguess

    def get_pose(self, frame_id, timestamp):
        # get transformations between world and robot at time of message
        # to have a guess for the position
        try:
            # We want the transform at time timestamp, but that time is
            # usually not available. We usually get an exception that cache is
            # emtpy. So we'll look for the latest transform available.
            # if timestamp:
            #     self.listener.waitForTransform(
            #         ODOM_FRAME, frame_id, timestamp, rospy.Duration(1.0))
            #     (trans, quat) = self.listener.lookupTransform(
            #         ODOM_FRAME, frame_id, timestamp)
            (trans, quat) = self.listener.lookupTransform(
                ODOM_FRAME, frame_id, rospy.Time(0))
            now = rospy.Time.now()
            if timestamp and now != timestamp:
                rospy.loginfo("Now:{0}; Timestamp:{1}".format(now, timestamp))
        except (tf.LookupException, tf.ConnectivityException):
            raise
        return quat2mat(quat, trans)

    def broadcast_transform_thread(self):
        """Thread to handle transform broadcast.  """
        rate = rospy.Rate(10.0)
        br = tf.TransformBroadcaster()
        while not rospy.is_shutdown():
            self.broadcast_one_transform(
                self.bestposeguess_lock,
                self.bestposeguess,
                BEST_POSE_GUESS_FRAME,
                br)
            self.broadcast_one_transform(
                self.bestpose_lock,
                self.bestpose,
                BEST_POSE_FRAME,
                br)

            if self.use_odom:
                self.broadcast_one_transform(
                    self.odom_wrt_map_lock,
                    self.odom_wrt_map,
                    ODOM_FRAME,
                    br)
            else:
                with self.pc_frame_id_lock:
                    ref_ros_frame = self.pc_frame_id
                if ref_ros_frame is not None:
                    # If we publish ref_ros_frame wrt GLOBAL_FRAME then we
                    # usually get the following warning and the rviz refuses
                    # to visualize relationship b/w kinect_rgb_optical_frame
                    # and /map
                    # [ WARN] [1331927940.889661623]: TF_OLD_DATA ignoring data from
                    # the past for frame /kinect_rgb_optical_frame at time 1.33039e+09
                    # according to authority /Kinect_mapper_demo
                    #
                    # So we publish map wrt /kinect_rgb_optical_frame
                    with self.bestposeguess_lock:
                        map_wrt_PCframe = np.linalg.inv(self.bestposeguess)
                    self.broadcast_one_transform(
                        self.bestposeguess_lock,
                        map_wrt_PCframe,
                        GLOBAL_FRAME,
                        br,
                        parent_frame_id=ref_ros_frame,
                    )
                    # camera does not show up in rviz
                    self.broadcast_one_transform(
                        self.bestposeguess_lock,
                        map_wrt_PCframe,
                        GLOBAL_FRAME,
                        br,
                        parent_frame_id='/camera_rgb_frame',
                    )

            rate.sleep()

    def broadcast_one_transform(self, lock, matrix, frame_id, broadcaster,
                                parent_frame_id=GLOBAL_FRAME):
        if matrix is None:
            return
        with lock:
            translation = tuple(matrix[:3, 3])
            quat = tf.transformations.quaternion_from_matrix(matrix)

        broadcaster.sendTransform(translation,
                quat,
                rospy.Time.now(),
                frame_id,
                parent_frame_id)

def quat2mat(quat, trans):
    """Converts quaternion and translation to 4x4 transformation matrix"""
    return np.dot(tf.transformations.translation_matrix(trans),
                  tf.transformations.quaternion_matrix(quat))
        
def run(ICP):
    ##########################
    # Initialize ROS interface
    ##########################
    rospy.init_node('Kinect_mapper_demo',log_level=rospy.DEBUG )
    # sleep a little - this avoids some ROS bugs
    rospy.sleep(2)
    orm = RosMapper(num_base_scans=2,use_ICP=ICP)
    # define how many scan should be without minimum overlay
    # this has to be at least 1, otherwise no map can be created
    # rospy.Subscriber("/camera/rgb/points", PointCloud2, orm.PCcallback, queue_size=5) 
    # depth_sub = message_filters.Subscriber("/camera/depth/image", Image)
    # image_sub = message_filters.Subscriber("/camera/rgb/color_image", Image)
    # info_sub = message_filters.Subscriber("/camera/rgb/camera_info",
    #                                     CameraInfo)
    # ts = message_filters.TimeSynchronizer([depth_sub, info_sub], 10)
    # ts.registerCallback(orm.DepthImageCallback)
    rospy.Subscriber("/camera/depth/image_raw", Image, orm.DepthImageCallback, queue_size=5) 
    rospy.spin()
    
def profile_yappi(func):
    try:
        import yappi
    except ImportError:
        rospy.logwarn("Yappi not installed. Not profiling")
        func()
        return

    yappi.start(True)
    func()
    with open("profile_Kinet_mapper_demo.yappi", "w") as f:
        cPickle.dump(yappi.get_stats(yappi.SORTTYPE_TTOTAL,
                                     yappi.SORTORDER_ASCENDING,
                                     yappi.SHOW_ALL),
                     f)

def run_and_catch_interrupt(ICP):
    try:
        run(ICP)
    except rospy.ROSInterruptException: pass


if __name__ == '__main__':
    ICP = '-ICP' in sys.argv
    profile_yappi(lambda:run_and_catch_interrupt(ICP))