~mrol-dev/mrol/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import unittest
import numpy as np

import mrol_mapping.pointcloud as pointcloud

basedir = 'data/'
visualize = True

class TestPointCloud(unittest.TestCase):
    def setUp(self):
        X = np.random.random((10,3))
        self.A = X[:7, :]
        self.B = X[5:, :]
        self.PCA = pointcloud.PointCloud(self.A)
        self.PCB = pointcloud.PointCloud(self.B)
        self.PCC = pointcloud.PointCloud(self.A[:-2])
        self.PCcol = pointcloud.load(basedir + 'coloured_pc.npy')
        
    def tearDown(self):
        pass

    def test_nearest_neighbour(self):
        NN_dists, NN_inds = pointcloud.nearest_neighbour(self.A, self.B)
        self.assertEqual([5,6], list(np.where(NN_dists < 0.00001)[0]))
        
    def test_equal(self):
        import copy
        self.assertTrue(self.PCA == self.PCA)
        self.assertTrue(self.PCA == copy.deepcopy(self.PCA))
        self.assertFalse(self.PCA == self.PCB)
        self.assertFalse(self.PCA == self.PCC)
        
    def test_save_load(self):
        pointcloud.save('/tmp/PCA.txt', self.PCA.points, text=True)
        self.assertTrue(self.PCA == pointcloud.load('/tmp/PCA.txt'))
        self.PCB.save('/tmp/PCB.npy')
        self.assertTrue(self.PCB == pointcloud.load('/tmp/PCB.npy'))
        
    def test_vis_boxfilt(self):
        # TODO: An assert statement!
        xmax=1.5
        self.PCcol.display()
        self.assertTrue(np.max(self.PCcol.points[:,0]) > xmax)
        self.PCcol.boxfilter(xmax=xmax)
        self.PCcol.display()
        self.assertTrue(np.max(self.PCcol.points[:,0]) <= xmax)

    def test_volumetric_sample(self):
        res = 0.1
        startshape = self.PCcol.points.shape
        mins = np.min(self.PCcol.points[:,:3],axis=0)
        maxs = np.max(self.PCcol.points[:,:3],axis=0)
        sample = self.PCcol.volumetricsample(res)
        newshape = sample.points.shape
        newmins = np.min(sample.points[:,:3],axis=0)
        newmaxs = np.max(sample.points[:,:3],axis=0)
        #print "start shape:", startshape, "new shape:", newshape
        #print "mins:", mins, "new mins:", newmins
        #print "maxs:", maxs, "new maxs:", newmaxs
        self.assertTrue((mins > newmins - res*0.49).all())
        self.assertTrue((mins < newmins + res*0.51).all())
        self.assertTrue((maxs > newmaxs - res*0.49).all())
        self.assertTrue((maxs < newmaxs + res*0.51).all())
        self.assertTrue(startshape[0] > newshape[0])
        self.assertTrue(startshape[1] == newshape[1])

if __name__ == '__main__':
    unittest.main()