~mwhudson/pypy/imported-pypy-rdict-refactoring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#!/usr/bin/env python
# -*- coding: iso-8859-1

"""A sample implementation of MD5 in pure Python.

This is an implementation of the MD5 hash function, as specified by
RFC 1321, in pure Python. It was implemented using Bruce Schneier's
excellent book "Applied Cryptography", 2nd ed., 1996.

Surely this is not meant to compete with the existing implementation
of the Python standard library (written in C). Rather, it should be
seen as a Python complement that is more readable than C and can be
used more conveniently for learning and experimenting purposes in
the field of cryptography.

This module tries very hard to follow the API of the existing Python
standard library's "md5" module, but although it seems to work fine,
it has not been extensively tested! (But note that there is a test
module, test_md5py.py, that compares this Python implementation with
the C one of the Python standard library.

BEWARE: this comes with no guarantee whatsoever about fitness and/or
other properties! Specifically, do not use this in any production
code! License is Python License!

Special thanks to Aurelian Coman who fixed some nasty bugs!

Dinu C. Gherman
"""


__date__    = '2004-11-17'
__version__ = 0.91 # Modernised by J. Hallén and L. Creighton for Pypy

__metaclass__ = type # or genrpy won't work

import struct, copy


# ======================================================================
# Bit-Manipulation helpers
#
#   _long2bytes() was contributed by Barry Warsaw
#   and is reused here with tiny modifications.
# ======================================================================

def _long2bytes(n, blocksize=0):
    """Convert a long integer to a byte string.

    If optional blocksize is given and greater than zero, pad the front
    of the byte string with binary zeros so that the length is a multiple
    of blocksize.
    """

    # After much testing, this algorithm was deemed to be the fastest.
    s = ''
    pack = struct.pack
    while n > 0:
        ### CHANGED FROM '>I' TO '<I'. (DCG)
        s = pack('<I', n & 0xffffffffL) + s
        ### --------------------------
        n = n >> 32

    # Strip off leading zeros.
    for i in range(len(s)):
        if s[i] <> '\000':
            break
    else:
        # Only happens when n == 0.
        s = '\000'
        i = 0

    s = s[i:]

    # Add back some pad bytes. This could be done more efficiently
    # w.r.t. the de-padding being done above, but sigh...
    if blocksize > 0 and len(s) % blocksize:
        s = (blocksize - len(s) % blocksize) * '\000' + s

    return s


def _bytelist2long(list):
    "Transform a list of characters into a list of longs."

    imax = len(list)/4
    hl = [0L] * imax

    j = 0
    i = 0
    while i < imax:
        b0 = long(ord(list[j]))
        b1 = (long(ord(list[j+1]))) << 8
        b2 = (long(ord(list[j+2]))) << 16
        b3 = (long(ord(list[j+3]))) << 24
        hl[i] = b0 | b1 |b2 | b3
        i = i+1
        j = j+4

    return hl


def _rotateLeft(x, n):
    "Rotate x (32 bit) left n bits circularly."

    return (x << n) | (x >> (32-n))


# ======================================================================
# The real MD5 meat...
#
#   Implemented after "Applied Cryptography", 2nd ed., 1996,
#   pp. 436-441 by Bruce Schneier.
# ======================================================================

# F, G, H and I are basic MD5 functions.

def F(x, y, z):
    return (x & y) | ((~x) & z)

def G(x, y, z):
    return (x & z) | (y & (~z))

def H(x, y, z):
    return x ^ y ^ z

def I(x, y, z):
    return y ^ (x | (~z))


def XX(func, a, b, c, d, x, s, ac):
    """Wrapper for call distribution to functions F, G, H and I.

    This replaces functions FF, GG, HH and II from "Appl. Crypto."
    Rotation is separate from addition to prevent recomputation
    (now summed-up in one function).
    """

    res = 0L
    res = res + a + func(b, c, d)
    res = res + x 
    res = res + ac
    res = res & 0xffffffffL
    res = _rotateLeft(res, s)
    res = res & 0xffffffffL
    res = res + b

    return res & 0xffffffffL


class MD5Type:
    "An implementation of the MD5 hash function in pure Python."

    def __init__(self):
        "Initialisation."
        
        # Initial message length in bits(!).
        self.length = 0L
        self.count = [0, 0]

        # Initial empty message as a sequence of bytes (8 bit characters).
        self.input = []

        # Call a separate init function, that can be used repeatedly
        # to start from scratch on the same object.
        self.init()


    def init(self):
        "Initialize the message-digest and set all fields to zero."

        self.length = 0L
        self.count = [0, 0]
        self.input = []

        # Load magic initialization constants.
        self.A = 0x67452301L
        self.B = 0xefcdab89L
        self.C = 0x98badcfeL
        self.D = 0x10325476L


    def _transform(self, inp):
        """Basic MD5 step transforming the digest based on the input.

        Note that if the Mysterious Constants are arranged backwards
        in little-endian order and decrypted with the DES they produce
        OCCULT MESSAGES!
        """

        a, b, c, d = A, B, C, D = self.A, self.B, self.C, self.D

        # Round 1.

        S11, S12, S13, S14 = 7, 12, 17, 22

        a = XX(F, a, b, c, d, inp[ 0], S11, 0xD76AA478L) # 1 
        d = XX(F, d, a, b, c, inp[ 1], S12, 0xE8C7B756L) # 2 
        c = XX(F, c, d, a, b, inp[ 2], S13, 0x242070DBL) # 3 
        b = XX(F, b, c, d, a, inp[ 3], S14, 0xC1BDCEEEL) # 4 
        a = XX(F, a, b, c, d, inp[ 4], S11, 0xF57C0FAFL) # 5 
        d = XX(F, d, a, b, c, inp[ 5], S12, 0x4787C62AL) # 6 
        c = XX(F, c, d, a, b, inp[ 6], S13, 0xA8304613L) # 7 
        b = XX(F, b, c, d, a, inp[ 7], S14, 0xFD469501L) # 8 
        a = XX(F, a, b, c, d, inp[ 8], S11, 0x698098D8L) # 9 
        d = XX(F, d, a, b, c, inp[ 9], S12, 0x8B44F7AFL) # 10 
        c = XX(F, c, d, a, b, inp[10], S13, 0xFFFF5BB1L) # 11 
        b = XX(F, b, c, d, a, inp[11], S14, 0x895CD7BEL) # 12 
        a = XX(F, a, b, c, d, inp[12], S11, 0x6B901122L) # 13 
        d = XX(F, d, a, b, c, inp[13], S12, 0xFD987193L) # 14 
        c = XX(F, c, d, a, b, inp[14], S13, 0xA679438EL) # 15 
        b = XX(F, b, c, d, a, inp[15], S14, 0x49B40821L) # 16 

        # Round 2.

        S21, S22, S23, S24 = 5, 9, 14, 20

        a = XX(G, a, b, c, d, inp[ 1], S21, 0xF61E2562L) # 17 
        d = XX(G, d, a, b, c, inp[ 6], S22, 0xC040B340L) # 18 
        c = XX(G, c, d, a, b, inp[11], S23, 0x265E5A51L) # 19 
        b = XX(G, b, c, d, a, inp[ 0], S24, 0xE9B6C7AAL) # 20 
        a = XX(G, a, b, c, d, inp[ 5], S21, 0xD62F105DL) # 21 
        d = XX(G, d, a, b, c, inp[10], S22, 0x02441453L) # 22 
        c = XX(G, c, d, a, b, inp[15], S23, 0xD8A1E681L) # 23 
        b = XX(G, b, c, d, a, inp[ 4], S24, 0xE7D3FBC8L) # 24 
        a = XX(G, a, b, c, d, inp[ 9], S21, 0x21E1CDE6L) # 25 
        d = XX(G, d, a, b, c, inp[14], S22, 0xC33707D6L) # 26 
        c = XX(G, c, d, a, b, inp[ 3], S23, 0xF4D50D87L) # 27 
        b = XX(G, b, c, d, a, inp[ 8], S24, 0x455A14EDL) # 28 
        a = XX(G, a, b, c, d, inp[13], S21, 0xA9E3E905L) # 29 
        d = XX(G, d, a, b, c, inp[ 2], S22, 0xFCEFA3F8L) # 30 
        c = XX(G, c, d, a, b, inp[ 7], S23, 0x676F02D9L) # 31 
        b = XX(G, b, c, d, a, inp[12], S24, 0x8D2A4C8AL) # 32 

        # Round 3.

        S31, S32, S33, S34 = 4, 11, 16, 23

        a = XX(H, a, b, c, d, inp[ 5], S31, 0xFFFA3942L) # 33 
        d = XX(H, d, a, b, c, inp[ 8], S32, 0x8771F681L) # 34 
        c = XX(H, c, d, a, b, inp[11], S33, 0x6D9D6122L) # 35 
        b = XX(H, b, c, d, a, inp[14], S34, 0xFDE5380CL) # 36 
        a = XX(H, a, b, c, d, inp[ 1], S31, 0xA4BEEA44L) # 37 
        d = XX(H, d, a, b, c, inp[ 4], S32, 0x4BDECFA9L) # 38 
        c = XX(H, c, d, a, b, inp[ 7], S33, 0xF6BB4B60L) # 39 
        b = XX(H, b, c, d, a, inp[10], S34, 0xBEBFBC70L) # 40 
        a = XX(H, a, b, c, d, inp[13], S31, 0x289B7EC6L) # 41 
        d = XX(H, d, a, b, c, inp[ 0], S32, 0xEAA127FAL) # 42 
        c = XX(H, c, d, a, b, inp[ 3], S33, 0xD4EF3085L) # 43 
        b = XX(H, b, c, d, a, inp[ 6], S34, 0x04881D05L) # 44 
        a = XX(H, a, b, c, d, inp[ 9], S31, 0xD9D4D039L) # 45 
        d = XX(H, d, a, b, c, inp[12], S32, 0xE6DB99E5L) # 46 
        c = XX(H, c, d, a, b, inp[15], S33, 0x1FA27CF8L) # 47 
        b = XX(H, b, c, d, a, inp[ 2], S34, 0xC4AC5665L) # 48 

        # Round 4.

        S41, S42, S43, S44 = 6, 10, 15, 21

        a = XX(I, a, b, c, d, inp[ 0], S41, 0xF4292244L) # 49 
        d = XX(I, d, a, b, c, inp[ 7], S42, 0x432AFF97L) # 50 
        c = XX(I, c, d, a, b, inp[14], S43, 0xAB9423A7L) # 51 
        b = XX(I, b, c, d, a, inp[ 5], S44, 0xFC93A039L) # 52 
        a = XX(I, a, b, c, d, inp[12], S41, 0x655B59C3L) # 53 
        d = XX(I, d, a, b, c, inp[ 3], S42, 0x8F0CCC92L) # 54 
        c = XX(I, c, d, a, b, inp[10], S43, 0xFFEFF47DL) # 55 
        b = XX(I, b, c, d, a, inp[ 1], S44, 0x85845DD1L) # 56 
        a = XX(I, a, b, c, d, inp[ 8], S41, 0x6FA87E4FL) # 57 
        d = XX(I, d, a, b, c, inp[15], S42, 0xFE2CE6E0L) # 58 
        c = XX(I, c, d, a, b, inp[ 6], S43, 0xA3014314L) # 59 
        b = XX(I, b, c, d, a, inp[13], S44, 0x4E0811A1L) # 60 
        a = XX(I, a, b, c, d, inp[ 4], S41, 0xF7537E82L) # 61 
        d = XX(I, d, a, b, c, inp[11], S42, 0xBD3AF235L) # 62 
        c = XX(I, c, d, a, b, inp[ 2], S43, 0x2AD7D2BBL) # 63 
        b = XX(I, b, c, d, a, inp[ 9], S44, 0xEB86D391L) # 64 

        A = (A + a) & 0xffffffffL
        B = (B + b) & 0xffffffffL
        C = (C + c) & 0xffffffffL
        D = (D + d) & 0xffffffffL

        self.A, self.B, self.C, self.D = A, B, C, D


    # Down from here all methods follow the Python Standard Library
    # API of the md5 module.

    def update(self, inBuf):
        """Add to the current message.

        Update the md5 object with the string arg. Repeated calls
        are equivalent to a single call with the concatenation of all
        the arguments, i.e. m.update(a); m.update(b) is equivalent
        to m.update(a+b).

        The hash is immediately calculated for all full blocks. The final
        calculation is made in digest(). This allows us to keep an
        intermediate value for the hash, so that we only need to make
        minimal recalculation if we call update() to add moredata to
        the hashed string.
        """

        leninBuf = long(len(inBuf))

        # Compute number of bytes mod 64.
        index = (self.count[0] >> 3) & 0x3FL

        # Update number of bits.
        self.count[0] = self.count[0] + (leninBuf << 3)
        if self.count[0] < (leninBuf << 3):
            self.count[1] = self.count[1] + 1
        self.count[1] = self.count[1] + (leninBuf >> 29)

        partLen = 64 - index

        if leninBuf >= partLen:
            self.input[index:] = list(inBuf[:partLen])
            self._transform(_bytelist2long(self.input))
            i = partLen
            while i + 63 < leninBuf:
                self._transform(_bytelist2long(list(inBuf[i:i+64])))
                i = i + 64
            else:
                self.input = list(inBuf[i:leninBuf])
        else:
            i = 0
            self.input = self.input + list(inBuf)


    def digest(self):
        """Terminate the message-digest computation and return digest.

        Return the digest of the strings passed to the update()
        method so far. This is a 16-byte string which may contain
        non-ASCII characters, including null bytes.
        """

        A = self.A
        B = self.B
        C = self.C
        D = self.D
        input = [] + self.input
        count = [] + self.count

        index = (self.count[0] >> 3) & 0x3fL

        if index < 56:
            padLen = 56 - index
        else:
            padLen = 120 - index

        padding = ['\200'] + ['\000'] * 63
        self.update(padding[:padLen])

        # Append length (before padding).
        bits = _bytelist2long(self.input[:56]) + count

        self._transform(bits)

        # Store state in digest.
        digest = _long2bytes(self.A << 96, 16)[:4] + \
                 _long2bytes(self.B << 64, 16)[4:8] + \
                 _long2bytes(self.C << 32, 16)[8:12] + \
                 _long2bytes(self.D, 16)[12:]

        self.A = A 
        self.B = B
        self.C = C
        self.D = D
        self.input = input 
        self.count = count 

        return digest


    def hexdigest(self):
        """Terminate and return digest in HEX form.

        Like digest() except the digest is returned as a string of
        length 32, containing only hexadecimal digits. This may be
        used to exchange the value safely in email or other non-
        binary environments.
        """

        return ''.join(['%02x' % ord(c) for c in self.digest()])

    def copy(self):
        """Return a clone object.

        Return a copy ('clone') of the md5 object. This can be used
        to efficiently compute the digests of strings that share
        a common initial substring.
        """
        if 0: # set this to 1 to make the flow space crash
            return copy.deepcopy(self)
        clone = self.__class__()
        clone.length = self.length
        clone.count  = [] + self.count[:]
        clone.input  = [] + self.input
        clone.A = self.A
        clone.B = self.B
        clone.C = self.C
        clone.D = self.D
        return clone


# ======================================================================
# Mimic Python top-level functions from standard library API
# for consistency with the md5 module of the standard library.
# ======================================================================

digest_size = 16

def new(arg=None):
    """Return a new md5 crypto object.

    If arg is present, the method call update(arg) is made.
    """

    crypto = MD5Type()
    if arg:
        crypto.update(arg)

    return crypto


def md5(arg=None):
    """Same as new().

    For backward compatibility reasons, this is an alternative
    name for the new() function.
    """

    return new(arg)