Quick guide for converting old fff code (GSL dependent) into new code

Vectors

Essentially, this is the same API as GSL up to the prefix (gsl 1is to be replaced with fff ). The basic
routines have been rewritten from scratch, while the BLAS routines have been wrapped around the
standard Fortran BLAS API (as opposed to CBLAS). There are only three exceptions (in red in the

following table).

For more details, see: fff vector.h, fff blas.h.

old
gsl vector* x

x = gsl vector alloc(n)

gsl vector free (x)

gsl vector set(x, i, a)

gsl vector set all(x, a)

gsl vector set zero(x)

new
fff vector* x

x = fff vector new(n)

fff vector delete(x)

fff vector set(x, 1, a)

fff vector set all(x, a)

fff vector set all(x, 0)

remarks

new rather than alloc for consistency
with other fff structures

same remark as above

gsl vector memcpy(y, X)
gsl vector add(y, x)

gsl vector get(x, 1)

fff vector memcpy(y, X)
fff vector add(y, x)
fff vector get(x, 1)

similarly for sub, mul, div, scale, ...

gsl blas dgemv (CblasNoTra

ns,a,x,b,vy)

gsl blas ddot (x,y, &v)

Matrices

fff blas dgemv (CblasNoTra

ns,a,x,b,vy)

v = fff blas_ddot (x,y)

similarly for all gsl blas functions
execpt the following

No major modification regarding low-level routines, see fff matrix.h for details. For more
sophisticated linear algebra (LU, QR, SVD, Cholesky decompositions), use the wrapper around
LAPACK (fff lapack.h) whose API is completely different from GSL.

old

new

remarks

gsl matrix* A

A = gslimatrixialloc(nr,nc)

gsl matrix free (A)
gsl matrix _get (A, i,J)
gsl matrix set(A,i,j,a)

gsl matrix get row(x,A,1i)

fff matrix* A

A = fff matrix new(nr,nc)

fff matrix delete (A)
fff matrix get (A,1i,3)
fff matrix set(A,i,Jj,a)

fff matrix get row(x,A,1i)

new rather than alloc for consistency with

other fff structures

Same remark as above

fff matrix get col(x,A,])

gsl matrix set row(A,i,x)

fff matrix get col(x,A,])

fff matrix set row(A,i,x)

gsl matrix set col(A,J,x)
?

?

fff matrix set col(A,J,x)
fff matrix get diag(x,A)

fff matrix set diag(A,x)



Vector & matrix views

We haven’t implemented a specific type for vector and matrix views. Views directly output a
fff vector or a fff matrix. See: fff matrix.h.

old

new

remarks

gsl matrix* A

fff matrix* A

gsl matrix diagonal(A,1i);

gsl vector view v; v = fff vector; You can then pass &v to a function rather
v = gsl matrix row(A,i); v = fff matrix row(A,i); than &v.vector

gsl vector view v; v = fff vector;

v = gsl matrix col(A,i); v = fff matrix col(A,1i);

gsl vector view v; v = fff vector;

v = v = fff matrix diag(a);

gsl vector view B;

B =

gsl matrix submatrix(kl,k2,n
1,n2);

fff_vector B;

B =

fff matrix block(kl,nl,k2,n2
) ;

Beware: input arguments are not in the
same order

Non-double arrays

The former fff image type has been renamed fff array and a few macros have been added so as to
simplify its APL. I suggest using fff_ array rather than re-implementing GSL’s manual templates such
as gsl vector long and gsl matrix_long, unless computational efficiency collapses dramatically.

old

new

remarks

gsl vector long* x =
gsl vector long alloc(n)

fff array* x =
fff array newld(FFF LONG, n)

fff array newld is a macro for
fff array new(FFF_LONG,n,0,0,0)

gsl vector long free (x)

fff array delete (x)

long int v =
gsl vector long get (x,1i)

long int v = (long int)

fff array getld(x,1i)

Macro for fff array get(x,i,0,0,0), which
returns a double

gsl vector long set(x,1i,a)

gsl vector long set all(x,a)

fff array setld(x,1i,a)

fff array set all(x,a)

Macro for fff array set(x,1,0,0,0,a)

gsl matrix long* A =
gsl matrix long alloc(p,q)

fff array* A =
fff array new2d(p,q)

gsl matrix long free (A)

fff array delete(A)

long int v =
gsl matrix long get(A,i,])

long int v = (long int)
fff array get2d(A,i,3J)

gsl matrix long set(A,i,j,a)

fff array set2d(A,i,7,a)

gsl matrix long set all(A,a)

fff array set all(A,a)




