
DOLFIN User Manual

September 10, 2004

Hoffman, Logg, et al.

This manual has been written by:

Johan Hoffman, Johan Jansson, Anders Logg, Andreas Mark, and Andreas
Nilsson.

DOLFIN User Manual

Contents

1 Introduction 5

2 Installation 6

3 Linear algebra 7

4 The multigrid solver 8

4.1 Usage . 8

4.2 An example . 9

4.3 Performance . 9

4.4 Limitations . 9

5 Mesh management 11

6 The log system 12

7 Handling parameters 14

8 Writing a new module / solver 15

9 Installing DOLFIN 16

10 Contributing to DOLFIN 17

10.1 Creating a patch using CVS 17

3

DOLFIN User Manual

10.2 Creating a patch without using CVS 17

10.2.1 Applying a patch . 19

4

DOLFIN User Manual

1 Introduction

This is a first draft for a DOLFIN manual. Contributions are most welcome.

5

DOLFIN User Manual

2 Installation

In preparation.

6

DOLFIN User Manual

3 Linear algebra

In preparation.

7

DOLFIN User Manual

4 The multigrid solver

Multigrid solvers were invented to solve partial differential equations and in
contrast to other iterative solvers its convergence rate is independent of the
problem size. The multigrid solver solves a given PDE using a hierarchy of
discretizations, typically Poisson’s equation:

−∆u = f in Ω,

u = 0 on ∂Ω.
(1)

4.1 Usage

First a variational formulation (a PDE object) has to be defined. Then there
are three different ways to call the multigrid solver:

• Call the solver with a MeshHierachy which consisting of arbitrarily
refined meshes:

MultigridSolver::solve(PDE poisson, Vector& x,

MeshHierarchy& meshes);

• Call the solver with a mesh which has been refined a number of times
(implicitly containing a mesh hierarchy):

MultigridSolver::solve(PDE poisson, Vector& x,

Mesh mesh);

• Call the solver with a coarse mesh and a number specifying the number
of (uniform) refinements to make:

MultigridSolver::solve(PDE poisson,Vector& x,

Mesh& mesh, int refine);

8

DOLFIN User Manual

4.2 An example

Mesh mesh("square.xml");

Function f("source");

Poisson poisson(f);

MultigridSolver::solve(poisson, x, mesh, 5);

4.3 Performance

The solution time for the Multgrid solver has been compared with the Krylov
solver for tolerance TOL = 10−3. Figure 1 shows that the complexity of the
multigrid solver is linear and that it is faster than the Krylov solver. For
large n, the multigrid solver is still linear while the Krylov solver fails to
converge. The test was performed on 1.7 GHz Celeron with 256 Mb of RAM
running Debian GNU/Linux.

4.4 Limitations

The solver has only been tested in 2D and it’s only written for linear elements.

9

DOLFIN User Manual

0 0.5 1 1.5 2 2.5 3

x 10
5

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Multigrid tol=0.001, jac1=jac2=9

Number of unknowns (N)

T
im

e
(s

)

Multigrid Solver
Krylov Solver

Figure 1: Plot of the solution time for the multigrid solver and the Krylov
solver.

10

DOLFIN User Manual

5 Mesh management

In preparation.

11

DOLFIN User Manual

6 The log system

The purpose of the log system is to provide a simple and clean interface for
logging messages, including warnings and errors.

The following functions / macros are provided for logging:

dolfin_info();

dolfin_debug();

dolfin_warning();

dolfin_error();

dolfin_assert();

Examples of usage:

dolfin_info("Created vector of size %d.", x.size());

dolfin_debug("Opened file");

dolfin_warning("Unknown cell type.");

dolfin_error("Out of memory.");

dolfin_assert(i < m);

Note that in order to pass additional arguments to the last three func-
tions (which are really macros, in order to automatically print informa-
tion about file names, line numbers and function names), the variations
dolfin debug1(), dolfin debug2() and so on, must be used.

As an alternative to dolfin info(), C++ style output to cout (dolfin::cout,
and not std::cout) can be used. These messages will be delivered to the
same destination as messages by use of the function dolfin info().

Examples of usage:

cout << "Assembling matrix: " << A << endl;

cout << "Refining grid: " << grid << endl;

12

DOLFIN User Manual

The dolfin assert() macro should be used for simple tests that may occur
often, such as checking indexing in vectors. The check is turned on only if
DEBUG is defined.

To notify progress by a progress session, use the class Progress.

Examples of usage:

Progress p("Assembling", grid.noCells());

for (CellIterator c(grid); !c.end(); ++c) {

...

p++;

}

Progress also supports the following usage:

p = i; // Specify step number

p = 0.5; // Specify percentage

p.update(t/T, "Time is t = %f", t);

13

DOLFIN User Manual

7 Handling parameters

In preparation.

14

DOLFIN User Manual

8 Writing a new module / solver

In preparation.

15

DOLFIN User Manual

9 Installing DOLFIN

In preparation.

16

DOLFIN User Manual

10 Contributing to DOLFIN

If you have created a new module, fixed a bug somewhere, or have done a
small change which you want to contribute to DOLFIN, then the best way to
do so is to send a patch to the maintainer. A patch is a file which describes
how to transform a file or directory structure into another. The patch is built
by comparing a version which both parties have against the modified version
which only you have.

The tool used to create a patch is called diff and the tool used to apply
the patch is called patch. These tools are free software and are standard in
most UNIX-style operating systems.

10.1 Creating a patch using CVS

The simplest way to create a patch is through CVS. Assuming that you
have previously checked out a CVS version of DOLFIN and that you are
positioned at the top of the DOLFIN source tree, a patch can be created
using the command

$ cvs diff > dolfin-logg-2004-01-16.patch

Choose a suitable name for the patch to simplify identification, for example
your name and today’s date.

10.2 Creating a patch without using CVS

Example:

Let’s say you have started from the DOLFIN release 0.3.10. You have a
directory structure under dolfin-0.3.10 where you have made some mod-
ifications to some files which you think could be useful to other DOLFIN
users.

17

DOLFIN User Manual

1. Clean up your modified directory structure to remove temporary and
binary files which will be rebuilt anyway:

$ make clean

2. Rename the directory to something else:

$ mv dolfin-0.3.10 dolfin-0.3.10mod

3. Unpack the version of DOLFIN which you started from:

$ tar xzvf dolfin-0.3.10.tgz

4. You should now have two DOLFIN directory structures in your current
directory:

$ ls

dolfin-0.3.10

dolfin-0.3.10mod

5. Use the diff tool to create the patch:

$ diff -u --new-file --recursive dolfin-0.3.10 dolfin-0.3.10mod >

mypatch.patch

“-u” means “unified”, a format in which to describe the patch.

“--new-file” accepts the creation of new files in addition to modifi-
cations.

“--recursive” means to recursively compare files through the direc-
tory structure.

6. The patch now exists as mypatch.patch and can be distributed to other
people who have dolfin-0.3.10 to easily create your modified version. If
the patch is large, compressing it with for example gzip is advisable.

18

DOLFIN User Manual

10.2.1 Applying a patch

Example:

Let’s say the patch has been built relative to DOLFIN release 0.3.10.

1. Unpack the version of DOLFIN which the patch is built relative to:

$ tar xzvf dolfin-0.3.10.tgz

2. Check that you have the patch mypatch.patch and the DOLFIN di-
rectory structure in the current directory.

$ ls

dolfin-0.3.10

mypatch.patch

3. Enter the DOLFIN directory structure:

$ cd dolfin-0.3.10

4. Apply the patch:

$ patch -p1 < ../mypatch.patch

“-p1” strips the leading directory from the filename references in the
patch, to match the fact that we are applying the patch from inside
the directory.

5. The modified version now exists as dolfin-0.3.10

19

