~ohad-kammar/ohads-thesis/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
\Section{Enriched Lawvere theories}\sectionlabel{lawvere theories}

We recall the relevant notions regarding \defterm{enriched Lawvere
  theories}. Our account follows most closely Power's
account~\cite{power:enriched-lawvere-theories}. A key difference is
that we keep to a
symmetric closed enrichment, rather than the more general biclosed
structure Power considers. The symmetric account dates further back to
Kelly~\cite{kelly:structure-defined-by-finite-limits-in-the-enriched-contexts-i}.

First, we assume the enriching category has the following structure
(see Power's account~\cite[Section~2]{power:enriched-lawvere-theories}).

\begin{definition}
  Let $\regcard$ be a regular cardinal. A \defterm{$\regcard$-Power
    category $\SymMonCat$} is a symmetric monoidal closed category $\seq{\symmoncatcarrier\SymMonCat, \oI, \ox, \oto, \leftunitor,
  \rightunitor, \associator, \symmetry}$ such that:
  \begin{itemize}
  \item $\symmoncatcarrier\SymMonCat$ is locally
    $\regcard$-presentable; and
  \item $\oI$ is $\regcard$-presentable, and if $\symV$, $\symVv$ are
    $\regcard$-presentable, then so is $\symV\ox\symVv$.
  \end{itemize}
\end{definition}

We call an $\aleph_0$-Power category a \defterm{finitary} Power category, and
similarly we call an $\aleph_1$-Power category a \defterm{countably infinitary} Power
category, or simply a countable Power category (although it is
may \emph{not} be a countable category, i.e., have countably many morphisms). We restrict our attention to the following two cases:

\begin{example}
  The category $\Set$ with the cartesian closed structure is a finite
  Power category. Indeed, in \exampleref{set is lfp} we saw that
  $\Set$ is locally finitely presentable. As ${\oI = \set\unitval}$ is finite, and the
  product of finite sets is finite as well, $\Set$ is a finite Power category.
\end{example}

\begin{example}
  The category $\wCPO$ with the cartesian closed structure is a
  countable Power category. Indeed, \theoremref{wcpo is lcp} shows
  that $\wCPO$ is locally countably presentable. As ${\oI =
  \set\unitval}$ is finite, it is countably presentable by \exampleref{finite domains are
      cp}. Let $\mWv$, $\mW$ be two \wcpo{}s with countable domain
  presentations $\dompres_{\mWv} = \triple{\mBasev}\mconsdom{\mcons_{\mWv}}$,
  $\dompres_{\mW} = \triple{\mBase}\mconsdomv{\mcons_{\mW}}$, respectively. Define:
  \begin{mapdef*}
    \mBasew &\definedby& \mBasev\times\mBase \\
    \mconsdomw &\definedby &
    \set{
      \seq[n]{\pair{\mbasev_n}\mbase} \suchthat \seq{\mbasev_n} \in
      \mconsdom, \mbase \in \mBase
    }
    \union
    \set{
      \seq[n]{\pair\mbasev{\mbase_n}} \suchthat \mbasev \in \mBasev, \seq{\mbase_n} \in
      \mconsdomv
    }
    \\
    \mcons_{\mWw} &\definedby&
    \set{
      \seq{\pair{\mbasev_n}\mbase}\mcons\seq{\pair{\mbasev'_n}\mbase}
      \suchthat
      \seq{\mbasev_n} \mcons_{\mWv} \seq{\mbasev'_n},
      \mbase \in \mBase
    }
    \union\\
    &&\set{
      \seq{\pair\mbasev{\mbase_n}}\mcons\seq{\pair\mbasev{\mbase'_n}}
      \suchthat
      \mbasev \in \mBasev,
      \seq{\mbase_n} \mcons_{\mW} \seq{\mbase'_n}
    }
  \end{mapdef*}%
  then $\dompres_{\mWw} = \triple\mBasew\mconsdomw{\mcons_{\mWw}}$
  is a countable domain presentation, and $\mWw \definedby \mWv\times \mW$ is the
  initial $\dompres_{\mWw}$-model. Indeed, setting
  $\domalgebra[\mWw][\pair{\mbasev}\mbase]\definedby
  \pair{\domalgebra[\mWv][\mbasev]}{\domalgebra[\mW][\mbase]}$
  exhibits $\mWw$ as a $\dompres_{\mWw}$-model. For initiality, take
  any other model $\mWw'$. For each $\mbasev \in \mBasev$, due to the
  presence of
  constraints of the form $\seq{\pair\mbasev{\mbase_n}}\mcons\seq{\pair\mbasev{\mbase'_n}}$, the
  function $\mmorphv_{\mbasev} \definedby \ilam\mbase{\domalgebra[\mWw'][\pair\mbasev\mbase]}$
  exhibits a $\dompres_{\mW}$-model $\pair{\mWw'}{\mmorphv_{\mbasev}}$, hence we have a unique
  Scott-continuous $\mmorph_{\mbasev}\of \mW\to\mWw'$ factoring $\domalgebra[\mW]$
  through $\mmorphv_{\mbasev}$. Due to constraints of the form
  $\seq{\pair{\mbasev_n}\mbase}\mcons\seq{\pair{\mbasev'_n}\mbase}$,
  the map $\mmorphv' \definedby \ilam\mbasev{\mmorph_{\mbasev}}$ from
  $\mBasev$ to $\mWw'$ is monotone, hence we have a unique
  Scott-continuous $\mmorphw' \of \mWv \to (\mWw')^{\mWv}$ factoring
  $\domalgebra[\mWv]$ through $\mmorphv'$. Uncurrying then yields the
  unique $\mmorphw \of \mWv\times\mW \xto{\ilam\mWv\mmorphw'} \mWw'$
  factoring $\domalgebra[\mWw]$ through $\domalgebra[\mWw']$. Thus
  $\mWv\times\mW$ has a countable presentation, and $\wCPO$ is a
  countable Power category.
\end{example}

When a category has all (co)powers of objects by
$\regcard$-presentable objects, we say it has all
$\regcard$-(co)powers. Denote by $\Pres\SymMonCat$ the full subcategory of $\SymMonCat$ consisting of
the $\regcard$-presentable objects. When $\SymMonCat$ is a
$\regcard$-Power category, $\Pres\SymMonCat$ contains $\oI$ and
$\symV\ox\symVv$ for every $\regcard$-presentable $\symV$ and
$\symVv$. Thus, $\Pres\SymMonCat$ has all $\regcard$-copowers, hence
the opposite $\SymMonCat$-category $\PresOp\SymMonCat$ has all $\regcard$-powers. Note
that, in light of \propositionref{representative set of lp objects},
$\Pres\SymMonCat$ is essentially small, i.e., it is
$\SymMonCat$-equivalent to a small category.
%
Note that Power~\cite{power:enriched-lawvere-theories} prefers to work with
small categories, hence instead uses the skeleton of our
$\Pres\SymMonCat$.  As we will see later, it will be useful to
have all $\regcard$-presentable objects rather than a set of
representatives, although it will complicate some proofs.

We say that a $\SymMonCat$-functor $\Functor \of
\richCatv \to \richCat$ is \defterm{identity-on-objects} if
$\Obj\richCatv = \Obj\richCat$ and $\Functor \enAv = \enAv$ for all
$\richCatv$-objects $\enAv$. For example, the $\SymMonCat$-functor $\F$ from $\SymMonCat$
to the Kleisli $\SymMonCat$-category $\KleisliCat\SymMonCat\Monad$ that we
study in \exampleref{enriched kleisli category} is identity-on-objects.

\begin{definition}
  Let $\SymMonCat$ be a $\regcard$-Power category. An
  \defterm{enriched $\regcard$-Lawvere $\SymMonCat$-theory $\mL$}
  is a pair $\pair{\LawCat\mL}{\LawFunctor\mL\placeholder}$
  where:
  \begin{itemize}
    \item $\LawCat\mL$ is a $\SymMonCat$ category with
      $\regcard$-powers; and
    \item $\LawFunctor\mL\placeholder \of\PresOp\SymMonCat \to
      \LawCat\mL$ is a $\SymMonCat$-functor that is $\regcard$-power
      preserving and identity-on-objects.
  \end{itemize}
\end{definition}

\begin{example}[{see
      Power~\cite[Construction~3.3]{power:enriched-lawvere-theories}}]\examplelabel{monad->theory
  construction}
Let $\Monad$ be a monad enriched in a $\regcard$-Power category
$\SymMonCat$, and $\F$ the $\SymMonCat$-functor from $\SymMonCat$
to the Kleisli $\SymMonCat$-category $\KleisliCat\SymMonCat\Monad$ we
studied in \exampleref{enriched kleisli category}. Denote by $\PresKleisliCat\SymMonCat\Monad$ the
$\SymMonCat$-category induced by the $\regcard$-presentable objects in
$\SymMonCat$. Then $\F$ restricts to an identity-on-objects
$\regcard$-copower preserving $\SymMonCat$-functor $\F^{\regcard} \of
\Pres\SymMonCat \to \PresKleisliCat\SymMonCat\Monad$. By moving to the
opposite categories, we obtain an identity-on-objects $\regcard$-power
preserving $\SymMonCat$-functor from $\PresOp\SymMonCat$ to
$\opposite{\parent{\PresKleisliCat\SymMonCat\Monad}}$, and consequently a
$\regcard$-Lawvere $\SymMonCat$-theory which we denote by
$\MonadTheory\Monad$.

Explicitly, $\MonadTheory\Monad$ is given as follows. The objects of
$\LawCat{\MonadTheory\Monad}$, as in any $\regcard$-Lawvere
$\SymMonCat$-theory, are the $\regcard$-presentable objects of
$\SymMonCat$. The hom-objects
$\homset[\LawCat{\MonadTheory\Monad}]\symV\symVv$ are given by
$\homset[\SymMonCat]\symVv{\Monad\symV}$. Identities are given by the
monadic unit $\unit$, and the composition by:
\[
\scriptstyle
\enComp[\enA,\enAv,\enAw] \of
\homset[\SymMonCat]\enAw{\Monad\enAv}\ox\homset[\SymMonCat]\enAv{\Monad\enA}
\xto{\id\ox\Monad}
\homset[\SymMonCat]{\enAw}{\Monad\enAv}\ox\homset[\SymMonCat]{\Monad\enAv}{\Monad^2\enA}
\xto{\enComp^{\SymMonCat}\compose\symmetry}
\homset[\SymMonCat]\enAw{\Monad^2\enA}
\xto{\homset[\SymMonCat]{\enA}{\enMonadMult}}
\homset[\SymMonCat]\enAw{\Monad\enA}
\]
The powers $\power\symV\symVw$ are given as $\SymMonCat$ copowers,
i.e., the tensor product $\symV\ox\symVw$.

Finally, the object map of the $\SymMonCat$-functor
$\LawFunctor{\MonadTheory\Monad}\placeholder$ is the identity map, and
its action on hom-objects is given by post-composing with the unit $\unit$:
\[
\LawFunctor{\MonadTheory\Monad}\placeholder \of
\homset[\PresOp\SymMonCat]\symV\symVv
=
\homset[\SymMonCat]\symVv\symV
\xto{\homset[\SymMonCat]\symVv{\unit_{\symV}}}
\homset[\SymMonCat]\symVv{\Monad\symV}
=
\homset[\LawCat{\MonadTheory\Monad}]\symV\symVv
\]
Thus, we have a $\regcard$-Lawvere $\SymMonCat$-theory.
\end{example}

In the sequel, we will present more syntactic and concrete ways to define
Lawvere theories.

\begin{definition}
  Let $\mL$ be a $\regcard$-Lawvere $\SymMonCat$-Theory and $\richCat$ a
  $\SymMonCat$-category with $\regcard$-powers. An
  \defterm{$\mL$-model $\mModel$ in $\richCat$} is a $\SymMonCat$-functor $\mModel \of
  \LawCat\mL \to \richCat$ preserving all $\regcard$-powers.

  \noindent
  Given two models $\mModel$, $\mModel'$, an \defterm{$\mL$-homomorphism $\mhomo$} is a
  $\SymMonCat$-natural transformation from $\mModel$ to $\mModel'$.

  \noindent
  We denote by $\ModCat\mL\richCat$ the full subcategory of the
  (ordinary) category of $\SymMonCat$-functors from $\LawCat\mL$ to
  $\richCat$ and $\SymMonCat$-natural transformations between them
  consisting of the $\mL$-models.
\end{definition}

Let $\mModel$ be an $\mL$-model. Note that for any $\regcard$-presentable $\symV$:
\[
\mModel(\symV)
\explain={identity-on-objects}
\mModel(\LawFunctor\mL\symV)
\isomorphic
\mModel(\LawFunctor\mL{\symV\ox\oI})
\explain\isomorphic{power preservation}
\mModel(\power\symV{\LawFunctor\mL\oI})
\explain*={identity-on-objects}
\mModel(\power\symV\oI)
\explain\isomorphic{power preservation}
\power\symV{\mModel(\oI)}
\]
Therefore, the object map of $\mModel$ is uniquely determined by its action on
$\oI$. We call the object $\mModel(\oI)$ the \defterm{carrier of
  $\mModel$}. In fact, we have the following  functor:
\begin{mapdef*}
\LawU\mL &\of \ModCat\mL\richCat &\to \ordinary\richCat
\\
\LawU\mL &\of \mModel &\mapsto \mModel(\oI)
\\
\LawU\mL &\of (\mModel\xto{\mhomo}\mModel') &\mapsto (\oI \xto{\mhomo_{\oI}} \homset[\richCat]{\mModel(\oI)}{\mModel'(\oI)})
\end{mapdef*}
Note how we regarded $\ModCat\mL\richCat$ as an ordinary
category. In fact, $\ModCat\mL\richCat$ is a $\SymMonCat$-category~\cite[Definition~3.2]{power:enriched-lawvere-theories}.
To explicitly describe this structure, we need to introduce
enriched functor categories, which requires us to review additional
notions from enriched category theory.
As we will not explicitly use this enriched structure in what follows, we treat
$\ModCat\mL\richCat$ merely as an ordinary category.

Power~\cite{power:enriched-lawvere-theories} generalised the usual
bijection between finitary monads and Lawvere theories to the enriched
case in the following manner:
\begin{theorem}[{\cite[Construction~3.3 and
        Theorems~3.4,4.1]{power:enriched-lawvere-theories}}]\theoremlabel{theory->monad
  construction}
  Let $\SymMonCat$ be a $\regcard$-Power category. For every
  $\regcard$-Lawvere $\SymMonCat$-theory $\mL$, the functor $\LawU\mL \of
  \ModCat\mL\SymMonCat \to \SymMonCat$ is \defterm{monadic}, i.e.,
  $\LawU\mL$ has a left adjoint $\LawF\mL \of \SymMonCat \to
  \ModCat\mL\SymMonCat$, and the Eilenberg-Moore category for the resulting monad $\LawMonad\mL =
  \LawU\mL\LawF\mL$ over $\SymMonCat$ is equivalent to
  $\ModCat\mL\SymMonCat$. Furthermore, $\LawMonad\mL$ is
  $\SymMonCat$-enriched and $\regcard$-ranked.
  We call $\LawF\mL$ the \defterm{free model functor} for $\mL$, and
  $\LawMonad\mL$ the \defterm{free model monad} for $\mL$.
\end{theorem}

Using \theoremref{em
  is lp}, we deduce the following:
\begin{theorem}[\cite{hyland-plotkin-power:sum-and-tensor}]
  For every $\regcard$-Lawvere $\SymMonCat$-theory $\mL$, the category
  of $\mL$-models $\ModCat\mL\SymMonCat$ is locally $\regcard$-presentable.
\end{theorem}
Plotkin and Power, in unpublished work, use this theorem to show
indirectly that $\wCPO$ is locally countably presentable by exhibiting
it as a category of $\mL$-models for a suitable countable Lawvere
$\Pos$-enriched theory.

Next, we follow Power~\cite{power:enriched-lawvere-theories} and construct a category of enriched Lawvere theories:
\begin{definition}
  Let $\mL$, $\mL'$ be two $\regcard$-Lawvere $\SymMonCat$-theories. A
  \defterm{morphism $\LawHomo$ from $\mL$ to $\mL'$} is a $\SymMonCat$
  functor $\LawHomo \of \LawCat \mL \to \LawCat {\mL'}$ that is
  identity-on-objects, $\regcard$-power preserving, and satisfies
  \inlinediagram{lawvere-morphism-01}
  %
  Taking $\regcard$-Lawvere $\SymMonCat$-theories as objects and
  their morphisms with the usual functor composition and identities
  yields an ordinary category $\Lawvere\SymMonCat$.
\end{definition}

\begin{example}
  Let $\MonadMorphism \of \Monad \to \Monad'$ be a $\SymMonCat$-monad
  morphism over a $\regcard$-Power category $\SymMonCat$. We saw in
  \exampleref{enriched kleisli category} that $\MonadMorphism$ induces
  an identity-on-objects, copower preserving $\SymMonCat$-functor $M
  \of \KleisliCat\SymMonCat\Monad \to \KleisliCat\SymMonCat{\Monad'}$.
  Therefore, by restricting to the $\regcard$-presentable objects and
  taking the opposite categories, this $\SymMonCat$-functor restricts
  to a morphism of $\regcard$-Lawvere $\SymMonCat$-theories
  $\MonadTheory{\MonadMorphism}$ from the theory
  $\MonadTheory{\Monad}$ to the theory $\MonadTheory{\Monad'}$,
  presented in \exampleref{monad->theory construction}.

  Denote by  $\EnrichedMonad\SymMonCat$ the (ordinary) category of
  $\SymMonCat$-monads and $\SymMonCat$-monad morphisms. Then the construction $\MonadTheory\placeholder$ is an ordinary functor
  from the category $\EnrichedMonad\SymMonCat$
  to the category $\Lawvere\SymMonCat$.
\end{example}

Denote by $\EnrichedRankedMonad\SymMonCat$ the full subcategory of
$\EnrichedMonad\SymMonCat$ consisting of the $\regcard$-ranked
monads. The functor $\MonadTheory\placeholder$ restricts to a functor
from $\EnrichedRankedMonad\SymMonCat$ to $\Lawvere\SymMonCat$.

\begin{theorem}[{\cite[Theorem~4.3]{power:enriched-lawvere-theories}}]\theoremlabel{theory
  <-> ranked monad}
    Let $\SymMonCat$ be a $\regcard$-Power category. The functor
    $\MonadTheory\placeholder \of \EnrichedRankedMonad\SymMonCat \to
    \Lawvere\SymMonCat$ is an equivalence of categories. Its \defterm{adjoint weak inverse} from $\Lawvere\SymMonCat$ to
    $\EnrichedRankedMonad\SymMonCat$ maps every $\regcard$-Lawvere
    $\SymMonCat$-theory $\mL$ to the monad $\LawMonad\mL$ from
    \theoremref{theory->monad construction}.
    In particular:
    \begin{itemize}
    \item for every $\regcard$-Lawvere $\SymMonCat$-theory $\mL$, we
      have $\MonadTheory{\LawMonad\mL} \isomorphic \mL$; and
    \item for every $\regcard$-ranked $\SymMonCat$-monad $\Monad$ over
      $\SymMonCat$, we have $\LawMonad{\MonadTheory{\Monad}}
      \isomorphic \Monad$.
    \end{itemize}
\end{theorem}
In the following we occasionally need the explicit description of
$\LawMonad\placeholder$ on a theory $\mL$. Therefore, we recount a
known technique to reconstruct, up to isomorphism, the functor
$\LawMonad\placeholder$ from the definition of
$\MonadTheory\placeholder$, using the previous theorem. Denote by
${\counit \of \MonadTheory{\LawMonad\placeholder} \to \id}$ the counit
of the equivalence.


  Given a $\SymMonCat$-category $\richCat$ and
  arrows
  \begin{mapdef*}
  \richConcept\mmorph &\of \oI&\oto\homset[\richCat]\enA\enAv
  \\
  \richConcept\mmorphv&\of\oI&\oto\homset[\richCat]\enAw\enAx
  \end{mapdef*}
  define the composition
  arrow~(cf. Kelly~\cite[Section~1.6]{kelly:basic-concepts-of-enriched-category-theory})
  as follows:
  \begin{align*}
    \homset[\richCat]{\richConcept\mmorph}{\richConcept\mmorphv} \of
    \homset[\richCat]\enAv\enAw \xto{\isomorphic}
    \oI\ox\homset[\richCat]\enAv\enAw\ox\oI
    \xto{\mmorphv\ox\id\ox\mmorph}&
    \homset[\richCat]\enAv\enAw\ox\homset[\richCat]\enAv\enAw\ox\homset[\richCat]\enA\enAv
\\    \xto{\id\ox\enComp}&
    \homset[\richCat]\enAv\enAw\ox\homset[\richCat]\enA\enAw
    \xto\enComp
    \homset[\richCat]\enA\enAx
  \end{align*}
  For a Lawvere theory $\mL$, and any arrow $\mmorph \of \mV \from \mVv$
  in $\Pres\SymMonCat$, we define the arrow:
  \[
  \LawFunctor\mL\mmorph \of \oI \xto{\richConcept\mmorph}
  \homset[\PresOp\SymMonCat]\mV\mVv \xto{\LawFunctor\mL\placeholder}\homset[\LawCat\mL]\mV\mVv
  \]
  Straightforward calculations verify the following identities:
  \begin{subequations}
    \begin{align}\label{id preservation identity}
      \LawFunctor\mL{\id[\mV]} &
      = \enId[\mV]^{\LawCat\mL}
      \\\label{enriched composition identity}
      \homset[\LawCat\mL]{\LawFunctor\mL\mmorph}{\LawFunctor\mL\mmorphw}\compose \LawFunctor\mL{\mmorphv}
      &=
      \LawFunctor\mL{\mmorph\compose\mmorphv\compose\mmorphw}
    \end{align}

      \numbereddiagram[\diagramlabel{enriched composition naturality}]{lawvere-theory-factorisation-theorem-31}
      \numbereddiagram[\diagramlabel{enriched composition op-naturality}]{lawvere-theory-factorisation-theorem-34}
      \numbereddiagram[\diagramlabel{enriched functor composition identity}]{lawvere-theory-factorisation-theorem-35}
  \end{subequations}



Let $\mL$ be any Lawvere theory.

First, we recover the action of $\LawMonad\mL$ on objects. Consider
any $\SymMonCat$-object $\mV$, and a $\regcard$-directed diagram
$\mDiag \of \mdirpos \to \SymMonCat$, whose vertices are
$\regcard$-presentable, for which $\mV = \Colim\mDiag$.  We would like
to calculate as follows:
\begin{align*}
\LawMonad\mL\mV &\explain={$\regcard$-ranked monad}
\Colim\LawMonad\mL\compose \mDiag \isomorphic \Colim (\oI \oto
\LawMonad\mL\mDiag(\placeholder)) =
\Colim\homset[\Pres\SymMonCat]{\oI}{\LawMonad\mL\mDiag(\placeholder})
\\&=
\Colim\homset[\LawCat{\MonadTheory{\LawMonad\mL}}]{\mDiag(\placeholder)}\oI
\explain\isomorphic{\theoremref{theory <-> ranked monad}}
\Colim\homset[\LawCat\mL]{\mDiag(\placeholder)}\oI
\end{align*}
However, we need to take some care with the last two transitions, and clarify
what we mean by $\homset[\LawCat\mL]{\mDiag(\placeholder)}\oI$ when
the diagram is applied to morphisms in $\mdirpos$.

Let $\mL$ be any Lawvere theory. We define an ordinary functor
\[
\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI \of \Pres\SymMonCat \to
\SymMonCat
\] The object map maps every
$\regcard$-presentable object $\mV$ to
$\homset[\LawCat\mL]\mV\oI$. Given any morphism
${\mmorph \of \mV \to \mV'}$ between $\regcard$-presentable objects,
we have a $\SymMonCat$-morphism
$\LawFunctor\mL{\mmorph} \of \oI \to \homset[\LawCat\mL]{\mV'}\mV$.
Thus, we define the morphism map by the enriched
precomposition
with $\LawFunctor\mL{\mmorph}$:
\[
\homset[\LawCat\mL]{\LawFunctor\mL\mmorph}\oI \of
\homset[\LawCat\mL]\mV\oI \xto{}
\homset[\LawCat\mL]{\mV'}\oI
\]
In light of \eqref{id preservation identity} and \eqref{enriched
  composition identity},
$\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI$ is a functor.
For any $\regcard$-presentable object $\mV$, define an isomorphism $\NaturalTransformation_{\mV} \of
\LawMonad\mL\mV \xto{\isomorphic} \homset[\LawCat\mL]{\mV}{\oI}$
by:
\[
\NaturalTransformation_{\mV} \of
\LawMonad\mL\mV
\isomorphic \oI \oto
\LawMonad\mL\mV =
\homset[\Pres\SymMonCat]{\oI}{\LawMonad\mL\mV}
=
\homset[\LawCat{\MonadTheory{\LawMonad\mL}}]{\mV}\oI
\overset\counit\isomorphic
\homset[\LawCat\mL]{\mV}\oI
\]
Because $\counit$ is a morphism of Lawvere theories, it follows by
\diagramref{enriched functor composition identity} that $\counit$ is
natural in $\mV$. Consequently, $\NaturalTransformation$ is a natural
isomorphism between the restriction of $\LawMonad\mL$ to the
$\regcard$-presentable objects, i.e., as a functor
from $\Pres\SymMonCat$ to $\SymMonCat$, and
the functor $\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI$.

Consider any diagram $\mDiag \of \mdirpos \to \SymMonCat$, whose vertices are
$\regcard$-presentable, for which $\mV = \Colim\mDiag$. Let
$\mDiag_{\mL} \of \mdirpos \to \SymMonCat$ be the
diagram
$\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI\compose\mDiag$. Then
precomposing $\NaturalTransformation$ with $\mDiag$ yields an
isomorphism $\NaturalTransformation \of \LawMonad\mL \compose \mDiag
\xto\isomorphic \mDiag_{\mL}$.
Thus we have:
\[
\LawMonad\mL\mV = \LawMonad\mL\Colim\mDiag = \Colim\LawMonad\mL\mDiag
\isomorphic \Colim\mDiag_{\mL}
\]

Similarly, to recover the action of $\LawMonad\mL$ on morphisms, we
use \propositionref{ranked functor extension}. Consider any
$\regcard$-directed diagram $\mDiag \of \mdirpos \to
\SymMonCat^{\ArrowCat}$ whose vertices are all
$\regcard$-presentable. The
naturality of $\NaturalTransformation$ yields a natural isomorphism
$\NaturalTransformation^{\ArrowCat} \of \Monad^{\ArrowCat} \to
\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI^{\ArrowCat}$. Define
$\mDiag_{\mL}$ as the composition
$\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI^{\ArrowCat}\compose\mDiag$. We
then have:
\[
\LawMonad\mL\mmorph
\explain\isomorphic{\propositionref{ranked functor extension}}
\Colim\LawMonad\mL^{\ArrowCat}\compose\mDiag
\isomorphic
\Colim\mDiag_{\mL}^{\ArrowCat}
\]
Thus we recover the object map of $\MonadTheory\placeholder$. Let  $\LawHomo \of \mL \to \mLv$ be a morphism of Lawvere
theories.

Consider any $\SymMonCat$-object $\mV$, and a
$\regcard$-directed diagram $\mDiag \of \mdirpos \to \SymMonCat$,
whose vertices are $\regcard$-presentable, for
which ${\mV = \Colim\mDiag}$. We will invoke \propositionref{ranked
  natural transformation extension} on $\LawMonad\LawHomo$. Thus we
construct $\mDiag_{\LawMonad\LawHomo}$ as in \propositionref{ranked
  natural transformation extension}:
  \begin{align*}
    \mDiag_{\LawMonad\LawHomo}\mi &\of \LawMonad\mL\mDiag\mi
    \xto{(\LawMonad\LawHomo)_{\mDiag\mi}} \LawMonad\mLv\mDiag\mi
    & \mi \inObj \mdirpos
    \\
    \mDiag_{\LawMonad\LawHomo}\mmorph &=
    %
    \pair{\LawMonad\mL\mDiag\mi\xto{\LawMonad\mL\mDiag\mmorph}\LawMonad\mL\mDiag\mj}
         {\LawMonad\mLv\mDiag\mi\xto{\LawMonad\mLv\mDiag\mmorph}\LawMonad\mLv\mDiag\mj}
    %
         & \mmorph \of \mi \to \mj \text{ in $\mdirpos$}
  \end{align*}
The components of
$\LawHomo$ form a natural transformation $\LawHomo_{\mV,\oI} \of
\homset[\LawCat\mL]{\mV}\oI \to
\homset[\LawCat\mLv]{\mV}{\oI}$. Thus we construct the diagram
$\mDiag_{\LawHomo}$ as in \propositionref{ranked natural
  transformation extension}. I.e., for $\mi \inObj \mdirpos$,
  \begin{equation}\label{translation <-> monad morphism diagram construction}
    \mDiag_{\LawHomo}\mi \of \homset[\LawCat\mL]{\mDiag\mi}\oI
    \xto{\LawHomo} \homset[\LawCat\mLv]{\mDiag\mi}\oI
  \end{equation}
  and for $\mmorph \of \mi \to \mj$ in $\mdirpos$:
  \[
  \mDiag_{\LawHomo}\mmorph =
  \pair{\homset[\LawCat\mL ]{\mDiag\mi}\oI\xto{\homset[\LawCat\mL ]{\LawFunctor\mL {\mDiag\mmorph}}\oI}\homset[\LawCat\mL ]{\mDiag\mj}\oI}
       {\homset[\LawCat\mLv]{\mDiag\mi}\oI\xto{\homset[\LawCat\mLv]{\LawFunctor\mLv{\mDiag\mmorph}}\oI}\homset[\LawCat\mLv]{\mDiag\mj}\oI}
  \]
The two isomorphisms
$\NaturalTransformation_{\mL} \of \LawMonad\mL \xto{\isomorphic}
\homset[\LawCat\mL]{\LawFunctor\mL\placeholder}\oI$ and $\NaturalTransformation_{\mLv} \of
\LawMonad\mLv \xto{\isomorphic} \homset[\LawCat\mLv]{\LawFunctor\mLv\placeholder}\oI$ then
induce an isomorphism $\hat\NaturalTransformation$ from $\mDiag_{\LawMonad\LawHomo}$
to $\mDiag_{\LawHomo}$. Therefore:
\[
(\LawMonad{\LawHomo})_{\mV}
\explain\isomorphic{\propositionref{ranked natural transformation extension}}
\Colim\mDiag_{\LawMonad\LawHomo}
\isomorphic
\Colim\mDiag_{\LawHomo}
\]
Thus we reconstructed the functor $\LawMonad\placeholder$.

The category $\Lawvere\SymMonCat$ is locally presentable\footnote{John
Power, private communication, 2012.}, but the
proof lies beyond the scope of this thesis. From its local
presentability we deduce the following.
\begin{theorem}[{for a special case, see Hyland et. al~\cite[Theorem~6]{hyland-plotkin-power:sum-and-tensor}}]
  The category $\Lawvere\SymMonCat$ is cocomplete.
\end{theorem}

Therefore, we also know that $\Lawvere\SymMonCat$ is complete. However, in the
sequel we will make use of the fact that the limits in $\Lawvere\SymMonCat$
are given \emph{componentwise:}
\begin{theorem}\theoremlabel{lawvere theory limits}
  Let $\mDiag \of\DiagramIndex \to \Lawvere\SymMonCat$ be a small
  diagram. Every limiting cone $\pair\mL\Functor$ is uniquely
  determined by a collection of component limiting cones
  $\pair{\homset[\LawCat\mL]\enA\enAv}{\Functor_{\enA,\enAv}}$ for
  the
  component diagrams $\homset[\LawCat{\mDiag(\placeholder)}]\enA\enAv$.

  \noindent
  The remainder of the Lawvere theory structure is given as the unique maps
  satisfying, for all $\enA$, $\enAv$:
  \begin{center}
    \inlinediagram*{lawvere-theory-completeness-proof-02}
  \end{center}
  \inlinediagram{lawvere-theory-completeness-proof-08}
  \inlinediagram{lawvere-theory-completeness-proof-04}
\end{theorem}

\begin{proof}%
  First, assume a choice of limiting cones
  $\pair{\homset[\LawCat\mL]\enA\enAv}{\Functor_{\enA,\enAv}}$ for
    the
  component diagrams
  $\homset[\LawCat{\mDiag(\placeholder)}]\enA\enAv$.
  Straightforward calculation shows that we indeed have, for every
  $\enA$, $\enAv$, cones for each of the diagrams above. For example,
  for every $\mmorph \of \mi \to \mj$, we have
  \inlinediagram{lawvere-theory-completeness-proof-41}
  Thus $\powertupleWithCat{\LawCat\mL}\placeholder$ is uniquely
  defined. Using the fact that
  $\powertupleWithCat{\LawCat{\mDiag\mi}}\placeholder$ are
  isomorphisms,  $\invpowertupleWithCat{\LawCat\mL}\placeholder$ is
  uniquely defined. Similar arguments establish the unique existence
  of the other structure maps.

  \lemmaref{lawvere theory construction} completes the
  construction. From \lemmaref{lawvere theory
    construction}(\ref{lawvere theory construction: categories}) we
  have, for all $\mi$:
  \inlinediagram{lawvere-theory-completeness-proof-03}
  Therefore, as
  $\pair{\homset[\LawCat\mL]\enA\enAv}{\Functor_{\enA,\enAv}}$ is a
  limiting cone, we deduce that:
  \inlinediagram{lawvere-theory-completeness-proof-31}
  Thus $\LawCat\mL$ is a $\SymMonCat$-category, and $\Functor^{\mi}$
  become $\SymMonCat$-functors from $\LawCat\mL$ to
  $\LawCat{\mDiag\mi}$.

  Therefore, we can invoke \lemmaref{lawvere theory
    construction}(\ref{lawvere theory construction: powers}).
  From
  \inlinediagram{lawvere-theory-completeness-proof-05}
  we deduce that $\powertupleWithCat{\LawCat\mL}\placeholder$ is an isomorphism. From
  \inlinediagram{lawvere-theory-completeness-proof-06}
  we deduce, by appeal to universality, that
  $\powertupleWithCat{\LawCat\mL}\placeholder$ is $\SymMonCat$-natural, hence
  $\LawCat\mL$ has the power $\power\symV\enAv$. From
  \inlinediagram{lawvere-theory-completeness-proof-07}
  we deduce that $\Functor^{\mi}$ preserves this power.

  We now invoke  \lemmaref{lawvere theory
    construction}(\ref{lawvere theory construction: functors}) for
  $\Functorw \definedby \LawFunctor\mL\placeholder$, and  deduce that:
  \inlinediagram{lawvere-theory-completeness-proof-09}
  Thus $\LawFunctor\mL\placeholder$ is a $\SymMonCat$-functor from
  $\PresOp\SymMonCat$ to $\LawCat\mL$. This functor preserves all
  $\regcard$-powers, as the following calculation shows
  \inlinediagram{lawvere-theory-completeness-proof-71}

  Thus we have a $\regcard$-Lawvere $\SymMonCat$-theory $\mL$,
  and a Lawvere theory morphism $\Functor^{\mi} \of \mL \to \mDiag\mi$
  for every $\mi$. As this morphism is componentwise a cone, we deduce
  that $\pair\mL\Functor$ is a cone.

  Given any other cone $\pair{\mLv}{\Functorv}$, we get componentwise
  cones $\pair{\homset[\LawCat{\mLv}]\enA\enAv}{\Functorv^{\mi}_{\enA,\enAv}}$,
  hence a unique factorisation $\Functorw_{\enA,\enAv} \of
  \homset[\LawCat{\mLv}]\enA\enAv \to
  \homset[\LawCat\mL]\enA\enAv$. Another invocation of \lemmaref{lawvere theory
    construction}(\ref{lawvere theory construction: functors}) shows
  these form the components of a $\SymMonCat$-functor $\Functorw$, and
  another calculation shows it preserves $\regcard$-powers. The
  componentwise uniqueness shows the uniqueness of this functor, hence
  $\pair\mL\Functor$ is the limiting cone for $\mDiag$.

  Conversely, assume we have a limiting cone $\pair\mL\Functor$. As
  $\SymMonCat$ is complete, for every $\enA$, $\enAv$, we have some
  cone $\homset[\mLv]\enA\enAv$ for
  $\homset[\LawCat{\mDiag\mi}]\enA\enAv$. Hence, by the previous
  direction of the proof, these form a limiting cone
  $\pair\mLv\Functorv$, and we have a unique isomorphism
  $\pair\mL\Functor \isomorphic \pair\mLv\Functorv$. As isomorphisms
  of Lawvere theories are componentwise isomorphisms, each component
  $\pair{\homset[\LawCat\mL]\enA\enAv}{\Functor_{\enA,\enAv}}$ is thus
  a limiting cone. The other commutative diagrams follow from
  $\Functor$ being a cone of Lawvere theories, and their uniqueness
  follows from universality.
\end{proof}