~ppsspp/ppsspp/ffmpeg-upstream

1 by Sérgio Benjamim
FFmpeg 2.7.1 source for ppsspp.
1
/*
2
 * AC-3 DSP functions
3
 * Copyright (c) 2011 Justin Ruggles
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#ifndef AVCODEC_AC3DSP_H
23
#define AVCODEC_AC3DSP_H
24
25
#include <stdint.h>
26
27
/**
28
 * Number of mantissa bits written for each bap value.
29
 * bap values with fractional bits are set to 0 and are calculated separately.
30
 */
31
extern const uint16_t ff_ac3_bap_bits[16];
32
33
typedef struct AC3DSPContext {
34
    /**
35
     * Set each encoded exponent in a block to the minimum of itself and the
36
     * exponents in the same frequency bin of up to 5 following blocks.
37
     * @param exp   pointer to the start of the current block of exponents.
38
     *              constraints: align 16
39
     * @param num_reuse_blocks  number of blocks that will reuse exponents from the current block.
40
     *                          constraints: range 0 to 5
41
     * @param nb_coefs  number of frequency coefficients.
42
     */
43
    void (*ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs);
44
45
    /**
46
     * Calculate the maximum MSB of the absolute value of each element in an
47
     * array of int16_t.
48
     * @param src input array
49
     *            constraints: align 16. values must be in range [-32767,32767]
50
     * @param len number of values in the array
51
     *            constraints: multiple of 16 greater than 0
52
     * @return    a value with the same MSB as max(abs(src[]))
53
     */
54
    int (*ac3_max_msb_abs_int16)(const int16_t *src, int len);
55
56
    /**
57
     * Left-shift each value in an array of int16_t by a specified amount.
58
     * @param src    input array
59
     *               constraints: align 16
60
     * @param len    number of values in the array
61
     *               constraints: multiple of 32 greater than 0
62
     * @param shift  left shift amount
63
     *               constraints: range [0,15]
64
     */
65
    void (*ac3_lshift_int16)(int16_t *src, unsigned int len, unsigned int shift);
66
67
    /**
68
     * Right-shift each value in an array of int32_t by a specified amount.
69
     * @param src    input array
70
     *               constraints: align 16
71
     * @param len    number of values in the array
72
     *               constraints: multiple of 16 greater than 0
73
     * @param shift  right shift amount
74
     *               constraints: range [0,31]
75
     */
76
    void (*ac3_rshift_int32)(int32_t *src, unsigned int len, unsigned int shift);
77
78
    /**
79
     * Convert an array of float in range [-1.0,1.0] to int32_t with range
80
     * [-(1<<24),(1<<24)]
81
     *
82
     * @param dst destination array of int32_t.
83
     *            constraints: 16-byte aligned
84
     * @param src source array of float.
85
     *            constraints: 16-byte aligned
86
     * @param len number of elements to convert.
87
     *            constraints: multiple of 32 greater than zero
88
     */
89
    void (*float_to_fixed24)(int32_t *dst, const float *src, unsigned int len);
90
91
    /**
92
     * Calculate bit allocation pointers.
93
     * The SNR is the difference between the masking curve and the signal.  AC-3
94
     * uses this value for each frequency bin to allocate bits.  The snroffset
95
     * parameter is a global adjustment to the SNR for all bins.
96
     *
97
     * @param[in]  mask       masking curve
98
     * @param[in]  psd        signal power for each frequency bin
99
     * @param[in]  start      starting bin location
100
     * @param[in]  end        ending bin location
101
     * @param[in]  snr_offset SNR adjustment
102
     * @param[in]  floor      noise floor
103
     * @param[in]  bap_tab    look-up table for bit allocation pointers
104
     * @param[out] bap        bit allocation pointers
105
     */
106
    void (*bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end,
107
                               int snr_offset, int floor,
108
                               const uint8_t *bap_tab, uint8_t *bap);
109
110
    /**
111
     * Update bap counts using the supplied array of bap.
112
     *
113
     * @param[out] mant_cnt   bap counts for 1 block
114
     * @param[in]  bap        array of bap, pointing to start coef bin
115
     * @param[in]  len        number of elements to process
116
     */
117
    void (*update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len);
118
119
    /**
120
     * Calculate the number of bits needed to encode a set of mantissas.
121
     *
122
     * @param[in] mant_cnt    bap counts for all blocks
123
     * @return                mantissa bit count
124
     */
125
    int (*compute_mantissa_size)(uint16_t mant_cnt[6][16]);
126
127
    void (*extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs);
128
129
    void (*sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0,
130
                                       const int32_t *coef1, int len);
131
132
    void (*sum_square_butterfly_float)(float sum[4], const float *coef0,
133
                                       const float *coef1, int len);
134
135
    void (*downmix)(float **samples, float (*matrix)[2], int out_ch,
136
                    int in_ch, int len);
137
138
    void (*downmix_fixed)(int32_t **samples, int16_t (*matrix)[2], int out_ch,
139
                          int in_ch, int len);
140
141
    /**
142
     * Apply symmetric window in 16-bit fixed-point.
143
     * @param output destination array
144
     *               constraints: 16-byte aligned
145
     * @param input  source array
146
     *               constraints: 16-byte aligned
147
     * @param window window array
148
     *               constraints: 16-byte aligned, at least len/2 elements
149
     * @param len    full window length
150
     *               constraints: multiple of ? greater than zero
151
     */
152
    void (*apply_window_int16)(int16_t *output, const int16_t *input,
153
                               const int16_t *window, unsigned int len);
154
} AC3DSPContext;
155
156
void ff_ac3dsp_init    (AC3DSPContext *c, int bit_exact);
157
void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact);
158
void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact);
159
void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact);
160
161
#endif /* AVCODEC_AC3DSP_H */