~reducedmodelling/fluidity/ROM_Non-intrusive-ann

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
!    Copyright (C) 2006 Imperial College London and others.
!    
!    Please see the AUTHORS file in the main source directory for a full list
!    of copyright holders.
!
!    Prof. C Pain
!    Applied Modelling and Computation Group
!    Department of Earth Science and Engineering
!    Imperial College London
!
!    amcgsoftware@imperial.ac.uk
!    
!    This library is free software; you can redistribute it and/or
!    modify it under the terms of the GNU Lesser General Public
!    License as published by the Free Software Foundation,
!    version 2.1 of the License.
!
!    This library is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
!    Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public
!    License along with this library; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
!    USA

#include "fdebug.h"

module diagnostic_fields_matrices
  !!< A module to link to diagnostic variable calculations.

  use global_parameters, only:FIELD_NAME_LEN 
  use fields
  use sparse_matrices_fields
  use field_derivatives
  use state_module
  use futils
  use fetools
  use spud
  use parallel_fields, only: zero_non_owned
  use divergence_matrix_cv, only: assemble_divergence_matrix_cv
  use divergence_matrix_cg, only: assemble_divergence_matrix_cg
  use gradient_matrix_cg, only: assemble_gradient_matrix_cg
  use parallel_tools
  use sparsity_patterns, only: make_sparsity
  use state_fields_module
  use solvers
  use transform_elements
  use sparse_tools
  use sparsity_patterns_meshes
  use state_matrices_module
  use halos

  implicit none

  private
  
  public :: calculate_divergence_cv, calculate_divergence_fe, &
            calculate_div_t_cv, calculate_div_t_fe, &
            calculate_grad_fe, calculate_sum_velocity_divergence

contains

  subroutine calculate_divergence_cv(state, div)

      type(state_type), intent(inout) :: state
      type(scalar_field), intent(inout) :: div

      type(vector_field), pointer :: field, x

      type(block_csr_matrix), pointer :: CT_m

      character(len=FIELD_NAME_LEN) :: field_name

      type(scalar_field), pointer :: cvmass
      type(scalar_field) :: inverse_cvmass
      type(scalar_field) :: ctfield, ct_rhs

      call get_option(trim(div%option_path)//"/diagnostic/field_name", field_name)

      field=>extract_vector_field(state, trim(field_name))
      x=>extract_vector_field(state, "Coordinate")

      call allocate(ctfield, div%mesh, name="CTField")
      call allocate(ct_rhs, div%mesh, name="CTRHS")

      cvmass => get_cv_mass(state, div%mesh)

      CT_m => get_divergence_matrix_cv(state, test_mesh=div%mesh, field=field, div_rhs=ct_rhs)

      call mult(ctfield, CT_m, field)
      call addto(ctfield, ct_rhs, -1.0)

      call allocate(inverse_cvmass, cvmass%mesh, "InverseCVMass")
      call invert(cvmass, inverse_cvmass)
      call set(div, ctfield)
      call scale(div, inverse_cvmass)
      
      call deallocate(inverse_cvmass)
      call deallocate(ctfield)
      call deallocate(ct_rhs)

      call halo_update(div)

  end subroutine calculate_divergence_cv

  subroutine calculate_div_t_cv(state, grad)

      type(state_type), intent(inout) :: state
      type(vector_field), intent(inout) :: grad

      type(scalar_field), pointer :: field

      type(block_csr_matrix), pointer :: CT_m

      character(len=FIELD_NAME_LEN) :: field_name

      type(scalar_field), pointer :: lumped_mass
      type(scalar_field) :: inverse_lumped_mass
      type(csr_matrix), pointer :: mass, inverse_mass
      type(vector_field) :: cfield
      type(scalar_field) :: mag, inverse_mag

      logical :: lump_mass, dg, normalise

      call get_option(trim(grad%option_path)//"/diagnostic/field_name", field_name)
      
      dg = (continuity(grad)<0)
      lump_mass = have_option(trim(grad%option_path)//&
                  &"/diagnostic/lump_mass_matrix")
      normalise = have_option(trim(grad%option_path)//&
                  &"/diagnostic/normalise")
      
      field=>extract_scalar_field(state, trim(field_name))

      call allocate(cfield, grad%dim, grad%mesh, name="CField")

      CT_m => get_divergence_matrix_cv(state, test_mesh=field%mesh, field=grad, exclude_boundaries=.true.)

      call mult_T(cfield, CT_m, field)
      call scale(cfield, -1.0)
      
      call zero(grad)
      
      if(lump_mass) then
        
        lumped_mass => get_lumped_mass(state, grad%mesh)
        call allocate(inverse_lumped_mass, lumped_mass%mesh, "InverseLumpedMass")
        
        call invert(lumped_mass, inverse_lumped_mass)
        call set(grad, cfield)
        call scale(grad, inverse_lumped_mass)
       
        call deallocate(inverse_lumped_mass)
      else if(dg) then
        inverse_mass => get_dg_inverse_mass(state, grad%mesh)
        call mult(grad, inverse_mass, cfield)
      else
        mass => get_mass_matrix(state, grad%mesh)
        call petsc_solve(grad, mass, cfield)
      end if

      if(normalise) then
        mag = magnitude(grad)
        call allocate(inverse_mag, mag%mesh, "InverseMagnitude")
        
        call invert(mag, inverse_mag, tolerance=epsilon(0.0))
        call scale(grad, inverse_mag)
        
        call deallocate(inverse_mag)
        call deallocate(mag)
      end if
      
      call deallocate(cfield)

  end subroutine calculate_div_t_cv

  subroutine calculate_divergence_fe(state, div)

      type(state_type), intent(inout) :: state
      type(scalar_field), intent(inout) :: div

      type(vector_field), pointer :: field, x

      type(csr_sparsity) :: divergence_sparsity
      type(block_csr_matrix) :: CT_m

      character(len=FIELD_NAME_LEN) :: field_name

      type(csr_sparsity) :: mass_sparsity
      type(csr_matrix) :: mass
      type(scalar_field) :: ctfield, ct_rhs

      call get_option(trim(div%option_path)//"/diagnostic/field_name", field_name)

      field=>extract_vector_field(state, trim(field_name))
      x=>extract_vector_field(state, "Coordinate")

      call allocate(ctfield, div%mesh, name="CTField")

      divergence_sparsity=make_sparsity(div%mesh, field%mesh, "DivergenceSparsity")
      call allocate(CT_m, divergence_sparsity, (/1, field%dim/), name="DivergenceMatrix" )
      call allocate(ct_rhs, div%mesh, name="CTRHS")


      mass_sparsity=make_sparsity(div%mesh, div%mesh, "MassSparsity")
      call allocate(mass, mass_sparsity, name="MassMatrix")
      call zero(mass)

      call assemble_divergence_matrix_cg(CT_m, state, ct_rhs=ct_rhs, &
                                         test_mesh=div%mesh, field=field, &
                                         option_path=div%option_path, div_mass=mass)

      call mult(ctfield, CT_m, field)
      call addto(ctfield, ct_rhs, -1.0)

      call zero(div)
      call petsc_solve(div, mass, ctfield)

      call deallocate(CT_m)
      call deallocate(ct_rhs)
      call deallocate(ctfield)
      call deallocate(divergence_sparsity)
      call deallocate(mass_sparsity)
      call deallocate(mass)

  end subroutine calculate_divergence_fe

  subroutine calculate_div_t_fe(state, grad)

      type(state_type), intent(inout) :: state
      type(vector_field), intent(inout) :: grad

      type(scalar_field), pointer :: field

      type(csr_sparsity) :: divergence_sparsity
      type(block_csr_matrix) :: CT_m

      character(len=FIELD_NAME_LEN) :: field_name

      type(csr_sparsity) :: mass_sparsity
      type(csr_matrix) :: mass
      type(vector_field) :: cfield


      call get_option(trim(grad%option_path)//"/diagnostic/field_name", field_name)

      field=>extract_scalar_field(state, trim(field_name))

      call allocate(cfield, grad%dim, grad%mesh, name="CField")

      ! Sparsity of C^T - the transpose of the gradient operator.
      divergence_sparsity=make_sparsity(field%mesh, grad%mesh, "DivergenceSparsity")
      call allocate(CT_m, divergence_sparsity, (/1, grad%dim/), name="DivergenceMatrix" )

      mass_sparsity=make_sparsity(grad%mesh, grad%mesh, "MassSparsity")
      call allocate(mass, mass_sparsity, name="MassMatrix")

      call assemble_divergence_matrix_cg(CT_m, state, &
                                         test_mesh=field%mesh, field=grad, &
                                         grad_mass=mass)

      call mult_T(cfield, CT_m, field)
      call scale(cfield, -1.0)

      call zero(grad)
      call petsc_solve(grad, mass, cfield)

      call deallocate(divergence_sparsity)
      call deallocate(CT_m)
      call deallocate(mass_sparsity)
      call deallocate(mass)
      call deallocate(cfield)

  end subroutine calculate_div_t_fe

  subroutine calculate_grad_fe(state, grad)

      type(state_type), intent(inout) :: state
      type(vector_field), intent(inout) :: grad

      type(scalar_field), pointer :: field

      type(csr_sparsity) :: gradient_sparsity
      type(block_csr_matrix) :: C_m

      character(len=FIELD_NAME_LEN) :: field_name

      type(csr_sparsity) :: mass_sparsity
      type(csr_matrix) :: mass
      type(vector_field) :: cfield


      call get_option(trim(grad%option_path)//"/diagnostic/field_name", field_name)

      field=>extract_scalar_field(state, trim(field_name))

      call allocate(cfield, grad%dim, grad%mesh, name="CField")

      ! Sparsity of C^T - the transpose of the gradient operator.
      gradient_sparsity=make_sparsity(grad%mesh, field%mesh, "GradientSparsity")
      call allocate(C_m, gradient_sparsity, (/grad%dim, 1/), name="GradientMatrix" )

      mass_sparsity=make_sparsity(grad%mesh, grad%mesh, "MassSparsity")
      call allocate(mass, mass_sparsity, name="MassMatrix")

      call assemble_gradient_matrix_cg(C_m, state, &
                                         test_mesh=grad%mesh, field=field, &
                                         option_path=trim(grad%option_path), &
                                         grad_mass=mass)

      call mult(cfield, C_m, field)

      call zero(grad)
      call petsc_solve(grad, mass, cfield)

      call deallocate(gradient_sparsity)
      call deallocate(C_m)
      call deallocate(mass_sparsity)
      call deallocate(mass)
      call deallocate(cfield)

  end subroutine calculate_grad_fe


  subroutine calculate_sum_velocity_divergence(state, sum_velocity_divergence)
      !!< Calculates \sum{div(vfrac*u)}, where we sum over each prognostic velocity 
      !!< field (i.e. each phase). Used in multiphase flow simulations.

      type(state_type), dimension(:), intent(inout) :: state
      type(scalar_field), pointer :: sum_velocity_divergence

      ! Local variables
      type(vector_field), pointer :: u, x
      integer :: i, stat

      type(csr_sparsity) :: divergence_sparsity
      type(block_csr_matrix) :: ct_m

      type(csr_sparsity) :: mass_sparsity
      type(csr_matrix) :: mass
      type(scalar_field) :: ctfield, ct_rhs, temp
      type(scalar_field), pointer :: cv_mass
      
      logical :: test_with_cv_dual

      ewrite(1,*) 'Entering calculate_sum_velocity_divergence'
         
      ! Are we testing the divergence with the CV dual mesh
      test_with_cv_dual = have_option(trim(sum_velocity_divergence%option_path)//'/diagnostic/test_with_cv_dual')   

      ! Allocate memory for matrices and sparsity patterns
      call allocate(ctfield, sum_velocity_divergence%mesh, name="CTField")
      call zero (ctfield)
      call allocate(temp, sum_velocity_divergence%mesh, name="Temp")
      
      ! Require a mass matrix type if not CV tested equation.
      if (.not. test_with_cv_dual) then
         mass_sparsity=make_sparsity(sum_velocity_divergence%mesh, sum_velocity_divergence%mesh, "MassSparsity")
         call allocate(mass, mass_sparsity, name="MassMatrix")
         call zero(mass)      
      end if 
      
      ! Sum up over the div's
      do i = 1, size(state)
         u => extract_vector_field(state(i), "Velocity", stat)

         ! If there's no velocity then cycle
         if(stat/=0) cycle
         ! If this is an aliased velocity then cycle
         if(aliased(u)) cycle
         ! If the velocity isn't prognostic then cycle
         if(.not.have_option(trim(u%option_path)//"/prognostic")) cycle

         ! If velocity field is prognostic, begin calculations below
         x => extract_vector_field(state(i), "Coordinate")

         ! Allocate sparsity patterns, C^T matrix and C^T RHS for current state
         divergence_sparsity=make_sparsity(sum_velocity_divergence%mesh, u%mesh, "DivergenceSparsity")
         call allocate(ct_m, divergence_sparsity, (/1, u%dim/), name="DivergenceMatrix" )
         call allocate(ct_rhs, sum_velocity_divergence%mesh, name="CTRHS")
         
         ! Reassemble C^T matrix here
         if (test_with_cv_dual) then
            call assemble_divergence_matrix_cv(ct_m, state(i), ct_rhs=ct_rhs, &
                              test_mesh=sum_velocity_divergence%mesh, field=u)
         else
            if(i==1) then ! Construct the mass matrix (just do this once)                      
               call assemble_divergence_matrix_cg(ct_m, state(i), ct_rhs=ct_rhs, &
                                 test_mesh=sum_velocity_divergence%mesh, field=u, &
                                 option_path=sum_velocity_divergence%option_path, div_mass=mass)
            else
               call assemble_divergence_matrix_cg(ct_m, state(i), ct_rhs=ct_rhs, &
                                 test_mesh=sum_velocity_divergence%mesh, field=u, &
                                 option_path=sum_velocity_divergence%option_path)
            end if            
         end if

         ! Construct the linear system of equations to solve for \sum{div(vfrac*u)}
         call zero(temp)
         call mult(temp, ct_m, u)
         call addto(temp, ct_rhs, -1.0)

         ! Now add it to the sum
         call addto(ctfield, temp)

         call deallocate(ct_m)
         call deallocate(ct_rhs)
         call deallocate(divergence_sparsity)

      end do

      ! Solve for sum_velocity_divergence ( = \sum{div(vfrac*u)} )            
      if (test_with_cv_dual) then
         ! get the cv mass matrix
         cv_mass => get_cv_mass(state(1), sum_velocity_divergence%mesh)
         call set(sum_velocity_divergence, cv_mass)
         call invert(sum_velocity_divergence)
         call scale(sum_velocity_divergence, ctfield)
      else
         call zero(sum_velocity_divergence)
         call petsc_solve(sum_velocity_divergence, mass, ctfield)
      end if 
      
      ! Deallocate memory
      call deallocate(ctfield)
      call deallocate(temp)
      
      if (.not. test_with_cv_dual) then
         call deallocate(mass_sparsity)
         call deallocate(mass)      
      end if 

      ewrite(1,*) 'Exiting calculate_sum_velocity_divergence'
         
  end subroutine calculate_sum_velocity_divergence

end module diagnostic_fields_matrices