~reducedmodelling/fluidity/ROM_Non-intrusive-ann

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
!    Copyright (C) 2006 Imperial College London and others.
!
!    Please see the AUTHORS file in the main source directory for a full list
!    of copyright holders.
!
!    Prof. C Pain
!    Applied Modelling and Computation Group
!    Department of Earth Science and Engineering
!    Imperial College London
!
!    amcgsoftware@imperial.ac.uk
!
!    This library is free software; you can redistribute it and/or
!    modify it under the terms of the GNU Lesser General Public
!    License as published by the Free Software Foundation,
!    version 2.1 of the License.
!
!    This library is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
!    Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public
!    License along with this library; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
!    USA

#include "fdebug.h"

module foam_flow_module
  ! This module contains the options used to solve Laplace's equation for arbitrary geometries and BC's in Fluidity and to calculate the foam velocity
  use fldebug
  use state_module
  use fields
  use spud
  use field_options
  use FEtools
  use elements
  use sparse_tools
  use vtk_interfaces
  use transform_elements
  use sparsity_patterns
  use solvers
  use boundary_conditions
  use quadrature
  use global_parameters, only : OPTION_PATH_LEN, FIELD_NAME_LEN
  use petsc_solve_state_module
  use sparsity_patterns_meshes
  use sparse_matrices_fields
  use vector_tools
  use field_derivatives
  use Weak_BCs
  use state_matrices_module
  use gradient_matrix_cg, only: assemble_gradient_matrix_cg



  implicit none

  private
  public :: calculate_potential_flow, calculate_foam_velocity

  character(len = *), parameter, public :: phi_name = "FoamVelocityPotential"
  character(len = *), parameter, public :: phi_sparsity_name = "FoamVelocityPotentialSparsity"
  character(len = *), parameter, public :: phi_rhs_name = "FoamVelocityPotentialRhs"
  character(len = *), parameter, public :: phi_m_name = "FoamVelocityPotentialMatrix"
  character(len = *), parameter, public :: foamvel_name = "FoamVelocity"

contains

  subroutine calculate_potential_flow(state, phi)

    type(state_type), intent(inout) :: state
    type(scalar_field), optional, intent(out) :: phi
    type(csr_matrix) :: phi_m
    type(scalar_field) :: phi_rhs


    ! Step 1: Allocate and insert objects into state / extract objects from
    ! state and take references
    call initialise_potential_flow(phi, phi_rhs, state, phi_m)


    ! Step 2: Assemble
    call assemble_potential_flow_cg(phi_rhs, state, phi_m, phi)

    ! Step 3: Solve
    call solve_potential_flow(phi_m, phi_rhs, phi, state)

    ! Step 4: Drop references
    call deallocate(phi_m)
    call deallocate(phi_rhs)


  end subroutine calculate_potential_flow


  subroutine initialise_potential_flow(phi, phi_rhs, state, phi_m)
    ! Allocate / extract FoamVelocityPotential variables. phi, phi_m and
    ! phi_rhs all take references in this routine and, if new objects are
    ! constructed, are inserted into state.

    type(scalar_field), target, intent(out) :: phi
    type(csr_matrix), intent(out) :: phi_m
    type(scalar_field), intent(out) :: phi_rhs
    type(state_type), intent(inout) :: state

    type(csr_sparsity), pointer :: phi_sparsity => null()

    phi = extract_scalar_field(state, phi_name)

    ! Matrix sparsity
    phi_sparsity => get_csr_sparsity_firstorder(state, phi%mesh, phi%mesh)
    call allocate(phi_m, phi_sparsity, name = phi_m_name)

    ! RHS
    call allocate(phi_rhs, phi%mesh, phi_rhs_name)

  end subroutine initialise_potential_flow


  subroutine assemble_potential_flow_cg(phi_rhs, state, phi_m, phi)
    ! Assemble Laplace's equation for FoamVelocityPotential
    type(scalar_field), target, intent(inout) :: phi_rhs
    type(state_type), intent(inout) :: state
    type(csr_matrix), optional, intent(inout) :: phi_m
    type(scalar_field), intent(inout) :: phi
    type(scalar_field) :: foamvelocitypotential_bc
    integer, dimension(:), allocatable :: foamvelocitypotential_bc_type
    integer :: ele, sele
    type(vector_field), pointer :: positions => null()

    ewrite(1, *) "In assemble_potential_flow_cg"

    positions => extract_vector_field(state, "Coordinate")

    call zero(phi_m)

    call zero(phi_rhs)


    ! element loop
    element_loop: do ele=1, element_count(phi)
      call assemble_potential_flow_element_cg(ele, phi_m, phi_rhs, positions, phi)
    end do element_loop
    ! end element loop

      allocate(foamvelocitypotential_bc_type(surface_element_count(phi)))
      call get_entire_boundary_condition(phi, (/ "neumann       "/), foamvelocitypotential_bc, foamvelocitypotential_bc_type)


    ! surface element loop
    surface_element_loop: do sele=1, surface_element_count(phi)
      ele = face_ele(positions, sele)
      call assemble_potential_flow_surface_element_cg(sele, ele, positions, &
        & phi_rhs, phi, foamvelocitypotential_bc)
    end do surface_element_loop
    ! end surface element loop

      call deallocate(foamvelocitypotential_bc)

    ! Set a reference node, zero at the first node of the first process
    ! (should be called by all processes though)
    ! This needs to be done every time, to zero the rhs
    call set_reference_node(phi_m, 1, phi_rhs, 0.0)

    ewrite_minmax(phi_rhs)

    ewrite(1, *) "Exiting assemble_potential_flow_cg"

  end subroutine assemble_potential_flow_cg


  subroutine assemble_potential_flow_element_cg(ele, phi_m, phi_rhs, positions, phi)
    !!< Assemble the element matrix contributions
    integer, intent(in) :: ele
    type(vector_field), intent(in) :: positions
    type(scalar_field), intent(in) :: phi
    type(csr_matrix), optional, intent(inout) :: phi_m
    type(scalar_field), intent(inout) :: phi_rhs

    ! Node numbers of phi element:
    integer, dimension(:), pointer :: phi_ele
    ! Locations of nodes:
    real, dimension(positions%dim, ele_loc(positions, ele)) :: x_val
    ! Shape functions:
    type(element_type), pointer :: phi_shape, x_shape
    ! Coordinate transform*quadrature weights :
    real, dimension(ele_ngi(positions, ele)) :: detwei

    ! Locations of quadrature points
    real, dimension(positions%dim,ele_ngi(positions,ele)) :: x_quad

    !Derivatives of shape function:
    real, dimension(ele_loc(phi, ele), ele_ngi(phi, ele), positions%dim) :: dphi_t

    ! Local Laplacian matrix
    real, dimension(ele_loc(phi, ele), ele_loc(phi, ele)) :: phi_mat

    phi_ele => ele_nodes(phi, ele)
    phi_shape=>ele_shape(phi, ele)

    x_shape=> ele_shape(positions, ele)
    ! Location of local vertices
    x_val = ele_val(positions,ele)

    ! Locations of quadrature points
    x_quad=ele_val_at_quad(positions, ele)


    ! Transform derivatives and weights into physical space
    call transform_to_physical(positions, ele, phi_shape, &
      & dshape = dphi_t, detwei = detwei)

    ! Local assembly:
    ! /
    ! | grad N_A dot grad N_B dV
    ! /
    phi_mat=dshape_dot_dshape(dphi_t, dphi_t, detwei)

    ! Global assembly:
    call addto(phi_m, phi_ele, phi_ele, phi_mat)

    ! The rhs is always zero for Laplace's equation
    call zero(phi_rhs)

  end subroutine assemble_potential_flow_element_cg


  subroutine assemble_potential_flow_surface_element_cg(sele, ele, positions, &
        & phi_rhs, phi, foamvelocitypotential_bc)
    integer, intent(in) :: sele, ele
    type(scalar_field), intent(inout) :: phi_rhs

    type(vector_field), intent(in) :: positions
    type(scalar_field), intent(in) :: phi

    type(scalar_field), intent(in) :: foamvelocitypotential_bc

    integer, dimension(face_loc(phi, sele)) :: phi_nodes_bdy
    real, dimension(positions%dim, ele_loc(positions, ele)) :: x_ele
    real, dimension(positions%dim, face_loc(positions, sele)) :: x_ele_bdy
    type(element_type), pointer :: x_shape, x_shape_bdy, phi_shape

    real, dimension(face_ngi(positions, sele)) :: detwei_bdy
    real, dimension(face_loc(phi, sele), face_loc(phi, sele)) :: face_mat

    x_ele = ele_val(positions, ele)
    x_ele_bdy = face_val(positions, sele)

    x_shape=> ele_shape(positions, ele)
    x_shape_bdy=>face_shape(positions, sele)


    ! Transform derivatives and weights into physical space (calculate quadrature weights)
    call transform_facet_to_physical(positions, sele, detwei_f=detwei_bdy)


    ! integral over the face of the form \int N_i N_j
    ! where N_i and N_j are shape functions of phi
    phi_shape=> face_shape(phi, sele)
    face_mat=shape_shape(phi_shape, phi_shape, detwei_bdy)

    ! global node numbers of nodes of this face
    phi_nodes_bdy = face_global_nodes(phi, sele)

    ! global node numbers of nodes of this face in phi%mesh
    ! this implements a Neumann bc with values given by foamvelocitypotential_bc
    call addto(phi_rhs, phi_nodes_bdy, matmul(face_mat, ele_val(foamvelocitypotential_bc, sele) ))

  end subroutine assemble_potential_flow_surface_element_cg



  subroutine solve_potential_flow(phi_m, phi_rhs, phi, state)

    type(csr_matrix), intent(in) :: phi_m
    type(scalar_field), intent(in) :: phi_rhs
    type(scalar_field), intent(inout) :: phi
    type(state_type), intent(inout) :: state

    call petsc_solve(phi, phi_m, phi_rhs, state)

    ewrite_minmax(phi)

  end subroutine solve_potential_flow



  subroutine calculate_foam_velocity(state, foamvel)

    type(state_type), intent(inout) :: state
    type(vector_field), pointer, intent(out) :: foamvel
    type(vector_field), pointer :: liquidvelocity
    type(scalar_field), pointer :: field
    type(csr_sparsity) :: gradient_sparsity
    type(block_csr_matrix) :: C_m
    type(csr_sparsity) :: mass_sparsity
    type(csr_matrix) :: mass
    type(vector_field) :: cfield

    integer :: i, stat
    
    foamvel => extract_vector_field(state, foamvel_name)
    if (have_option(trim(foamvel%option_path)//'/diagnostic')) then
      field=>extract_scalar_field(state, "FoamVelocityPotential")

      !The following does the same as the subroutine calculate_grad_fe in Diagnostic_Fields_Matrices.F90
      call allocate(cfield, foamvel%dim, foamvel%mesh, name="CField")

      ! Sparsity of C^T - the transpose of the gradient operator.
      gradient_sparsity=make_sparsity(foamvel%mesh, field%mesh, "GradientSparsity")
      call allocate(C_m, gradient_sparsity, (/foamvel%dim, 1/), name="GradientMatrix" )

      mass_sparsity=make_sparsity(foamvel%mesh, foamvel%mesh, "MassSparsity")
      call allocate(mass, mass_sparsity, name="MassMatrix")

      call assemble_gradient_matrix_cg(C_m, state, &
                                         test_mesh=foamvel%mesh, field=field, &
                                         option_path=trim(foamvel%option_path), &
                                         grad_mass=mass)

      call mult(cfield, C_m, field)

      call zero(foamvel)
      call petsc_solve(foamvel, mass, cfield)

      call deallocate(gradient_sparsity)
      call deallocate(C_m)
      call deallocate(mass_sparsity)
      call deallocate(mass)
      call deallocate(cfield)

      !Changing the sign since foamvel= -grad phi
      do i=1, node_count(foamvel)
        call set(foamvel, i, ( -node_val(foamvel, i) ) )
      enddo

      ewrite_minmax(foamvel)

    endif



  end subroutine calculate_foam_velocity



end module foam_flow_module