~reducedmodelling/fluidity/ROM_Non-intrusive-ann

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
!    Copyright (C) 2006 Imperial College London and others.
!
!    Please see the AUTHORS file in the main source directory for a full list
!    of copyright holders.
!
!    Prof. C Pain
!    Applied Modelling and Computation Group
!    Department of Earth Science and Engineering
!    Imperial College London
!
!    amcgsoftware@imperial.ac.uk
!
!    This library is free software; you can redistribute it and/or
!    modify it under the terms of the GNU Lesser General Public
!    License as published by the Free Software Foundation,
!    version 2.1 of the License.
!
!    This library is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty pod_of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
!    Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public
!    License along with this library; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
!    USA

#include "fdebug.h"

  module reducedmodel_momentum_equation_wrapper

    use momentum_diagnostic_fields, only: calculate_momentum_diagnostics
    use boundary_conditions
    use boundary_conditions_from_options
    use Profiler
    use reduced_model_runtime
    use momentum_equation
    use multiphase_module
    use reduced_projection
!    use vtk_interfaces

    implicit none

    private
    public :: momentum_loop

  contains

    subroutine momentum_loop(state, at_first_timestep, timestep, total_timestep, POD_state, POD_state_deim,its,if_optimal)
      !!< Construct and solve the momentum and continuity equations using
      !!< a continuous galerkin discretisation.

      ! an array of buckets full of fields
      ! the whole array is needed for the sake of multimaterial assembly
      type(state_type), dimension(:), intent(inout) :: state
      logical, intent(in) :: at_first_timestep
      logical, optional, intent(in):: if_optimal
      type(state_type), dimension(:,:,:) :: POD_state
      type(state_type), dimension(:) :: POD_state_deim
      integer, intent(in) :: timestep, total_timestep
      real :: dt
      type(vector_field), pointer :: u
      integer :: istate, stat

      !! True if the momentum equation should be solved with the reduced model.
      logical :: reduced_model
      !!for reduced model
      type(vector_field), pointer :: snapmean_velocity
      type(scalar_field), pointer :: snapmean_pressure
      type(vector_field), pointer :: POD_velocity, nonlinear_velocity, velocity, old_velocity
      type(scalar_field), pointer :: POD_pressure, pressure
      type(vector_field) :: perturb_basis_u, velocity_backup
      type(scalar_field) :: perturb_basis_p, pressure_backup
      integer :: d, i, j
      real :: eps
      logical :: snapmean
      integer, dimension(:), pointer :: surface_node_list
      type(vector_field), pointer :: surface_field_velocity
      type(scalar_field), pointer :: surface_field_pressure,p
      integer :: b, node
      !nonlinear_iteration_loop
      integer :: nonlinear_iterations
      integer,  intent(in) :: its

      ! An array of submaterials of the current phase in state(istate).
      type(state_type), dimension(:), pointer :: submaterials
      ! The index of the current phase (i.e. state(istate)) in the submaterials array
      integer :: submaterials_istate
      real, dimension(:), allocatable :: pod_coef_obv
      real :: finish_time,current_time


      ewrite(1,*) 'Entering momentum_loop'

      ! this loop is just about the limit of multiphase support in this
      ! version of the momentum solve so far!
      call profiler_tic("momentum_loop")
      state_loop: do istate = 1, size(state)

        ! get the velocity
        u=>extract_vector_field(state(istate), "Velocity", stat)
        p=> extract_scalar_field(state(1), "Pressure")
        ! if there's no velocity then cycle
        if(stat/=0) cycle
        ! if this is an aliased velocity then cycle
        if(aliased(u)) cycle
        ! if the velocity isn't prognostic then cycle
        if(.not.have_option(trim(u%option_path)//"/prognostic")) cycle

        if(have_option(trim(u%option_path)//"/prognostic/spatial_discretisation&
                                  &/continuous_galerkin").or.&
           have_option(trim(u%option_path)//"/prognostic/spatial_discretisation&
                                  &/discontinuous_galerkin")) then

           call profiler_tic("momentum_diagnostics")

         ! This sets up an array of the submaterials of a phase.
         ! NB: The submaterials array includes the current state itself, at index submaterials_istate.
           call get_phase_submaterials(state, istate, submaterials, submaterials_istate)
           call calculate_momentum_diagnostics(state, istate, submaterials, submaterials_istate)
           deallocate(submaterials)

           call profiler_toc("momentum_diagnostics")
           call get_option('/timestepping/nonlinear_iterations', nonlinear_iterations, default=1)
           if(timestep==1.and.its/=nonlinear_iterations) then
              reduced_model = .false.
           else
              reduced_model= have_option("/reduced_model/execute_reduced_model")
           endif

           call profiler_tic("momentum_solve")
           if(.not.have_option("/reduced_model/execute_reduced_model")) then
              call get_option("/timestepping/current_time", current_time)
       	      call get_option("/timestepping/finish_time", finish_time)
              call get_option("/timestepping/timestep", dt)       
             allocate(pod_coef_obv(((u%dim+1)*size(POD_state,1))))
             pod_coef_obv = 0.0
             if(timestep==1.and.its==1) then  ! calculate and save the intitial pod_coef at t=0
                call project_from_full_to_pod(istate,  pod_state, state, pod_coef_obv)
                open(101,file='coef_pod_all_obv')
                write(101,*)(pod_coef_obv(i),i=1,(u%dim+1)*size(POD_state,1))
                close(101)
             endif

             call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its)

             if(its==nonlinear_iterations) then
                call project_from_full_to_pod(istate,  pod_state, state, pod_coef_obv)
                open(101,file='coef_pod_all_obv',position='append',ACTION='WRITE')
                write(101,*)(pod_coef_obv(i),i=1,(u%dim+1)*size(POD_state,1))
                close(101)
             endif
          else if(have_option("/reduced_model/adjoint")) then               
             call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its,total_timestep)
          else if(present(if_optimal)) then
             open(30,file='pod_matrix_perturbed')
             open(50,file='pod_rhs_perturbed')
             open(60,file='advection_matrix_perturbed')
             call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its, total_timestep, &
                  if_optimal=if_optimal)
             close(30)
             close(50)
             close(60)
          else
             eps=0.0
             snapmean=.false.

             if(timestep==1)then 
                nonlinear_velocity=>extract_vector_field(state(istate),"NonlinearVelocity")
                pressure=>extract_scalar_field(state(istate),"Pressure")
                velocity=>extract_vector_field(state(istate),"Velocity")
                old_velocity=>extract_vector_field(state(istate),"OldVelocity")

                call allocate(velocity_backup, nonlinear_velocity%dim, nonlinear_velocity%mesh, "Velocity")
                call zero(velocity_backup)
                call set(velocity_backup, nonlinear_velocity)
                call allocate(pressure_backup, pressure%mesh, "Pressure")
                call zero(pressure_backup)
                call set(pressure_backup, pressure)
                snapmean=.true.
                snapmean_velocity=>extract_vector_field(POD_state(1,1,istate),"SnapmeanVelocity")
                snapmean_pressure=>extract_scalar_field(POD_state(1,2,istate),"SnapmeanPressure")
                call set(nonlinear_velocity, snapmean_velocity) 
                call set(pressure, snapmean_pressure)

                call set(velocity, snapmean_velocity)
                call set(old_velocity, snapmean_velocity)
                
                do b=1, get_boundary_condition_count(velocity_backup)
                   surface_field_velocity => extract_surface_field(velocity_backup, b, 'value')  
                   call get_boundary_condition(velocity_backup, b, surface_node_list=surface_node_list) 
                   do i=1, size(surface_node_list)
                      call set(nonlinear_velocity, surface_node_list(i), node_val(surface_field_velocity, i))
                   enddo
                enddo
                do b=1, get_boundary_condition_count(velocity_backup)
                   surface_field_velocity => extract_surface_field(velocity_backup, b, 'value')
                   call get_boundary_condition(velocity_backup, b, surface_node_list=surface_node_list)
                   do i=1, size(surface_node_list)
                      call set(velocity, surface_node_list(i), node_val(surface_field_velocity, i))
                   enddo
                enddo
                do b=1, get_boundary_condition_count(velocity_backup)
                   surface_field_velocity => extract_surface_field(velocity_backup, b, 'value')
                   call get_boundary_condition(velocity_backup, b, surface_node_list=surface_node_list)
                    do i=1, size(surface_node_list)
                       call set(old_velocity, surface_node_list(i), node_val(surface_field_velocity, i))
                    enddo
                 enddo
                 
                 
                 do b=1, get_boundary_condition_count(pressure_backup)
                    surface_field_pressure => extract_surface_field(pressure_backup, b, 'value')
                    call get_boundary_condition(pressure_backup, b, surface_node_list=surface_node_list)
                    do i=1, size(surface_node_list)
                       call set(pressure, surface_node_list(i), node_val(surface_field_pressure, i))
                    enddo
                 enddo
                 
                 call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its,total_timestep)  
                       !free surface debug place        
                 
  
                 POD_velocity=>extract_vector_field(POD_state(1,1,istate), "Velocity")
                 POD_pressure=>extract_scalar_field(POD_state(1,2,istate), "Pressure")

                 call allocate(perturb_basis_u, POD_velocity%dim, POD_velocity%mesh, "Perturb_u")
                 call zero(perturb_basis_u)
                 call allocate(perturb_basis_p, POD_pressure%mesh, "Perturb_p")
                 call zero(perturb_basis_p)

                 snapmean_velocity=>extract_vector_field(POD_state(1,1,istate),"SnapmeanVelocity")
                 snapmean_pressure=>extract_scalar_field(POD_state(1,2,istate),"SnapmeanPressure")

                 snapmean=.false.

                 open(30,file='pod_matrix_perturbed')
 	         open(50,file='pod_rhs_perturbed')
                 
                 open(60,file='advection_matrix_perturbed')
                 do i=1, size(POD_state,1)
                    POD_velocity=>extract_vector_field(POD_state(i,1,istate), "Velocity")
                    POD_pressure=>extract_scalar_field(POD_state(i,2,istate), "Pressure")
                    !perturbation from pod_basis to snapmean
                    !call get_option("/reduced_model/pod_basis_formation/pod_basis_perturbation_coefficient", eps)
                    eps=0.01
                    do d=1,POD_velocity%dim
                    call zero(perturb_basis_u)
                    call zero(perturb_basis_p)
                       do j=1,POD_velocity%dim
                          if(j==d)then
                             perturb_basis_u%val(j,:)=snapmean_velocity%val(j,:)+eps*POD_velocity%val(j,:)
                          else
                             perturb_basis_u%val(j,:)=snapmean_velocity%val(j,:)
                          endif
                       enddo
                       call set(nonlinear_velocity, perturb_basis_u)
                       call set(pressure, snapmean_pressure)

                       call set(velocity, perturb_basis_u)
                       call set(old_velocity, perturb_basis_u)

                       do b=1, get_boundary_condition_count(velocity_backup)
                          surface_field_velocity => extract_surface_field(velocity_backup, b, 'value')
                          call get_boundary_condition(velocity_backup, b, surface_node_list=surface_node_list)
                          do node=1, size(surface_node_list)
                             call set(nonlinear_velocity, surface_node_list(node), node_val(surface_field_velocity, node))
                             call set(velocity, surface_node_list(node), node_val(surface_field_velocity, node))
                             call set(old_velocity, surface_node_list(node), node_val(surface_field_velocity, node))
                           enddo
                       enddo
                       do b=1, get_boundary_condition_count(pressure_backup)
                          surface_field_pressure => extract_surface_field(pressure_backup, b, 'value')
                          call get_boundary_condition(pressure_backup, b, surface_node_list=surface_node_list)
                          do node=1, size(surface_node_list)
                             call set(pressure, surface_node_list(node), node_val(surface_field_pressure, node))
                          enddo
                       enddo
                       
                       !save pod_matrix and pod_rhs to file (totally size(POD_state)*POD_velocity%dim)
                       call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its, total_timestep)
                    enddo

                    call zero(perturb_basis_u)
                    call zero(perturb_basis_p)

                    perturb_basis_p%val=snapmean_pressure%val+eps*POD_pressure%val

                    call set(pressure, perturb_basis_p)
                    call set(nonlinear_velocity, snapmean_velocity)

                    call set(velocity, snapmean_velocity)
                    call set(old_velocity, snapmean_velocity)

                    do b=1, get_boundary_condition_count(velocity_backup)
                       surface_field_velocity => extract_surface_field(velocity_backup, b, 'value')
                       call get_boundary_condition(velocity_backup, b, surface_node_list=surface_node_list)
                       do node=1, size(surface_node_list)
                          call set(nonlinear_velocity, surface_node_list(node), node_val(surface_field_velocity, node))
                       enddo
                    enddo
                    do b=1, get_boundary_condition_count(pressure_backup)
                       surface_field_pressure => extract_surface_field(pressure_backup, b, 'value')
                       call get_boundary_condition(pressure_backup, b, surface_node_list=surface_node_list)
                       do node=1, size(surface_node_list)
                          call set(pressure, surface_node_list(node), node_val(surface_field_pressure, node))
                       enddo
                    enddo

                   !save pod_matrix and pod_rhs to file (totally size(POD_state))
                    call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its, total_timestep)
                 enddo

                 close(30)
                 close(50)
                 close(60)
                 call deallocate(perturb_basis_u)
                 call deallocate(perturb_basis_p)
                
                 eps=0.0
                 call set(nonlinear_velocity, velocity_backup)
                 call set(pressure, pressure_backup)
                 call set(velocity, velocity_backup)
                 call set(old_velocity, velocity_backup)

!print*,'from initial condition'
                 open(30,file='pod_matrix_perturbed')
                 ! open(50,file='pod_rhs_perturbed')
 	         open(50,file='pod_rhs_perturbed')
                 open(60,file='advection_matrix_perturbed')
                 open(40,file='pod_coef')
                 !save pod_coef for pod_matrix and pod_rhs at timestep 2
                 !the initial pod_matrix and pod_rhs
                 call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its, total_timestep)
                 close(40)
                 close(30)
                 close(50)
                 close(60)

              else

                 open(30,file='pod_matrix_perturbed')
                 open(50,file='pod_rhs_perturbed')
                 open(60,file='advection_matrix_perturbed')
                 call solve_momentum(state, at_first_timestep, timestep, POD_state, POD_state_deim,snapmean, eps, its, total_timestep)
                 close(30)
                 close(50)
                 close(60)

              endif
           endif
           call profiler_toc("momentum_solve")
        end if

      end do state_loop
      call profiler_toc("momentum_loop")

   !   reduced_model= have_option("/reduced_model/execute_reduced_model")
      if(.not.have_option("/reduced_model/execute_reduced_model")) then 
         deallocate(pod_coef_obv)
      endif
    end subroutine momentum_loop

   end module reducedmodel_momentum_equation_wrapper