~reducedmodelling/fluidity/ROM_Non-intrusive-ann

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
!    Copyright (C) 2008 Imperial College London and others.
!    
!    Please see the AUTHORS file in the main source directory for a full list
!    of copyright holders.
!
!    Prof. C Pain
!    Applied Modelling and Computation Group
!    Department of Earth Science and Engineering
!    Imperial College London
!
!    amcgsoftware@imperial.ac.uk
!    
!    This library is free software; you can redistribute it and/or
!    modify it under the terms of the GNU Lesser General Public
!    License as published by the Free Software Foundation,
!    version 2.1 of the License.
!
!    This library is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
!    Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public
!    License along with this library; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
!    USA
#include "fdebug.h"

module upwind_stabilisation
  !!< This module provides routines for the upwind stabilisation of
  !!< advection_diffusion equations.

  use fields
  use metric_tools
  use spud
  use shape_functions

  implicit none

  private

  public :: get_upwind_options, element_upwind_stabilisation,&
       & make_supg_shape, make_supg_element, supg_test_function
  
  integer, parameter, public :: NU_BAR_OPTIMAL = 1, &
    & NU_BAR_DOUBLY_ASYMPTOTIC = 2, NU_BAR_CRITICAL_RULE = 3, NU_BAR_UNITY = 4
  
  real, parameter :: tolerance = 1.0e-10
  ! For Pe >= this, 1.0 / tanh(pe) differs from 1.0 by <= 1.0e-10
  real, parameter :: tanh_tolerance = 11.859499013855018

contains

  subroutine get_upwind_options(option_path, nu_bar_scheme, nu_bar_scale)
    character(len = *), intent(in) :: option_path
    integer, intent(out) :: nu_bar_scheme
    real, intent(out) :: nu_bar_scale
    
    if(have_option(trim(option_path) // "/nu_bar_optimal")) then
      ewrite(2, *) "nu_bar scheme: optimal"
      nu_bar_scheme = NU_BAR_OPTIMAL
    else if(have_option(trim(option_path) // "/nu_bar_doubly_asymptotic")) then
      ewrite(2, *) "nu_bar scheme: doubly asymptotic"
      nu_bar_scheme = NU_BAR_DOUBLY_ASYMPTOTIC
    else if(have_option(trim(option_path) // "/nu_bar_critical_rule")) then
      ewrite(2, *) "nu_bar scheme: critical rule"
      nu_bar_scheme = NU_BAR_CRITICAL_RULE
    else
      assert(have_option(trim(option_path) // "/nu_bar_unity"))
      ewrite(2, *) "nu_bar scheme: unity (xi = sign(pe))"
      nu_bar_scheme = NU_BAR_UNITY
    end if

    call get_option(trim(option_path) // "/nu_scale", nu_bar_scale)
    assert(nu_bar_scale >= 0.0)
    ewrite(2, *) "nu_bar scale factor = ", nu_bar_scale
  
  end subroutine get_upwind_options

  function element_upwind_stabilisation(t_shape, dshape, u_nl_q, j_mat, detwei, &
    & diff_q, nu_bar_scheme, nu_bar_scale) result (stab)
    !!< Calculate the upwind stabilisation on an individual element. This
    !!< implements equation 2.52 in Donea & Huerta (2003):
    !!<
    !!<   /      nu
    !!<   | ----------- (U_nl\dot grad N_j)(U_nl\dot grad N_i)
    !!<   / ||U_nl||**2
    !!<
    !!< Where:
    !!<
    !!<   nu = 0.5*U*dx/d\xi
    !!<  
    type(element_type), intent(in) :: t_shape
    !! dshape is nloc x ngi x dim
    real, dimension(t_shape%loc, t_shape%quadrature%ngi, t_shape%dim) :: dshape
    !! u_nl_q is dim x ngi
    real, dimension(t_shape%dim, t_shape%quadrature%ngi), intent(in) :: u_nl_q
    !! j_mat is dim x dim x ngi
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 2)), intent(in) :: detwei
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), optional, intent(in) :: diff_q
    integer, optional, intent(in) :: nu_bar_scheme
    real, optional, intent(in) ::  nu_bar_scale

    real, dimension(t_shape%loc, t_shape%loc) :: stab

    ! Local Variables
    
    !! This is the factor nu/||U_nl^^2||
    real, dimension(size(detwei)) :: nu_scaled
    !! U_nl \dot dshape
    real, dimension(t_shape%loc, size(detwei)) :: U_nl_dn

    integer :: i, j, loc, ngi

    loc = t_shape%loc
    ngi = size(u_nl_q, 2)

    nu_scaled = nu_bar_scaled_q(dshape, u_nl_q, j_mat, diff_q = diff_q, nu_bar_scheme = nu_bar_scheme, nu_bar_scale = nu_bar_scale)

    forall(i = 1:ngi, j = 1:loc)
      u_nl_dn(j, i) = dot_product(u_nl_q(:, i), dshape(j, i, :))
    end forall

    forall(i = 1:loc, j = 1:loc)
       stab(i, j) = dot_product(u_nl_dn(i, :) * detwei * nu_scaled, u_nl_dn(j, :))
    end forall

  end function element_upwind_stabilisation
  
  function xi_optimal(u_nl_q, j_mat, diff_q) result(xi_q)
    !!< Compute the directional xi factor as in equation 2.44b in Donea &
    !!< Huerta (2003)
  
    real, dimension(:), intent(in) :: U_nl_q
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: diff_q
    
    real, dimension(size(u_nl_q, 1)) :: xi_q
    
    integer :: i
    real, dimension(size(u_nl_q, 1)) :: pe
    
    ! Pe = u h_bar
    !      -------
    !      2 kappa
    pe = 0.5 * matmul(u_nl_q, matmul(j_mat, inverse(diff_q)))
    do i = 1, size(u_nl_q, 1)
      if(abs(pe(i)) < tolerance) then
        xi_q(i) = 0.0
      else if(pe(i) > tanh_tolerance) then
        xi_q(i) = 1.0 - (1.0 / pe(i))
      else if(pe(i) < -tanh_tolerance) then
        xi_q(i) = -1.0 - (1.0 / pe(i))
      else
        xi_q(i) = (1.0 / tanh(pe(i))) - (1.0 / pe(i))
      end if
    end do
    
  end function xi_optimal
  
  function xi_doubly_asymptotic(u_nl_q, j_mat, diff_q) result(xi_q)
    !!< Compute the directional xi factor using the doubly asymptotic
    !!< approximation as in equation 2.29 in Donea & Huerta (2003)
  
    real, dimension(:), intent(in) :: U_nl_q
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: diff_q
    
    real, dimension(size(u_nl_q, 1)) :: xi_q
    
    integer :: i
    real, dimension(size(u_nl_q, 1)) :: pe
    
    ! Pe = u h_bar
    !      -------
    !      2 kappa
    pe = 0.5 * matmul(u_nl_q, matmul(j_mat, inverse(diff_q)))
    
    do i = 1, size(u_nl_q)
      if(abs(pe(i)) <= 3.0) then 
        xi_q(i) = pe(i) / 3.0
      else if(pe(i) > 0.0) then
        xi_q(i) = 1.0
      else
        xi_q(i) = -1.0
      end if
    end do
   
  end function xi_doubly_asymptotic
  
  function xi_critical_rule(u_nl_q, j_mat, diff_q) result(xi_q)
    !!< Compute the directional xi factor using the critical rule
    !!< approximation as in equation 3.3.2 of Brookes and Hughes, Computer
    !!< Methods in Applied Mechanics and Engineering 32 (1982) 199-259.
  
    real, dimension(:), intent(in) :: U_nl_q
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1)), intent(in) :: diff_q
    
    real, dimension(size(u_nl_q, 1)) :: xi_q
    
    integer :: i
    real, dimension(size(u_nl_q, 1)) :: pe
    
    ! Pe = u h_bar
    !      -------
    !      2 kappa
    pe = 0.5 * matmul(u_nl_q, matmul(j_mat, inverse(diff_q)))
    
    do i = 1, size(u_nl_q)
      if(abs(pe(i)) <= 1.0) then
        xi_q(i) = 0.0
      else if(pe(i) > 0.0) then
        xi_q(i) = 1.0 - 1.0 / pe(i)
      else
        xi_q(i) = -1.0 - 1.0 / pe(i)
      end if 
    end do
   
  end function xi_critical_rule
 
  function nu_bar_scaled_q(dshape, u_nl_q, j_mat, diff_q, nu_bar_scheme, nu_bar_scale) result(nu_bar_scaled)
    !!< Compute the diffusion parameter nu_bar, scaled by the norm of u
    !!<   nu_bar / ||u_nl^^2||
  
    !! dshape is nloc x ngi x dim
    real, dimension(:, :, :) :: dshape
    !! u_nl_q is dim x ngi
    real, dimension(size(dshape, 3), size(dshape, 2)), intent(in) :: u_nl_q
    !! j_mat is dim x dim x ngi
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), optional, intent(in) :: diff_q
    integer, optional, intent(in) :: nu_bar_scheme
    real, optional, intent(in) ::  nu_bar_scale
  
    !! This is the factor nu/||u_nl^^2||
    real, dimension(size(u_nl_q, 2)) :: nu_bar_scaled
  
    integer :: i, lnu_bar_scheme, ngi, loc
    real :: lnu_bar_scale, norm_u
    
    if(present(diff_q)) then
      if(present(nu_bar_scheme)) then
        lnu_bar_scheme = nu_bar_scheme
      else
        lnu_bar_scheme = NU_BAR_OPTIMAL
      end if
    else
      ! If we have no diffusivity then xi = sign(pe)
      lnu_bar_scheme = NU_BAR_UNITY
    end if
    if(present(nu_bar_scale)) then
      lnu_bar_scale = nu_bar_scale
    else
      lnu_bar_scale = 0.5
    end if
    assert(lnu_bar_scale >= 0.0)
    
    loc = size(dshape, 1)
    ngi = size(u_nl_q, 2)
    
    select case(lnu_bar_scheme)
      case(NU_BAR_OPTIMAL)
        do i = 1, ngi
          norm_u = dot_product(u_nl_q(:, i), u_nl_q(:, i))
          ! Avoid divide by zeros or similar where u_nl is close to 0
          if(norm_u < tolerance) then
            nu_bar_scaled(i) = 0.0
          else
            nu_bar_scaled(i) = dot_product(xi_optimal(u_nl_q(:, i), j_mat(:, :, i), diff_q(:, :, i)), matmul(u_nl_q(:, i), j_mat(:, :, i))) / norm_u
          end if
        end do
      case(NU_BAR_DOUBLY_ASYMPTOTIC)
        do i = 1, ngi
          norm_u = dot_product(u_nl_q(:, i), u_nl_q(:, i))
          ! Avoid divide by zeros or similar where u_nl is close to 0
          if(norm_u < tolerance) then
            nu_bar_scaled(i) = 0.0
          else
            nu_bar_scaled(i) = dot_product(xi_doubly_asymptotic(u_nl_q(:, i), j_mat(:, :, i), diff_q(:, :, i)), matmul(u_nl_q(:, i), j_mat(:, :, i))) / norm_u
          end if
        end do
      case(NU_BAR_CRITICAL_RULE)
        do i = 1, ngi
          norm_u = dot_product(u_nl_q(:, i), u_nl_q(:, i))
          ! Avoid divide by zeros or similar where u_nl is close to 0
          if(norm_u < tolerance) then
            nu_bar_scaled(i) = 0.0
          else
            nu_bar_scaled(i) = dot_product(xi_critical_rule(u_nl_q(:, i), j_mat(:, :, i), diff_q(:, :, i)), matmul(u_nl_q(:, i), j_mat(:, :, i))) / norm_u
          end if
        end do        
      case(NU_BAR_UNITY)
        do i = 1, ngi
          norm_u = dot_product(u_nl_q(:, i), u_nl_q(:, i))
          ! Avoid divide by zeros or similar where u_nl is close to 0
          if(norm_u < tolerance) then
            nu_bar_scaled(i) = 0.0
          else
            nu_bar_scaled(i) = sum(abs(matmul(u_nl_q(:, i), j_mat(:, :, i)))) / norm_u
          end if
        end do
      case default
        ewrite(-1, *) "For nu_bar scheme: ", lnu_bar_scheme
        FLAbort("Invalid nu_bar scheme")
    end select
    
    nu_bar_scaled = nu_bar_scaled * lnu_bar_scale
    
#ifdef DDEBUG
    if(.not. all(nu_bar_scaled >= 0.0)) then
      ewrite(-1, *) "nu_bar_scaled = ", nu_bar_scaled
      FLAbort("Invalid nu_bar_scaled")
    end if
#endif
   
  end function nu_bar_scaled_q
 
  function make_supg_shape(base_shape, dshape, u_nl_q, j_mat, &
    & diff_q, nu_bar_scheme, nu_bar_scale) result(test_function)
    !!< Construct the SUPG volume element test function. This implements
    !!< equation 2.51 in Donea & Huerta (2003).
    
    type(element_type), target, intent(in) :: base_shape
    !! dshape is nloc x ngi x dim
    real, dimension(base_shape%loc, base_shape%quadrature%ngi, base_shape%dim) :: dshape
    !! u_nl_q is dim x ngi
    real, dimension(base_shape%dim, base_shape%quadrature%ngi), intent(in) :: u_nl_q
    !! j_mat is dim x dim x ngi
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), optional, intent(in) :: diff_q
    integer, optional, intent(in) :: nu_bar_scheme
    real, optional, intent(in) ::  nu_bar_scale
    
    type(element_type) :: test_function
    
    integer :: coords, degree, dim, i, j, vertices, ngi
    !! This is the factor nu/||u_nl^^2||
    real, dimension(size(u_nl_q, 2)) :: nu_bar_scaled
    !! u_nl \dot dshape
    real, dimension(base_shape%loc, size(u_nl_q, 2)) :: u_nl_dn
    type(quadrature_type), pointer :: quad
    type(ele_numbering_type), pointer :: ele_num
        
    quad => base_shape%quadrature
    
    dim = base_shape%dim
    vertices = base_shape%numbering%vertices
    ngi = quad%ngi
    coords = local_coord_count(base_shape)
    degree = base_shape%degree
        
    ! Step 1: Generate a new shape
    ele_num => &
         &find_element_numbering(&
         &vertices = vertices, dimension = dim, degree = degree)
    call allocate(test_function, ele_num=ele_num,ngi=ngi)
    
    test_function%degree = degree
    test_function%quadrature = quad
    call incref(quad)
    
    test_function%dn = huge(0.0)    
    assert(.not. associated(test_function%dn_s))
    assert(.not. associated(test_function%n_s))
    deallocate(test_function%spoly)
    nullify(test_function%spoly)
    deallocate(test_function%dspoly)
    nullify(test_function%dspoly)
    
    ! Step 2: Calculate the scaled nu and u dot nabla
    
    nu_bar_scaled = nu_bar_scaled_q(dshape, u_nl_q, j_mat, diff_q = diff_q, nu_bar_scheme = nu_bar_scheme, nu_bar_scale = nu_bar_scale)
    
    forall(i = 1:ngi, j = 1:base_shape%loc)
      u_nl_dn(j, i) = dot_product(u_nl_q(:, i), dshape(j, i, :))
    end forall
    
    ! Step 3: Generate the test function
    
    do i = 1, base_shape%loc
      test_function%n(i, :) = base_shape%n(i, :) + nu_bar_scaled * u_nl_dn(i, :)
    end do
    
  end function make_supg_shape

  function make_supg_element(base_shape) result(test_function)
    !!< Construct the SUPG volume element object. This is to be constructed
    !!< outside the element loop so the actual values are set later.
    
    type(element_type), target, intent(in) :: base_shape
    type(element_type) :: test_function
    
    test_function=make_element_shape(base_shape)

    test_function%n = huge(0.0)    
    test_function%dn = huge(0.0)    
    assert(.not. associated(test_function%dn_s))
    assert(.not. associated(test_function%n_s))
    deallocate(test_function%spoly)
    nullify(test_function%spoly)
    deallocate(test_function%dspoly)
    nullify(test_function%dspoly)
    
  end function make_supg_element

  subroutine supg_test_function(test_function, base_shape, dshape, u_nl_q, j_mat, &
    & diff_q, nu_bar_scheme, nu_bar_scale) 
    !!< Construct the SUPG volume element test function. This implements
    !!< equation 2.51 in Donea & Huerta (2003).
    type(element_type), intent(inout) :: test_function    
    type(element_type), target, intent(in) :: base_shape
    !! dshape is nloc x ngi x dim
    real, dimension(base_shape%loc, base_shape%quadrature%ngi, base_shape%dim) :: dshape
    !! u_nl_q is dim x ngi
    real, dimension(base_shape%dim, base_shape%quadrature%ngi), intent(in) :: u_nl_q
    !! j_mat is dim x dim x ngi
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), intent(in) :: j_mat
    real, dimension(size(u_nl_q, 1), size(u_nl_q, 1), size(u_nl_q, 2)), optional, intent(in) :: diff_q
    integer, optional, intent(in) :: nu_bar_scheme
    real, optional, intent(in) ::  nu_bar_scale
    
    integer :: i, j
    !! This is the factor nu/||u_nl^^2||
    real, dimension(size(u_nl_q, 2)) :: nu_bar_scaled
    !! u_nl \dot dshape
    real, dimension(base_shape%loc, size(u_nl_q, 2)) :: u_nl_dn

    ! Step 1: Calculate the scaled nu and u dot nabla
    
    nu_bar_scaled = nu_bar_scaled_q(dshape, u_nl_q, j_mat, diff_q = diff_q, nu_bar_scheme = nu_bar_scheme, nu_bar_scale = nu_bar_scale)
    
    forall(i = 1:base_shape%quadrature%ngi, j = 1:base_shape%loc)
      u_nl_dn(j, i) = dot_product(u_nl_q(:, i), dshape(j, i, :))
    end forall
    
    ! Step 2: Generate the test function
    
    do i = 1, base_shape%loc
      test_function%n(i, :) = base_shape%n(i, :) + nu_bar_scaled * u_nl_dn(i, :)
    end do
    
  end subroutine supg_test_function
  
end module upwind_stabilisation