~reducedmodelling/fluidity/ReducedModel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
!    Copyright (C) 2006 Imperial College London and others.
!    
!    Please see the AUTHORS file in the main source directory for a full list
!    of copyright holders.
!
!    Prof. C Pain
!    Applied Modelling and Computation Group
!    Department of Earth Science and Engineeringp
!    Imperial College London
!
!    amcgsoftware@imperial.ac.uk
!    
!    This library is free software; you can redistribute it and/or
!    modify it under the terms of the GNU Lesser General Public
!    License as published by the Free Software Foundation,
!    version 2.1 of the License.
!
!    This library is distributed in the hope that it will be useful,
!    but WITHOUT ANY WARRANTY; without even the implied warranty of
!    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
!    Lesser General Public License for more details.
!
!    You should have received a copy of the GNU Lesser General Public
!    License along with this library; if not, write to the Free Software
!    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307
!    USA

#include "fdebug.h"

subroutine supermesh_difference(vtu1_filename, vtu1_filename_len, vtu2_filename, vtu2_filename_len, output_filename, output_filename_len)
  
  use fields
  use fldebug
  use interpolation_module
  use intersection_finder_module
  use linked_lists
  use reference_counting
  use state_module
  use supermesh_construction
  use unify_meshes_module
  use vtk_interfaces
  
  implicit none
  
  integer, intent(in) :: vtu1_filename_len
  integer, intent(in) :: vtu2_filename_len
  integer, intent(in) :: output_filename_len
  character(len = vtu1_filename_len), intent(in) :: vtu1_filename
  character(len = vtu2_filename_len), intent(in) :: vtu2_filename
  character(len = output_filename_len), intent(in) :: output_filename
  
  integer :: dim, ele_1, ele_2, ele_3, i, j, nintersections, nintersections_max
  integer, dimension(:), allocatable :: ele_map_13, ele_map_23, node_map_13, &
    & node_map_23
  integer, dimension(:, :), allocatable :: intersection_parents
  logical :: p0
  type(element_type), pointer :: shape
  type(ilist), dimension(:), allocatable :: ele_map_21
  type(inode), pointer :: node
  type(mesh_type) :: pwc_mesh_3
  type(mesh_type), pointer :: mesh_3
  type(scalar_field) :: s_field_3
  type(scalar_field), pointer :: s_field, s_field_13, s_field_23
  type(state_type) :: state_1, state_2, state_3
  type(state_type), dimension(2) :: state_13, state_1_split, state_23, &
    & state_2_split, state_3_split
  type(tensor_field) :: t_field_3
  type(tensor_field), pointer :: t_field, t_field_13, t_field_23
  type(vector_field), pointer :: positions_1, positions_2, v_field, &
    & v_field_13, v_field_23
  type(vector_field) :: intersection, v_field_3
  type(vector_field), target :: positions_3
  type(vector_field), dimension(:), allocatable :: intersections
  
  ewrite(1, *) "In supermesh_difference"
  
  call vtk_read_state(vtu1_filename, state_1)
  call vtk_read_state(vtu2_filename, state_2)
  
  p0 = has_mesh(state_1, "P0Mesh")
  
  positions_1 => extract_vector_field(state_1, "Coordinate")
  positions_2 => extract_vector_field(state_2, "Coordinate")
  
  dim = positions_1%dim
  if(positions_2%dim /= dim) then
    FLExit("Input vtu dimensions do not match")
  end if
  call intersector_set_dimension(dim)
  call intersector_set_exactness(.false.)
  
  allocate(ele_map_21(ele_count(positions_1)))
  ! Use the rtree to avoid continuity assumptions
  ele_map_21 = rtree_intersection_finder(positions_1, positions_2)
  
  nintersections_max = sum(ele_map_21%length)
  ewrite(2, "(a,i0)") "Maximum number of intersections: ", nintersections_max
  allocate(intersections(nintersections_max))
  allocate(intersection_parents(nintersections_max, 2))
  nintersections = 0
  
  do ele_1 = 1, ele_count(positions_1)
    node => ele_map_21(ele_1)%firstnode
    do while(associated(node))
      ele_2 = node%value
      
      ! TODO: Integrate the tet intersector
      intersection = intersect_elements(positions_1, ele_1, ele_val(positions_2, ele_2), ele_shape(positions_1, ele_1))
      if(ele_count(intersection) > 0) then
        nintersections = nintersections + 1
        intersections(nintersections) = intersection
        intersection_parents(nintersections, :) = (/ele_1, ele_2/)
      else
        call deallocate(intersection)
      end if
      
      node => node%next
    end do
  end do  
  call deallocate(ele_map_21)
  deallocate(ele_map_21)
  
  ewrite(2, "(a,i0)") "Number of intersections: ", nintersections
  
  positions_3 = unify_meshes(intersections(:nintersections))
  positions_3%name = "Coordinate"
  allocate(node_map_13(node_count(positions_3)))
  allocate(node_map_23(node_count(positions_3)))
  if(p0) then
    allocate(ele_map_13(ele_count(positions_3)))
    allocate(ele_map_23(ele_count(positions_3)))
  end if
  ele_3 = 0
  do i = 1, nintersections
    do j = 1, ele_count(intersections(i))
      ele_3 = ele_3 + 1
      node_map_13(ele_nodes(positions_3, ele_3)) = intersection_parents(i, 1)
      node_map_23(ele_nodes(positions_3, ele_3)) = intersection_parents(i, 2)
      if(p0) then
        ele_map_13(ele_3) = intersection_parents(i, 1)
        ele_map_23(ele_3) = intersection_parents(i, 2)
      end if
    end do
    call deallocate(intersections(i))
  end do
  deallocate(intersections)
  deallocate(intersection_parents)
  
  mesh_3 => positions_3%mesh
  pwc_mesh_3 = piecewise_constant_mesh(mesh_3, "PiecewiseConstantMesh")
    
  call insert(state_3, positions_3, "Coordinate")
  call insert(state_1_split(1), positions_1, "Coordinate")
  call insert(state_2_split(1), positions_2, "Coordinate")
  call insert(state_13(1), positions_3, "Coordinate")
  call insert(state_23(1), positions_3, "Coordinate")
  call insert(state_3_split(1), positions_3, "Coordinate")
  call insert(state_1_split(1), positions_1%mesh, "Mesh")
  call insert(state_13(1), mesh_3, "Mesh")
  call insert(state_2_split(1), positions_2%mesh, "Mesh")
  call insert(state_23(1), mesh_3, "Mesh")
  call insert(state_3, mesh_3, "Mesh")
  call insert(state_3_split(1), mesh_3, "Mesh")
  if(p0) then
    call insert(state_1_split(2), positions_1, "Coordinate")
    call insert(state_2_split(2), positions_2, "Coordinate")
    call insert(state_13(2), positions_3, "Coordinate")
    call insert(state_23(2), positions_3, "Coordinate")
    call insert(state_3_split(2), positions_3, "Coordinate")
    call insert(state_1_split(2), extract_mesh(state_1, "P0Mesh"), "Mesh")
    call insert(state_2_split(2), extract_mesh(state_2, "P0Mesh"), "Mesh")
    call insert(state_13(2), pwc_mesh_3, "Mesh")
    call insert(state_23(2), pwc_mesh_3, "Mesh")
    call insert(state_3_split(2), pwc_mesh_3, "Mesh")
  end if
  call deallocate(positions_3)
    
  do i = 1, scalar_field_count(state_1)
    s_field => extract_scalar_field(state_1, i)
    shape => ele_shape(s_field, 1)
    
    if(shape%degree == 0) then    
      assert(p0)      
      call insert(state_1_split(2), s_field, s_field%name)
      call insert(state_2_split(2), extract_scalar_field(state_2, s_field%name), s_field%name)
      
      call allocate(s_field_3, pwc_mesh_3, s_field%name)
      call insert(state_13(2), s_field_3, s_field_3%name)
    else
      call insert(state_1_split(1), s_field, s_field%name)
      call insert(state_2_split(1), extract_scalar_field(state_2, s_field%name), s_field%name)
      
      call allocate(s_field_3, mesh_3, s_field%name)
      call insert(state_13(1), s_field_3, s_field_3%name)
    end if
    call deallocate(s_field_3)
    
    if(shape%degree == 0) then
      call allocate(s_field_3, pwc_mesh_3, s_field%name)
      call insert(state_23(2), s_field_3, s_field_3%name)
    else
      call allocate(s_field_3, mesh_3, s_field%name)
      call insert(state_23(1), s_field_3, s_field_3%name)
    end if
    call deallocate(s_field_3)
    
    if(shape%degree == 0) then
      call allocate(s_field_3, pwc_mesh_3, s_field%name)
      call insert(state_3_split(2), s_field_3, s_field_3%name)
    else
      call allocate(s_field_3, mesh_3, s_field%name)
      call insert(state_3_split(1), s_field_3, s_field_3%name)
    end if
    call insert(state_3, s_field_3, s_field_3%name)
    call deallocate(s_field_3)    
  end do    
  do i = 1, vector_field_count(state_1)
    v_field => extract_vector_field(state_1, i)
    if(v_field%name == "Coordinate") cycle
    shape => ele_shape(v_field, 1)
    
    if(shape%degree == 0) then    
      assert(p0)      
      call insert(state_1_split(2), v_field, v_field%name)
      call insert(state_2_split(2), extract_scalar_field(state_2, v_field%name), v_field%name)
      
      call allocate(v_field_3, dim, pwc_mesh_3, v_field%name)
      call insert(state_13(2), v_field_3, v_field_3%name)
    else
      call insert(state_1_split(1), v_field, v_field%name)
      call insert(state_2_split(1), extract_scalar_field(state_2, v_field%name), v_field%name)
      
      call allocate(v_field_3, dim, mesh_3, v_field%name)
      call insert(state_13(1), v_field_3, v_field_3%name)
    end if
    call deallocate(v_field_3)
    
    if(shape%degree == 0) then
      call allocate(v_field_3, dim, pwc_mesh_3, v_field%name)
      call insert(state_23(2), v_field_3, v_field_3%name)
    else
      call allocate(v_field_3, dim, mesh_3, v_field%name)
      call insert(state_23(1), v_field_3, v_field_3%name)
    end if
    call deallocate(v_field_3)
    
    if(shape%degree == 0) then
      call allocate(v_field_3, dim, pwc_mesh_3, v_field%name)
      call insert(state_3_split(2), v_field_3, v_field_3%name)
    else
      call allocate(v_field_3, dim, mesh_3, v_field%name)
      call insert(state_3_split(1), v_field_3, v_field_3%name)
    end if
    call insert(state_3, v_field_3, v_field_3%name)
    call deallocate(v_field_3)    
  end do
  do i = 1, tensor_field_count(state_1)
    t_field => extract_tensor_field(state_1, i)
    shape => ele_shape(t_field, 1)
    
    if(shape%degree == 0) then    
      assert(p0)      
      call insert(state_1_split(2), t_field, t_field%name)
      call insert(state_2_split(2), extract_scalar_field(state_2, t_field%name), t_field%name)
      
      call allocate(t_field_3, pwc_mesh_3, t_field%name)
      call insert(state_13(2), t_field_3, t_field_3%name)
    else
      call insert(state_1_split(1), t_field, t_field%name)
      call insert(state_2_split(1), extract_scalar_field(state_2, t_field%name), t_field%name)
      
      call allocate(t_field_3, mesh_3, t_field%name)
      call insert(state_13(1), t_field_3, t_field_3%name)
    end if
    call deallocate(t_field_3)
    
    if(shape%degree == 0) then
      call allocate(t_field_3, pwc_mesh_3, t_field%name)
      call insert(state_23(2), t_field_3, t_field_3%name)
    else
      call allocate(t_field_3, mesh_3, t_field%name)
      call insert(state_23(1), t_field_3, t_field_3%name)
    end if
    call deallocate(t_field_3)
    
    if(shape%degree == 0) then
      call allocate(t_field_3, pwc_mesh_3, t_field%name)
      call insert(state_3_split(2), t_field_3, t_field_3%name)
    else
      call allocate(t_field_3, mesh_3, t_field%name)
      call insert(state_3_split(1), t_field_3, t_field_3%name)
    end if
    call insert(state_3, t_field_3, t_field_3%name)
    call deallocate(t_field_3)    
  end do  
  call deallocate(pwc_mesh_3)
  
  call linear_interpolation(state_1_split(1), state_13(1), map = node_map_13)
  deallocate(node_map_13)  
  call linear_interpolation(state_2_split(1), state_23(1), map = node_map_23)
  deallocate(node_map_23)   
  if(p0) then 
    call linear_interpolation(state_1_split(2), state_13(2), map = ele_map_13)
    deallocate(ele_map_13)
    call linear_interpolation(state_2_split(2), state_23(2), map = ele_map_23)
    deallocate(ele_map_23)
  end if
  call deallocate(state_1_split)
  call deallocate(state_1)
  call deallocate(state_2_split)
  call deallocate(state_2)
  
  do i = 1, scalar_field_count(state_13(1))
    s_field_13 => extract_scalar_field(state_13(1), i)
    s_field_23 => extract_scalar_field(state_23(1), s_field_13%name)
    s_field_3 = extract_scalar_field(state_3_split(1), s_field_13%name)
    s_field_3%val = s_field_13%val - s_field_23%val
  end do
  do i = 1, vector_field_count(state_13(1))
    v_field_13 => extract_vector_field(state_13(1), i)
    if(v_field_13%name == "Coordinate") cycle
    v_field_23 => extract_vector_field(state_23(1), v_field_13%name)
    v_field_3 = extract_vector_field(state_3_split(1), v_field_13%name)
    do j = 1, dim
      v_field_3%val(i,:) = v_field_13%val(i,:) - v_field_23%val(i,:)
    end do
  end do
  do i = 1, tensor_field_count(state_13(1))
    t_field_13 => extract_tensor_field(state_13(1), i)
    t_field_23 => extract_tensor_field(state_23(1), t_field_13%name)
    t_field_3 = extract_tensor_field(state_3_split(1), t_field_13%name)    
    t_field_3%val = t_field_13%val - t_field_23%val
  end do
  if(p0) then
    do i = 1, scalar_field_count(state_13(2))
      s_field_13 => extract_scalar_field(state_13(2), i)
      s_field_23 => extract_scalar_field(state_23(2), s_field_13%name)
      s_field_3 = extract_scalar_field(state_3_split(2), s_field_13%name)
      s_field_3%val = s_field_13%val - s_field_23%val
    end do
    do i = 1, vector_field_count(state_13(2))
      v_field_13 => extract_vector_field(state_13(2), i)
      if(v_field_13%name == "Coordinate") cycle
      v_field_23 => extract_vector_field(state_23(2), v_field_13%name)
      v_field_3 = extract_vector_field(state_3_split(2), v_field_13%name)
      do j = 1, dim
        v_field_3%val(i,:) = v_field_13%val(i,:) - v_field_23%val(i,:)
      end do
    end do
    do i = 1, tensor_field_count(state_13(2))
      t_field_13 => extract_tensor_field(state_13(2), i)
      t_field_23 => extract_tensor_field(state_23(2), t_field_13%name)
      t_field_3 = extract_tensor_field(state_3_split(2), t_field_13%name)    
      t_field_3%val = t_field_13%val - t_field_23%val
    end do
  end if
  call deallocate(state_13)
  call deallocate(state_23)
  call deallocate(state_3_split)
  
  call vtk_write_state(output_filename, state = (/state_3/))
  call deallocate(state_3)
  
  call print_references(0)
  
  ewrite(1, *) "Exiting supermesh_difference"
  
end subroutine supermesh_difference