~reducedmodelling/fluidity/ReducedModel

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include "fdebug.h"

program pseudo_supermesh_parallel

  use fields
  use state_module
  use vtk_interfaces
  use spud
  use parallel_tools
  use mpi
  use interpolation_module
  use adapt_state_unittest_module, adapt_state => adapt_state_unittest
  use conformity_measurement
  use merge_tensors
  use limit_metric_module
  use unittest_tools
  use metric_tools
  use global_parameters, only: current_debug_level
  use mesh_files
  use reference_counting
  implicit none

  character(len=255) :: initial_file
  character(len=255), dimension(:), allocatable :: files
  integer :: i
  integer :: ierr
  integer :: mxnods

  ! nfiles x dim x 2 x nprocs
  real, dimension(:, :, :, :), allocatable :: bboxes
  type(vector_field) :: positions
  integer :: dim, nprocs, nfiles
  integer :: adapt_iteration, no_adapt_iterations
  real, dimension(:, :), allocatable :: my_bbox
  integer, dimension(:), allocatable :: intersecting_subdomains
  integer :: intersecting_subdomain, file
  type(tensor_field) :: merged_metric, interpolated_metric, vtk_metric
  type(state_type) :: vtk_state, interpolation_input, interpolation_output
  type(vector_field), pointer :: vtk_positions
  type(state_type) :: adapting_state
  integer :: rank
  integer :: xpct

  call mpi_init(ierr)
  call python_init

  no_adapt_iterations = 3
  rank = getrank()

  current_debug_level = 0
  nprocs = getnprocs()

  call parse_args(initial_file, mxnods, files)
  positions = read_mesh_files(trim(initial_file), quad_degree=4)
  call halo_business(nprocs, positions, initial_file)

  dim = positions%dim
  nfiles = size(files)

  allocate(bboxes(nfiles, dim, 2, nprocs))
  call compute_bboxes(files, bboxes)
  allocate(my_bbox(dim, 2))
  my_bbox = compute_bbox(positions)
!  call print_references(-1)

  do adapt_iteration=1,no_adapt_iterations
    ewrite(0,*) "rank: ", rank, ": starting adapt iteration ", adapt_iteration
    call allocate(merged_metric, positions%mesh, "MergedMetric")
    call allocate(interpolated_metric, positions%mesh, "Metric")
    call zero(merged_metric)

    do file=1,nfiles
      ewrite(0,*) "  rank: ", rank, ": processing file " // trim(files(file))
      call get_intersecting_subdomains(bboxes(file, :, :, :), my_bbox, intersecting_subdomains)
      ewrite(0,*) " rank: ", rank, ": intersecting subdomains: ", intersecting_subdomains
      do i=1,size(intersecting_subdomains)
        call zero(interpolated_metric)
        intersecting_subdomain = intersecting_subdomains(i)
        ewrite(0,*) "    rank: ", rank, ": processing subdomain ", intersecting_subdomain, "; intersection ", i, " of ", size(intersecting_subdomains)

        ! So, this subdomain might have some info for us .. 
        ! Compute its metric, interpolate, and merge.
        call vtk_read_state(trim(subdomain_name(files(file), intersecting_subdomain-1)), vtk_state)
        vtk_positions => extract_vector_field(vtk_state, "Coordinate")

        call insert(interpolation_input, extract_mesh(vtk_state, "Mesh"), "Mesh")
        call insert(interpolation_input, vtk_positions, "Coordinate")
        ewrite(0,*) "    rank: ", rank, ": computing subdomain mesh metric"
        call compute_mesh_metric(vtk_positions, vtk_metric)
        call insert(interpolation_input, vtk_metric, "Metric")
        call deallocate(vtk_metric)
        call deallocate(vtk_state)

        call insert(interpolation_output, positions%mesh, "Mesh")
        call insert(interpolation_output, positions, "Coordinate")
        call insert(interpolation_output, interpolated_metric, "Metric")

        ewrite(0,*) "    rank: ", rank, ": interpolating subdomain mesh metric"
        call linear_interpolation(interpolation_input, interpolation_output, different_domains=.true.)
        ewrite(0,*) "    rank: ", rank, ": merging subdomain mesh metric"
        call merge_tensor_fields(merged_metric, interpolated_metric)
        xpct = expected_elements(positions, merged_metric)
        ewrite(0,*) "    rank: ", rank, ": expected number of elements: ", xpct
        call deallocate(interpolation_input)
        call deallocate(interpolation_output)
      end do

      deallocate(intersecting_subdomains)
    end do

    call deallocate(interpolated_metric)

    ! Limit metric to mxnods
    ewrite(0,*) "rank: ", rank, ": limiting maximum number of nodes"
    call limit_metric(positions, merged_metric, min_nodes=1, max_nodes=mxnods)

    ! Adapt here
    call insert(adapting_state, positions%mesh, "CoordinateMesh")
    call insert(adapting_state, positions, "Coordinate")
    xpct = expected_elements(positions, merged_metric)
    ewrite(0,*) "rank: ", rank, ": expected number of elements: ", xpct
    !call vtk_write_fields("before_adapt", adapt_iteration, position=positions, model=positions%mesh, tfields=(/merged_metric/))
    ewrite(0,*) "rank: ", rank, ": entering adapt"

    current_debug_level = 3
    call adapt_state(adapting_state, merged_metric)
    current_debug_level = 0
    call deallocate(merged_metric)
    call deallocate(positions)

    positions = extract_vector_field(adapting_state, "Coordinate")
    call incref(positions)
    call deallocate(adapting_state)

    !call vtk_write_fields("after_adapt", adapt_iteration, position=positions, model=positions%mesh)
    my_bbox = compute_bbox(positions)
!    call print_references(-1)
  end do

  call vtk_write_fields("pseudo_supermesh", position=positions, model=positions%mesh)

  call deallocate(positions)
  deallocate(bboxes)
  deallocate(my_bbox)
  deallocate(files)
  call print_references(-1)
  call mpi_finalize(ierr)

  contains

  subroutine halo_business(nprocs, positions, filename)
    use halos
    integer, intent(in) :: nprocs
    type(vector_field), intent(inout) :: positions
    character(len=255), intent(in) :: filename

    if (nprocs > 1) then
      call read_halos(filename(1:len_trim(filename)), positions)   
    end if
  end subroutine halo_business

  function subdomain_name(pvtu_name, subdomain) result(name)
    character(len=255), intent(in) :: pvtu_name
    integer, intent(in) :: subdomain
    character(len=255) :: name

    name = pvtu_name(1:len_trim(pvtu_name) - len(".pvtu")) // "_" // int2str(subdomain) // ".vtu"
  end function subdomain_name

  subroutine set_metric_to_value(metric, value)
    type(tensor_field), intent(inout) :: metric
    real, intent(in) :: value
    integer :: node, i
    real :: eigval
    real, dimension(metric%dim, metric%dim) :: met

    eigval = 1/value**2
    met = 0.0
    do i=1,metric%dim
      met(i, i) = eigval
    end do

    do node=1,node_count(metric)
      call set(metric, node, met)
    end do
  end subroutine set_metric_to_value

  subroutine get_intersecting_subdomains(bboxes, my_bbox, intersecting_subdomains)
    use intersection_finder_module
    real, dimension(:, :, :), intent(in) :: bboxes
    real, dimension(:, :), intent(in) :: my_bbox
    integer, dimension(:), allocatable, intent(out) :: intersecting_subdomains

    integer :: nprocs
    integer :: i
    integer, dimension(:), allocatable :: tmp_array
    integer :: array_sz

    array_sz = 0
    nprocs = size(bboxes, 3)
    allocate(tmp_array(nprocs))

    do i=1,nprocs
      if (bbox_predicate(bboxes(:, :, i), my_bbox)) then
        array_sz = array_sz + 1
        tmp_array(array_sz) = i
      end if
    end do

    allocate(intersecting_subdomains(array_sz))
    intersecting_subdomains(1:array_sz) = tmp_array(1:array_sz)
    deallocate(tmp_array)
  end subroutine get_intersecting_subdomains

  subroutine compute_bboxes(files, bboxes)
    character(len=255), dimension(:), intent(in) :: files
    real, dimension(:, :, :, :), intent(inout) :: bboxes
    real, dimension(size(bboxes, 1), size(bboxes, 2), size(bboxes, 3)) :: my_bboxes
    integer :: rank
    integer :: i, nfiles
    type(state_type) :: state
    type(vector_field), pointer :: positions
    integer :: ierr
    character(len=255) :: subname

    nfiles = size(files)
    rank = getrank()

    do i=1,nfiles
      subname = subdomain_name(files(i), rank)
      call vtk_read_state(trim(subname), state)
      positions => extract_vector_field(state, "Coordinate")
      my_bboxes(i, :, :) = compute_bbox(positions)
      call deallocate(state)
    end do

    call mpi_gather(my_bboxes, size(my_bboxes), getpreal(), &
                    bboxes, size(my_bboxes), getpreal(), &
                    0, MPI_COMM_FEMTOOLS, ierr)
    assert(ierr == 0)

    call mpi_bcast(bboxes, size(bboxes), getpreal(), 0, MPI_COMM_FEMTOOLS, ierr)
    assert(ierr == 0)
  end subroutine compute_bboxes
  
  subroutine parse_args(initial_file, mxnods, files)
    character(len=255), intent(out) :: initial_file
    character(len=255), dimension(:), allocatable, intent(out) :: files
    character(len=255) :: mxnods_buffer
    integer, intent(out) :: mxnods
    integer :: argc, status, i

    argc = command_argument_count()
    if (argc < 4) then
      write(0,*) "Usage: pseudo_supermesh_parallel initial_file max_nodes input_mesh [input_mesh ...]"
      stop
    end if

    call get_command_argument(1, value=initial_file, status=status)
    select case(status)
    case(1:)
       write(0,*) "Initial VTU filename not found"
       stop
    case(:-1)
       write(0,*) "Warning: truncating filename"
    end select

    call get_command_argument(2, value=mxnods_buffer, status=status)
    read(mxnods_buffer, *, iostat=status) mxnods
    if (status /= 0) then
      write(0,*) "Could not parse maximum number of nodes"
      stop
    end if

    allocate(files(argc-2))
    do i=3,argc
      call get_command_argument(i, value=files(i-2), status=status)
      select case(status)
      case(1:)
         write(0,*) "Initial VTU filename not found"
         stop
      case(:-1)
         write(0,*) "Warning: truncating filename"
      end select
    end do
  end subroutine parse_args

  function compute_bbox(positions) result(bbox)
    type(vector_field), intent(in) :: positions
    real, dimension(positions%dim, 2) :: bbox

    integer :: i

    do i=1,positions%dim
      bbox(i, 1) = minval(positions%val(i,:))
      bbox(i, 2) = maxval(positions%val(i,:))
    end do
  end function compute_bbox
    
end program pseudo_supermesh_parallel