~sfiorucci/ptools/test_seb

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
#include "attractforcefield.h"


#include <fstream>
#include <math.h>  //for fabs()
#include <sstream> //for istringstream


using std::ios_base;


namespace PTools {

/*! \brief Extracts extra information from ATOM lines.
 *
 *  For Attract pdb files, the library currently reads some extra informations
*  after the x,y,z coordinates. This information is extracted here.
*  Two arrays are populated then: atcategory which contains the atom type category
* (AKA iaci variable in the fortran code) and the atom charge ('xlai' in the fortran code)
 */
void extractExtra( Rigidbody& rig, std::vector<uint>& vCat, std::vector<dbl>& vCh)
{

    uint   atcategory  = 0;
    dbl  atcharge   = 0.0;

    for (uint i=0; i<rig.Size(); i++)
    {
        const Atomproperty at = rig.GetAtomProperty(i);
        std::string extra = at.GetExtra();
        //std::cout << extra << std::endl;
        std::istringstream iss( extra );
        iss >> atcategory >> atcharge ;
        vCat.push_back(atcategory-1);
        vCh.push_back(atcharge);
    }


}



AttractForceField1::AttractForceField1(std::string paramsFileName, dbl cutoff)
//         :m_refreceptor(recept), m_refligand(lig), m_receptor(recept), m_ligand(lig),m_savligand(lig),
//         plist(recept,lig,cutoff)

{

    InitParams(paramsFileName);

    m_rstk=0.0; //no restraint by default
    m_cutoff = cutoff;

}



void AttractForceField1::InitParams(const std::string & paramsFileName )
{
    int indice, inull;
    dbl rad;
    dbl amp;

    std::ifstream aminon(paramsFileName.c_str());
    if (!aminon)
    {
        //the file cannot be opened
        std::string msg = "Forcefield.cpp: Cannot Locate file forcefield parameters (aminon.par)\n";
        std::cout << msg ;
        throw std::invalid_argument(msg);
    }

    while (!aminon.eof())
    {
        aminon >> indice >> rad >> amp >> inull ;
        m_rad.push_back(rad) ;
        m_amp.push_back(amp) ;
        assert(m_rad.size()<64);
    }


    //initialisation of the pre-calculated array of rc and ac
    for (uint i=0; i<m_rad.size();i++)
        for (uint j=0; j<m_rad.size(); j++)
        {
            m_rc[i][j]=m_amp[i]*m_amp[j]*pow((m_rad[i]+m_rad[j]),8);
            m_ac[i][j]=m_amp[i]*m_amp[j]*pow((m_rad[i]+m_rad[j]),6);
        }
}



dbl AttractForceField1::nonbon8_forces(AttractRigidbody& rec, AttractRigidbody& lig, AttractPairList & pairlist, std::vector<Coord3D>& forcerec, std::vector<Coord3D>& forcelig, bool print)
{

    assert(forcerec.size() == rec.Size());
    assert(forcelig.size() == lig.Size());

    dbl sumLJ=0.0 ;
    dbl sumElectrostatic=0.0;


    //synchronize coordinates for using unsafeGetCoords
    rec.syncCoords();
    lig.syncCoords();

    Coord3D a, b;


    for (uint iter=0; iter<pairlist.Size(); iter++)
    {

        uint ir = pairlist[iter].atrec;
        uint jl = pairlist[iter].atlig;

        uint rAtomCat = rec.getAtomTypeNumber(ir);
        uint lAtomCat = lig.getAtomTypeNumber(jl);

        assert(rAtomCat < m_rad.size());
        assert(lAtomCat < m_rad.size());


        dbl alen = m_ac[ rAtomCat ][ lAtomCat ];
        dbl rlen = m_rc[ rAtomCat ][ lAtomCat ];


        lig.unsafeGetCoords(jl,a);
        rec.unsafeGetCoords(ir,b);

        Coord3D dx = a-b ;
        dbl r2 = Norm2(dx);

        if (r2 < 0.001 ) r2=0.001;
        dbl rr2 = 1.0/r2;
        dx = rr2*dx;

        dbl rr23 = rr2*rr2*rr2 ;
        dbl rep =  rlen*rr2 ;
        dbl vlj = (rep-alen)*rr23 ;

        sumLJ += vlj;

        dbl fb = 6.0*vlj+2.0*(rep*rr23) ;
        Coord3D fdb = fb*dx ;

        //assign force to the atoms:
        forcelig[jl] -= fdb ;
        forcerec[ir] += fdb ;



        //electrostatic part:
        dbl chargeR = rec.m_charge[ir];
        dbl chargeL = lig.m_charge[jl];
        dbl charge = chargeR * chargeL * (332.053986/20.0);

        if (fabs(charge) > 0.0)
        {

            dbl et = charge*rr2;
            sumElectrostatic+=et;

            Coord3D fdb = (2.0*et)*dx;
            forcelig[jl] -= fdb ;
            forcerec[ir] += fdb ;
        }
    }

    m_vdw = sumLJ;
    m_elec = sumElectrostatic;

    return sumLJ + sumElectrostatic;
}









void BaseAttractForceField::initMinimization()
{
    MakePairLists();
}


////////////////////////////////////////////////////////////////
//     AttractForceField2 implementation
////////////////////////////////////////////////////////////////


static AttFF2_params* m_params = 0;

AttractForceField2::AttractForceField2(const std::string & filename, dbl cutoff)
{
     loadParams(filename, cutoff);
}

void AttractForceField2::resetParams()
{
     delete m_params;
     m_params = NULL;
     m_filename = "";
}

void AttractForceField2::reloadParams(const std::string & filename, dbl cutoff)
{
  resetParams();
  loadParams(filename, cutoff);
}


void AttractForceField2::loadParams(const std::string & filename, dbl cutoff)
{

    m_cutoff=cutoff;
    if (m_params==0)
    {
        m_params=new AttFF2_params();

        std::ifstream mbest (filename.c_str());
        //open(11,file=eingabe2) -> eingabe2: mbest1k.par
        if (!mbest)
        {
            //the file cannot be opened
            std::string msg = "Forcefield.cpp: Cannot Locate file  " + filename + "\n" ;
            ios_base::failure fail(msg);
            std::cout << msg ;
            throw fail;
        }
        m_filename = filename;



        std::string line;
        getline(mbest, line); //read the first line into "line"
        std::istringstream iss (line); // iss allows formated extraction from "line"

        std::string magic;
        iss >> magic;   //reads magic constant
        if (magic == "AFF")   // file format version 2 at least
        {
           int revnb;
           iss >> revnb;  //get revision number
           if (revnb == 2 ) // file format version 2:
             {
                 //get list of dummy types:
                 uint numdummy;
                 iss >> numdummy;
                 std::vector<uint> dummyatomtypes;
                 for(uint i=0; i<numdummy; i++)
                    {
                       uint type;
                       iss >> type;
                       dummyatomtypes.push_back(type-1); //types counting begins at 0
                    }
                 std::swap(dummyatomtypes, m_params->_dummytypes);
             }
            else
             {
                std::string msg = "AttractForceField2: cannot read parameter file version \n";
                msg += revnb ;
                std::cerr << msg ;
                ios_base::failure fail(msg);
                throw fail;
             }
        }
        else 
        {
          //declare forcefield file as invalid:
          std::string msg = "AttractForceField2: invalid paramters file format: doesn't contain AFF string \n";
          std::cerr << msg ;
          ios_base::failure fail(msg);
          throw fail;
        }


        for (uint i = 0; i<31; i++)
            for (uint j = 0; j<31; j++)
            {
                mbest >> m_params->rbc[i][j] ;
            }

        for (uint i = 0; i<31; i++)
            for (uint j = 0; j<31; j++)
                mbest >> m_params->abc[i][j] ;

        for (uint i = 0; i<31; i++)
        {
            for (uint j = 0; j<31; j++)
            {
                mbest >> m_params->iflo[i][j] ;
                assert(m_params->iflo[i][j]==1 || m_params->iflo[i][j]==-1);
            }
        }



        for (uint jj=0; jj<31; jj++)  // loop over attract atom types
        {

            for (uint ii=0; ii<31; ii++) // loop over attract atom types
            {

                dbl rbc2 = m_params->rbc[ii][jj]*m_params->rbc[ii][jj];
                dbl rbc6 = rbc2*rbc2*rbc2;
                dbl rbc8 = rbc6*rbc2;
                m_params->rc[ii][jj] = m_params->abc[ii][jj] * rbc8;
                m_params->ac[ii][jj] = m_params->abc[ii][jj] * rbc6;

                m_params->ipon[ii][jj] = m_params->iflo[ii][jj] ;
                assert(m_params->ipon[ii][jj]==1 || m_params->ipon[ii][jj]==-1);

                dbl alen = m_params->ac[ii][jj];
                dbl rlen = m_params->rc[ii][jj];
                dbl alen4 = alen*alen*alen*alen;
                dbl rlen3 = rlen*rlen*rlen;
                m_params->emin[ii][jj] = -27.0*alen4/(256.0*rlen3);
                m_params->rmin2[ii][jj]= 4.0*rlen/(3.0*alen);


            }
        }
    }


}


dbl BaseAttractForceField::Function(const Vdouble& stateVars )
{

    assert(m_centeredligand.size() >=1);
    assert(m_movedligand.size() >=1);


    uint svptr = 0; //state variable 'pointer'
    const uint nlig = m_movedligand.size();


    //don't let the user call this function without a coherent pairlist
    //(the pairlist may be outdated (user choice), but we MUST have the correct number of pairlists!)
    if (m_pairlists.size() != (nlig*(nlig-1))/2)
        MakePairLists();

    assert(m_pairlists.size() == (nlig*(nlig-1))/2);


    //put the ligands to the correct positions defined by stateVars
    for (uint i=0; i<m_movedligand.size(); i++)
    {
        m_movedligand[i] = m_centeredligand[i];
        m_movedligand[i].resetForces(); //just to be sure that the forces are set to zero. Maybe not needed.



        if (m_movedligand[i].hasrotation)
        {
            assert(svptr+2 < stateVars.size());
            m_movedligand[i].AttractEulerRotate(stateVars[svptr], stateVars[svptr+1], stateVars[svptr+2]);
            svptr+=3;
        }


        m_movedligand[i].Translate(m_ligcenter[i]);

        if (m_movedligand[i].hastranslation)
        {
            assert(svptr+2 < stateVars.size());
            m_movedligand[i].Translate(Coord3D(stateVars[svptr],stateVars[svptr+1],stateVars[svptr+2]));
            svptr+=3;
        }


    }




    dbl enernon = 0.0 ;

    uint plistnumber = 0; //index of pairlist used for a given pair of ligands
    //iteration over all ligand pairs:
    for (uint i=0; i<m_movedligand.size(); i++)
        for (uint j=i+1; j<m_movedligand.size(); j++)
        {
            assert(plistnumber < m_pairlists.size() );
            enernon += nonbon8(m_movedligand[i], m_movedligand[j],  m_pairlists[plistnumber++] );   //calculates energy contribution for every pair. Forces are stored for each ligand
        }






    return enernon;

}



uint BaseAttractForceField::ProblemSize()
{
    uint size = 0;
    for (uint i = 0; i < m_centeredligand.size(); i++)
    {
        if (m_centeredligand[i].hastranslation) size +=3 ;
        if (m_centeredligand[i].hasrotation) size +=3 ;
    }

    return size;
}






/*! \brief returns the analytical derivatives of the forcefield 2
*
*   input:
*   Vdouble & stateVars: determines how the molecules are moved by the minimizer
*   (the minimizer only works on a linear Vdouble holding the free minimization variables)
*   output:
*   this function puts the derivative of the energy with respect to variable 1 to 6 (in case of 6 degrees of
*   freedom. 3 trans + 3 rotations) into the 'delta' Vdouble array
*/
void BaseAttractForceField::Derivatives(const Vdouble& stateVars, Vdouble& delta)
{

    uint svptr = 0; // stateVars 'pointer'


    for (uint i=0; i<m_movedligand.size(); i++)
    {

        if (m_movedligand[i].hasrotation)
        {
            //calculates the rotational force for ligand i
            Rota(i, stateVars[svptr], stateVars[svptr+1], stateVars[svptr+2], delta, svptr, false );
            svptr+=3;
        }

        if (m_movedligand[i].hastranslation)
        {
            //calculates the translational force for ligand i
            Trans(i, delta, svptr, false);
            svptr+=3;
        }


    }

}






/*! \brief Non bonded energy
*
*   translated from fortran file nonbon8.f
*   TODO: add comments in the code, remove debug instructions
*/
dbl AttractForceField2::nonbon8_forces(AttractRigidbody& rec, AttractRigidbody& lig, AttractPairList & pairlist, std::vector<Coord3D>& forcerec, std::vector<Coord3D>& forcelig, bool print)
{

    dbl enon = 0.0;
    dbl epote = 0.0;


    std::cout.precision(20);

    //synchronise coordinates to later use unsafeGetCoords (should be faster)
    rec.syncCoords();
    lig.syncCoords();

    Coord3D a;
    Coord3D b;

    for (uint ik=0; ik<pairlist.Size(); ik++ )
    {
        AtomPair atpair = pairlist[ik];


        uint i = atpair.atrec ;
        uint j = atpair.atlig ;
        uint ii=rec.m_atomTypeNumber[i];
        uint jj=lig.m_atomTypeNumber[j];

        assert(ii<31);
        assert(jj<31);
        dbl alen = m_params->ac[ii][jj];
        dbl rlen = m_params->rc[ii][jj];
        int ivor = m_params->ipon[ii][jj];
        assert(ivor==1 || ivor==-1);


        dbl charge= rec.m_charge[i]* lig.m_charge[j];  //charge product of the two atoms
        //std::cout << "charge: " << charge << std::endl;

        rec.unsafeGetCoords(i,a); lig.unsafeGetCoords(j,b);

        Coord3D dx  ( a-b ) ;


        dbl r2 = Norm2(dx);
        if (r2 < 0.001) r2=0.001 ;

        dbl rr2 = 1.0/r2;
        dx = rr2*dx ;

        if (charge != 0.0) {
            dbl et = charge*rr2;
            et*=(332.053986/15.0);  //constant felec/permi (could still be optimized!)

            epote += et ;
            Coord3D fdb =2.0*et*dx ;
            forcelig[j] += fdb;
            forcerec[i] -= fdb;

        }

        //switch between minimum or saddle point
        if (r2 < m_params->rmin2[ii][jj] ) {

            dbl rr23 = rr2*rr2*rr2 ;
            dbl rep = rlen*rr2 ;
            dbl vlj = (rep-alen)*rr23;
            enon=enon+vlj+(ivor-1)*m_params->emin[ii][jj] ;

            dbl fb=6.0*vlj+2.0*(rep*rr23);
            Coord3D fdb = fb*dx;
            forcelig[j]+=fdb;
            forcerec[i]-=fdb;
        }
        else {
            dbl rr23=rr2*rr2*rr2;
            dbl rep=rlen*rr2;
            dbl vlj=(rep-alen)*rr23 ;
            enon += ivor*vlj ;

            dbl fb=6.0*vlj+2.0*(rep*rr23);

            Coord3D fdb=ivor*fb*dx ;
            forcelig[j] += fdb ;
            forcerec[i] -= fdb ;
        }


    }

    if (print) std::cout << "vlj  coulomb: " << enon << "  " << epote << "\n";
    m_elec = epote;
    m_vdw = enon;
    return enon+epote;
}



void BaseAttractForceField::Trans(uint molIndex, Vdouble & delta, uint shift,  bool print)
{
// molIndex is the index of the protein we want to extract the average
// translational forces


    AttractRigidbody const & rig(m_movedligand[molIndex]);
//   In this subroutine the translational force components are calculated
    dbl flim = 1.0e18;
    dbl ftr1, ftr2, ftr3, fbetr;

    ftr1=0.0;
    ftr2=0.0;
    ftr3=0.0;
    for (uint i=0;i<rig.Size(); i++)
    {
        ftr1=ftr1 + rig.m_forces[i].x;
        ftr2=ftr2 + rig.m_forces[i].y;
        ftr3=ftr3 + rig.m_forces[i].z;
    }

// force reduction, some times helps in case of very "bad" start structure
    for (uint i=0; i<3; i++)
    {
        fbetr=ftr1*ftr1 +ftr2*ftr2 +ftr3*ftr3;
        if (fbetr > flim)
        {
            ftr1=.01*ftr1;
            ftr2=.01*ftr2;
            ftr3=.01*ftr3;
        }
    }

    assert(shift+2 < delta.size());
    delta[0+shift]=ftr1;
    delta[1+shift]=ftr2;
    delta[2+shift]=ftr3;

    //debug:
    if (print) std::cout <<  "translational forces: " << ftr1 <<"  "<< ftr2 <<"  " << ftr3 << std::endl;
    return ;
}



void BaseAttractForceField::Rota(uint molIndex, dbl phi,dbl ssi, dbl rot, Vdouble & delta,uint shift, bool print)
{
// molIndex is the index of the protein we want to extract the average
// translational forces



    //delta array of dbls of dimension 6 ( 3 rotations, 3 translations)

    dbl  cs,cp,ss,sp,cscp,sscp,sssp,crot,srot,xar,yar,cssp,X,Y,Z ;
    dbl  pm[3][3];

// !c
// !c     calculates orientational force contributions
// !c     component 1: phi-angle
// !c     component 2: ssi-angle
// !c     component 3: rot-angle
// !c


    for (uint i=0; i<3;i++)
    {
        delta[i+shift]=0.0;
        for (uint j=0;j<3;j++)
            pm[i][j]=0.0 ;
    }

    cs=cos(ssi);
    cp=cos(phi);
    ss=sin(ssi);
    sp=sin(phi);
    cscp=cs*cp;
    cssp=cs*sp;
    sscp=ss*cp;
    sssp=ss*sp;
    crot=cos(rot);
    srot=sin(rot);

    // for the x, y and z coordinates, we need
    // the coordinates of the centered, non-translated molecule

    AttractRigidbody * pLigCentered = & m_centeredligand[molIndex] ; // pointer to the centered ligand
    AttractRigidbody * pLigMoved  = & m_movedligand[molIndex] ; // pointer to the rotated/translated ligand (for forces)

    assert(shift+2 < delta.size());
    for (uint i=0; i< pLigCentered->m_activeAtoms.size(); i++)
    {
        uint atomIndex = pLigCentered->m_activeAtoms[i];

        Coord3D coords = pLigCentered->GetCoords(atomIndex);
        X = coords.x;
        Y = coords.y;
        Z = coords.z;

        xar=X*crot+Y*srot;
        yar=-X*srot+Y*crot;
        pm[0][0]=-xar*cssp-yar*cp-Z*sssp ;
        pm[1][0]=xar*cscp-yar*sp+Z*sscp ;
        pm[2][0]=0.0 ;

        pm[0][1]=-xar*sscp+Z*cscp ;
        pm[1][1]=-xar*sssp+Z*cssp ;
        pm[2][1]=-xar*cs-Z*ss ;

        pm[0][2]=yar*cscp+xar*sp ;
        pm[1][2]=yar*cssp-xar*cp ;
        pm[2][2]=-yar*ss ;

        for (uint j=0;j<3;j++)
        {
            delta[j+shift] += pm[0][j] * pLigMoved->m_forces[atomIndex].x ;
            delta[j+shift] += pm[1][j] * pLigMoved->m_forces[atomIndex].y ;
            delta[j+shift] += pm[2][j] * pLigMoved->m_forces[atomIndex].z ;
        }
    }

    if (print) std::cout << "Rotational forces: " << delta[shift] << " " << delta[shift+1] << " " << delta[shift+2] << std::endl;

    return;
}



void BaseAttractForceField::AddLigand(AttractRigidbody & lig)
{

    setDummyTypeList(lig); // sets the dummy atom type. (virtual function customized for each Attract forcefield)

    AttractRigidbody centeredlig = lig ;
    Coord3D com = lig.FindCenter();
    m_ligcenter.push_back(com);

    m_movedligand.push_back(lig);
    centeredlig.CenterToOrigin();
    m_centeredligand.push_back(centeredlig);

}



void BaseAttractForceField::MakePairLists()
{
//at this point we expect that m_movedligand still contains original coordinates of all ligands
//(ie not centered) because we will generate the pairlist from this vector (list)


//creates the pairlist: loop over all pairs of ligands
    for (uint i=0; i < m_movedligand.size(); i++)
        for (uint j=i+1; j<m_movedligand.size(); j++)
        {
            AttractPairList plist(m_movedligand[i], m_movedligand[j], m_cutoff);
            m_pairlists.push_back(plist);
        }

}


AttractRigidbody BaseAttractForceField::GetLigand(uint i) {return m_movedligand[i];};


void AttractForceField2::setDummyTypeList(AttractRigidbody& lig)
{
    lig.setDummyTypes(m_params->_dummytypes);
}


} //namespace PTools