~skimura04/fluidity/fluidityDGSlope

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
scalar_boundary_conditions =
  (
      ## Boundary conditions
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         (
            element type {
               attribute name { "dirichlet" },
               ## Apply the dirichlet bc weakly.  Available
               ## automatically with discontinuous_galerkin and
               ## control_volume
               ## spatial_discretisations.
               ## If not selected boundary conditions are applied strongly.
               element apply_weakly {
                  ## If the initial condition and boundary conditions
                  ## differ, setting this option will cause the initial
                  ## condition on the boundary to be overwritten with
                  ## the boundary condition. Since you are applying the
                  ## boundary condition weakly, you probably do *not*
                  ## want this.
                  element boundary_overwrites_initial_condition {
                     empty
                  }?
               }?,
               input_choice_real
            }|
            element type {
               attribute name { "neumann" },
               input_choice_real
            }|
            robin_bc_scalar|
            ## Prevent the field from fluxing out of the boundary.
            ## Only applicable to control volume spatial discretisations.
            element type {
              attribute name { "zero_flux" },
              empty
            }|
            ## Add a bulk formulae flux to the scale field. Should
            ## really be added to Temperature, Salinity, or PhotosyntheticRadation
            ## fields, or nothing will happen. Do not add another Neumann boundary
            ## onto the same surface, or you will get an error.
            element type {
              attribute name { "bulk_formulae" },
              empty
            }|
            ## Sediment reentrainment boundary. Any sediment in the correct
            ## sediment class will be rentrained back into the flow
            ## depending on the bed shear stress and the parameters of the 
            ## sediment grain
            element type {
               attribute name { "sediment_reentrainment" },
               empty
            }|
            ## [UNDER DEVELOPMENT - DOES NOT WORK YET]
            ## Special type of Dirichlet boundary condition for the k-epsilon
            ## turbulence model. Can be used on TurbulentKineticEnergy (k)
            ## and/or TurbulentDissipation (epsilon) fields.
            ## e.g. use a Dirichlet BC on inlets and k_epsilon on walls.
            element type {
               attribute name { "k_epsilon" },
               ## Select high/low Reynolds number wall functions for k and epsilon fields.
               element string_value {
               "low_Re"|"high_Re"
               }
            }|
            ## Flux boundary condition. Currently only works with a control_volume 
            ## discretisation.
            ##
            ## This weakly enforces the total (advective plus diffusive) flux across 
            ## a boundary when solving the advection-diffusion equation.
            element type {
               attribute name { "flux" },
               input_choice_real
            }
         )
      }
)


robin_bc_scalar = 
   (
      ##  A robin boundary condition of the form
      ##  C1*T + n.(k*grad(T)) = C0
      ##  where k is the diffusivity tensor,
      ##  n the outward normal vector to the surface,
      ##  T the scalar field value on the surface,
      ##  C0 is the input order zero coefficient and
      ##  C1 is the input order one coefficient.
      ##  THIS WILL ONLY WORK FOR CONTINUOUS GALERKIN SPATIAL DISCRETISATION
      element type {
         attribute name { "robin" },
         ##  The order zero coefficient represented as C0 in
         ##  C1*T + n.(k*grad(T)) = C0
         element order_zero_coefficient {
            input_choice_real
         },
         ##  The order one coefficient represented as C1 in
         ##  C1*T + n.(k*grad(T)) = C0
         element order_one_coefficient {
            input_choice_real
         }
      }      
   )


prognostic_scalar_field =
   (
      scalar_equation_choice,
      spatial_discretisation_options,
      temporal_discretisation_options,
      (
         ## Solver
         element solver {
            linear_solver_options_asym
         }|
         ## Assume this field is being solved explicitly and skip the solver.
         ##
         ## ONLY AVAILABLE FOR PURE CONTROL VOLUME SPATIAL DISCRETISATIONS.
         ##
         ## Assumes lhs matrix only has diagonal lumped mass (times
         ## density if appropriate for equation)
         ## and divides the rhs by this.
         element explicit {
            empty
         }
      ),
      (
         ## Initial condition for WholeMesh
         ##
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_real
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids?,
            input_choice_initial_condition_real
         }
      )+,
      scalar_boundary_conditions*,
      ## Choice of subgridscale model to apply to this field. 
      ## Note that the selected parameterisation must be switched 
      ## on for this material phase.
      ##
      ## At this time, do not switch on this option if you are using Mellor-Yamada.
      (
         element subgridscale_parameterisation {
            attribute name { "Gent_McWilliams"}
         }|
         element subgridscale_parameterisation {
            attribute name { "GLS"}
         }|
         ## [UNDER DEVELOPMENT - DOES NOT WORK YET]
         ## Set the diffusivity to the eddy diffusivity calculated by the
         ## k-epsilon turbulence model. If using this, set the diffusivity field to
         ## diagnostic/algorithm(internal).
         element subgridscale_parameterisation {
            attribute name { "k-epsilon"},
            ## Option to set the Prandtl number (ratio of momentum diffusivity to field diffusivity)
            ##  for this field. Default = 1.0 if not specified.
            element Prandtl_number {
               input_choice_real
            }?
         }|
         element subgridscale_parameterisation {
            attribute name { "prescribed_diffusivity"}
         }
      )?,
      ## Buoyancy adjustment (vertical stabilization) schemes.
      element buoyancy_adjustment {
         ## Vertical mixing by diffusion.
         ## Stabilises unstable stratifications through mixing by diffusion.
         ##
         ## Note this scheme currently only applies to tracer fields represented in discontinuous spaces.
         element by_vertical_diffusion{
            ## Scaling amplitude of the applied diffusion. 
            ## If left unspecified, the default value of 1.0 is applied.
            element amplitude  {
                real
            }?,
            ## Calculates the rate of change of buoyancy in the direction of gravity
            ## on the field projected to continuous space - i.e. the buoyancy field is first projected to continous space.
            ## Without this option, this calculation is performed directly on the discontinuous field.
            ##
            ## Note this only make a difference when the buoyancy field is represented in a discontinuous space, and in fact,
            ## makes no difference to the routines called when this field is represented in a continuous space.
            ##
            ## This is one approach to allow the scheme to account for differences with respect to neighbouring
            ## elements when buoyancy is a discontinuous field.
            element project_buoyancy_to_continuous_space {
                empty
            }?
         }?
      }?,
      ## Diffusivity for field
      element tensor_field {
         attribute name { "Diffusivity" },
         attribute rank { "2" },
         (
            element prescribed {
                mesh_choice?,
                prescribed_tensor_field_no_adapt
            }|
            element diagnostic {
               mesh_choice?,
               (
                  tensor_python_diagnostic_algorithm |
                  internal_algorithm
               ),
               diagnostic_tensor_field
            }
         )
      }?,
      ## Source term. If the scalar field to be 
      ## solved for is subcycled then variations 
      ## in this source field across the subcycled 
      ## time steps are not considered.
      element scalar_field {
         attribute name { "Source" },
         attribute rank { "0" },
         (
            element prescribed {
               prescribed_scalar_field_no_adapt
            }|
            element diagnostic {
               (
                  scalar_python_diagnostic_algorithm |
                  internal_algorithm
               ),
               ## Add the source field directly to the 
               ## matrix system right hand side. To be 
               ## consistent this term should be tested 
               ## using the function space that 
               ## is used for the spatial discretisation.
               element add_directly_to_rhs {
                  comment
               }?,
               diagnostic_scalar_field_no_adapt
            } 
         )
      }?,
      ## Absorption term
      element scalar_field {
         attribute name { "Absorption" },
         attribute rank { "0" },
         (
            element prescribed {
               prescribed_scalar_field_no_adapt
            }|
            element diagnostic {
               (
                  scalar_python_diagnostic_algorithm |
                  internal_algorithm
               ),
               diagnostic_scalar_field_no_adapt
            }
         )
      }?,
      ## Velocity at which this substance sinks through the water column.
      ## 
      ## This velocity is in the direction of gravity so if the substance
      ## floats or swims upwards, this field should be negative.
      element scalar_field {
         attribute name { "SinkingVelocity" },
         attribute rank { "0" },
         (
            element prescribed {
               prescribed_scalar_field_no_adapt
            }|
            element diagnostic {
               (
                  scalar_python_diagnostic_algorithm |
                  internal_algorithm
               ),
               diagnostic_scalar_field_no_adapt
            }
         )
      }?,
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar,
      discrete_properties_algorithm_scalar?,
      ## Set the priority of this field
      ## This determines the order in which scalar_fields are solved for:
      ##  - higher numbers have the highest priority
      ##  - lower numbers (including negative) have the lowest priority
      ##  - default if not set is 0
      element priority {
         integer
      }?
   )

prognostic_velocity_field =
   (
      velocity_equation_choice,
      ## Spatial discretisation options
      element spatial_discretisation {
         (
            ## A new version of continuous galerkin assembly.
            element continuous_galerkin {
               advection_stabilisation_options,
               ## Discretisation options for the mass terms in the velocity equation.
               element mass_terms{
                  ## Lump the mass matrix - currently required if solving for pressure
                  ## and not using the schur complement scheme under Pressure
                  element lump_mass_matrix {
                     ## Lump on the submesh.
                     ## This only works for simplex meshes and is only
                     ## strictly valid on 2d meshes.
                     element use_submesh {
                       empty
                     }?
                  }?,
                  ## Remove the mass terms from the equation.
                  element exclude_mass_terms {
                     empty
                  }?
               },
               ## Discretisation options for the advection terms in the velocity equation.
               element advection_terms {
                  ## Integrate the advection terms of the momentum equation by parts.
                  ## This allows for the imposition of weak boundary conditions.
                  ## If activated the element advection matrix takes the form:
                  ##    /                                            /
                  ##  - | (grad N_A dot nu) N_B rho dV - (1. - beta) | N_A ( div nu ) N_B rho dV
                  ##    /                                            /
                  ## otherwise it takes the standard form:
                  ##    /                                     /
                  ##    | N_A (nu dot grad N_B) rho dV + beta | N_A ( div nu ) N_B rho dV
                  ##    /                                     /
                  ## where beta is set in conservative_advection, N is
                  ## a shape function and nu is the relative nonlinear
                  ## velocity.
                  element integrate_advection_by_parts {
                     empty
                  }?,
                  ## Remove the advection terms (u.grad u rho + beta
                  ## div u rho u) from the equation.
                  ## This overrides any other advection term options
                  ## (including conservative_advection below).
                  element exclude_advection_terms {
                     empty
                  }?
               },
               ## Discretisation options for the stress terms in the velocity equation.
               element stress_terms {
                  (
                     ## Use tensor form of the stress terms:
                     ##
                     ## mu u_{i,jj}
                     ##
                     ## This is only valid for incompressible
                     ## simulations as it is basically a simplication
                     ## of full stress form when divergent elements can
                     ## be cancelled out.
                     ##
                     ## Only diagonal components of viscosity
                     ## (i.e. either isotropic or
                     ## diagonal) are physical for isotropic materials.
                     ##
                     ## If components differ from each other
                     ## this must be for numerical reasons (i.e. not
                     ## physical variations in viscosity otherwise
                     ## simplification is not valid).
                     ##
                     ## If activated, the dim x dim (in this example
                     ## 3d) discrete stress matrix takes the form:
                     ##
                     ##  /  mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z
                     ##  |   0                                             ...
                     ##  \   0
                     ##
                     ##      0
                     ##  ... mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z   ...
                     ##      0
                     ##
                     ##      0                                                           \
                     ##  ... 0                                                           |
                     ##     mu_xx*N_a,x*N_b,x + mu_yy*N_a,y*N_b,y + mu_zz*N_a,z*N_b,z   /
                     ##
                     ## which is derived from b_a^T c b_b, where:
                     ##
                     ##  b_a = / N_a,x  \   c = /  mu_xx    0      0    \
                     ##        | N_a,y  |       |    0    mu_yy    0    |
                     ##        \ N_a,z  /       \    0      0    mu_zz  /
                     ##
                     ## where N_a and N_b are shape functions of the
                     ## ath and bth node respectively and mu are the
                     ## components of the viscosity tensor.
                    element tensor_form {
                      empty
                    }|
                    ## Use partial stress form of the stress tensor:
                    ##
                    ## 2*mu (u_{(i,j)})
                    ##
                    ## This couples the velocity components together.
                    ##
                    ## If using a viscosity ALL COMPONENTS OF
                    ## VISCOSITY MUST BE SET (i.e. either
                    ## anisotropic_symmetric or
                    ## anisotropic_asymmetric tensors).
                    ##
                    ## If components differ form each other this must
                    ## be for numerical reasons (i.e. not physical
                    ## variations in viscosity as the material is isotropic).
                    ##
                    ## If activated, the dim x dim (in this example
                    ## 3d) discrete stress matrix takes the form:
                    ##
                    ##  /   2*N_a,x*N_b,x*mu_xx + N_a,y*N_b,y*mu_xy + N_a,z*N_b,z*mu_xz
                    ##  |   N_a,x*N_b,y*mu_xy                                             ...
                    ##  \   N_a,x*N_b,z*mu_xz 
                    ##
                    ##      N_a,y*N_b,x*mu_xy 
                    ##  ... N_a,x*N_b,x*mu_xy + 2*N_a,y*N_b,y*mu_yy + N_a,z*N_b,z*mu_yz   ...
                    ##      N_a,y*N_b,z*mu_yz 
                    ##
                    ##      N_a,z*N_b,x*mu_xz                                             \
                    ##  ... N_a,z*N_b,y*mu_yz                                             |
                    ##      N_a,x*N_b,x*mu_xz + N_a,y*N_b,y*mu_yz + 2*N_a,z*N_b,z*mu_zz   /
                    ##
                    ## which is derived from b_a^T c b_b, where:
                    ##
                    ##  b_a = / N_a,x   0     0   \   c = /  2*mu_xx        0          0      0    0    0   \
                    ##        |  0    N_a,y   0   |       |     0        2*mu_yy       0      0    0    0   |
                    ##        |   0     0   N_a,z |       |     0           0       2*mu_zz   0    0    0   |
                    ##        | N_a,y N_a,x   0   |       |     0           0          0    mu_xy  0    0   |
                    ##        | N_a,z   0   N_a,x |       |     0           0          0      0  mu_xz  0   |
                    ##        \   0   N_a,z N_a,y /       \     0           0          0      0    0  mu_yz /
                    ##
                    ## where N_a and N_b are shape functions of the ath and bth node respectively and mu are the components of the viscosity tensor.
                    element partial_stress_form {
                      empty
                    }|
                    ## Use full stress form of the stress tensor:
                    ##
                    ## 2*mu (u_{(i,j)} - 1/3*\delta_{ij}u_{k,k})
                    ##
                    ## This couples the velocity components together.
                    ## It is required if performing a compressible simulation.
                    ##
                    ## If using a viscosity ALL COMPONENTS OF
                    ## VISCOSITY MUST BE SET (i.e. either
                    ## anisotropic_symmetric or
                    ## anisotropic_asymmetric tensors).
                    ##
                    ## If components differ form each other this must
                    ## be for numerical reasons (i.e. not physical
                    ## variations in viscosity as the material is isotropic).
                    ##
                    ## If activated, the dim x dim (in this example
                    ## 3d) discrete stress matrix takes the form:
                    ##
                    ##  /   4/3*N_a,x*N_b,x*mu_xx + N_a,y*N_b,y*mu_xy + N_a,z*N_b,z*mu_xz
                    ##  |   N_a,x*N_b,y*mu_xy - 2/3*N_a,y*N_b,x*mu_yx                       ...
                    ##  \   N_a,x*N_b,z*mu_xz - 2/3*N_a,z*N_b,x*mu_zx
                    ##
                    ##      N_a,y*N_b,x*mu_xy - 2/3*N_a,x*N_b,y*mu_xy
                    ##  ... N_a,x*N_b,x*mu_xy + 4/3*N_a,y*N_b,y*mu_yy + N_a,z*N_b,z*mu_yz   ...
                    ##      N_a,y*N_b,z*mu_yz - 2/3*N_a,z*N_b,y*mu_zy
                    ##
                    ##      N_a,z*N_b,x*mu_xz - 2/3*N_a,x*N_b,z*mu_xz                       \
                    ##  ... N_a,z*N_b,y*mu_yz - 2/3*N_a,y*N_b,z*mu_yz                       |
                    ##      N_a,x*N_b,x*mu_xz + N_a,y*N_b,y*mu_yz + 4/3*N_a,z*N_b,z*mu_zz   /
                    ##
                    ## which is derived from b_a^T c b_b, where:
                    ##
                    ##  b_a = / N_a,x   0     0   \   c = /  4/3*mu_xx  -2/3*mu_xy -2/3*mu_xz  0    0    0   \
                    ##        |  0    N_a,y   0   |       | -2/3*mu_yx   4/3*mu_yy -2/3*mu_yz  0    0    0   |
                    ##        |   0     0   N_a,z |       | -2/3*mu_zx  -2/3*mu_zy  4/3*mu_zz  0    0    0   |
                    ##        | N_a,y N_a,x   0   |       |     0           0          0     mu_xy  0    0   |
                    ##        | N_a,z   0   N_a,x |       |     0           0          0       0  mu_xz  0   |
                    ##        \   0   N_a,z N_a,y /       \     0           0          0       0    0  mu_yz /
                    ##
                    ## where N_a and N_b are shape functions of the ath and bth node respectively and mu are the components of the viscosity tensor.
                    element stress_form {
                      empty
                    }
                  )
               },
               ## large-eddy simulation models (currently restricted to use in incompressible flow cases, where the discrete velocity is divergence-free and the eddy viscosity tensor is traceless)
               element les_model {
                  ## similar to the original Smag model
                  element second_order {
                     ## literature symbol: Cs
                     ##
                     ## suggested value 0.1
                     element smagorinsky_coefficient {
                        real
                     },
                     ## eddy viscosity (turbulent diffusion of velocity).
                     ## This is an anisotropic symmetric viscosity, added to normal viscosity field, that
                     ## carries the influence of turbulence onto the velocity field.
                     element tensor_field {
                        attribute rank { "2" },
                        attribute name { "EddyViscosity" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_tensor_field
                           }
                        )
                     }?
                  }
               |
                  ## this adds a fourth order operator to tackle the
                  ## dissipation issues of the original Smag model
                  ##
                  ## use this if your turbulence dissipates faster than it should
                  ##
                  ## requires a fine mesh to perform well
                  element fourth_order {
                     ## literature symbol: Cs
                     ##
                     ## suggested value 0.1
                     element smagorinsky_coefficient {
                        real
                     }
                  }
               |
                  ## similar to the original WALE model
                  element wale {
                     ## literature symbol: Cs
                     ##
                     ## suggested value 0.1
                     element smagorinsky_coefficient {
                        real
                     }
                  }
               |
                  ## [UNDER DEVELOPMENT] The Germano dynamic method (See Germano 1991, Lilly 1991, Pope)
                  ## accounts for turbulent flow anisotropy by implementing the Smagorinsky model
                  ## with a spatially varying coefficient. At its heart is the difference between turbulent
                  ##  stress tensors calculated from the velocity field filtered at 2 filter widths, G_t and G_m.
                  ## See the manual for further details.
                  element dynamic_les {
                     ## Filtering scale factor alpha: the ratio between the filter widths.
                     ## The test filter G_t = G_m*alpha, where G_m is the filter
                     ## width associated with the local mesh size. Filtering is achieved by applying
                     ## the inverse Helmholtz operator: u_filter_2 = (1-alpha*M)^-1 * u_filter_1.
                     ##
                     ## default/recommended value: 2.0
                     element alpha {
                        real
                     },
                     ## Solver options are required for calculation of Helmholtz-smoothed velocity.
                     element solver {
                        linear_solver_options_sym
                     },
                     ## Use the Lilly modification to the model (see Lilly 1991).
                     ## 
                     element enable_lilly {
                        empty
                     }?,
                     ## Allow negative eddy viscosity (backscatter).
                     ## WARNING: this may result in the simulation blowing up.
                     ## 
                     element enable_backscatter {
                        empty
                     }?,
                     ## Filtered velocity (diagnostic). This is the Velocity field filtered
                     ## with the test filter - see manual.
                     element vector_field {
                        attribute rank { "2" },
                        attribute name { "FilteredVelocity" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_vector_field
                           }
                        )
                     }?,
                     ## Filter width tensor (diagnostic). This is the square of the mesh size.
                     element tensor_field {
                        attribute rank { "2" },
                        attribute name { "FilterWidth" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_tensor_field
                           }
                        )
                     }?,
                     ## Strain rate S1: the test filter applied to the strain rate of the mesh-filtered velocity.
                     element tensor_field {
                        attribute rank { "2" },
                        attribute name { "StrainRate" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_tensor_field
                           }
                        )
                     }?,
                     ## Strain rate S2: the strain rate of the test-filtered velocity.
                     element tensor_field {
                        attribute rank { "2" },
                        attribute name { "FilteredStrainRate" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_tensor_field
                           }
                        )
                     }?,
                     ## Dynamic eddy viscosity (turbulent diffusion of velocity).
                     ## This is an anisotropic viscosity, added to normal viscosity field, that
                     ## carries the influence of turbulence onto the velocity field.
                     element tensor_field {
                        attribute rank { "2" },
                        attribute name { "EddyViscosity" },
                        (
                           element diagnostic {
                              internal_algorithm,
                              velocity_mesh_choice,
                              diagnostic_tensor_field
                           }
                        )
                     }?
                  }
               }?,
               ## A gauss point viscosity, calculated in such a way that it depends
               ## upon temperature. This is only valid when you have a temperature field.
               element temperature_dependent_viscosity {
                   element reference_viscosity {
                    real
                   },
                   element activation_energy {
                    real
                   }
               }?
            }|
            ## Discontinuous galerkin formulation. Confusingly it is not necessary to provide
            ## a discontinuous velocity field for this to work!
            element discontinuous_galerkin {
               ## Discretisation options for the mass terms in the velocity equation.
               element mass_terms{
                  ## Lump the mass matrix
                  element lump_mass_matrix {
                    empty
                  }?,
                  ## Remove the mass terms from the equation.
                  element exclude_mass_terms {
                     empty
                  }?
               }?,
               element viscosity_scheme {
                  (
                     ## Compact discontinuous Galerkin scheme.
                     ## (Peraire and Persson SIAM J. Sci. Comput. 30, p1806)
                     element compact_discontinuous_galerkin {
                        ## Penalty_parameter
                        ## Add penalty term Int [u][v] dS on element boundaries
                        ## scaled by C_0
                        element penalty_parameter {
                           real
                        }?
                     }|
                     ## Classical scheme from Bassi and Rebay 
                     ## (JCP 131 267-179 1997)
                     element bassi_rebay {
                        empty
                     }|
                     ## Scheme in which upwinding is applied in
                     ## alternating directions. Devised by C.Pain.
                     element arbitrary_upwind {
                        empty
                     }|
                     ## Classical interior penalty scheme
                     ## see, e.g., SIAM Journal on Numerical Analysis
                     ## Vol. 39, No. 5 (2002), pp. 1749-1779 
                     element interior_penalty {
                        ## Penalty_parameter
                        ## The penalty term Int [u][v] dS on element boundaries
                        ## is scaled by C = C_0 h**p
                        ## This option specifies the C_0
                        ## There is a theoretical lower bound for 
                        ## stability and hence convergence
                        element penalty_parameter {
                           real
                        },
                        ## Penalty_parameter
                        ## The penalty term Int [u][v] dS on element boundaries
                        ## is scaled by C = C_0 h**p
                        ## This option specifies p
                        ## Theoretically p=-1 is required for linear elements
                        element edge_length_power {
                           real
                        },
                        ## Option for how to compute the edge length h
                        element edge_length_option {
                           ## Use face integral (take sqrt in 3D)
                           element use_face_integral {
                              empty
                           }|
                           ## Use difference between element centre 
                           ## and neighbour centre
                           ## Use 2x distance to face centre on boundaries
                           element use_element_centres {
                              empty
                           }
                        },
                        ## Switch on debugging output
                        element debug {
                           ## Bound for testing element gradient matrix
                           element gradient_test_bound {
                              real
                           },
                           ## Remove the elemental integral:
                           ## Int grad u.kappa.grad v dV
                           element remove_element_integral {
                              empty
                           }?,
                           ## Remove the primal fluxes
                           element remove_primal_fluxes {
                              empty
                           }?,
                           ## Remove the penalty fluxes
                           element remove_penalty_fluxes {
                              empty
                           }?
                        }?
                     }
                  )
               },
               element advection_scheme {
                  (
                     ## Straightforward upwinding of the nonlinear velocity.
                     element upwind {
                        empty
                     }|
                     ## Disable advection
                     element none {
                        empty
                     }
                  ),
                  ## Project the advecting velocity to continuous
                  ## space. This is useful for obtaining bounded
                  ## advection schemes.
                  element project_velocity_to_continuous {
                     ## The mesh to which the projection should occur.
                     element mesh {
                        attribute name { "CoordinateMesh" }
                     }|
                     element mesh {
                        attribute name { xsd:string }
                     }
                  }?,
                  ## Integrate the advection terms of the momentum equation by parts.
                  ##
                  ## Integrating the advection term by parts is
                  ## necessary for a discontinuous
                  ## galerkin discretisation however it is possible to
                  ## select how many times the
                  ## integration by parts is performed.
                  ## Twice is the norm.
                  element integrate_advection_by_parts {
                    (
                      ## If activated the element advection matrix takes the form:
                      ##    /                                 /
                      ##    | N_A (nu dot grad N_B) dV + beta | N_A ( div nu ) N_B dV
                      ##    /                                 /
                      ##      /                                         /
                      ##  + I | N_A_i (nu dot n) N_B_o ds + [(1-I) - 1] | N_A_i (nu dot n) N_B_i ds
                      ##      /                                         /
                      ## where beta is set in conservative_advection,
                      ## N is a shape function (uppercase
                      ## subscripts indicate nodes A or B while
                      ## lowercase subscripts indicate inner or outer
                      ## faces i and o respectively), nu is the
                      ## nonlinear velocity and n is the outward
                      ## pointing normal from the element.
                      element twice {
                        empty
                      }|
                      ## If activated the element advection matrix takes the form:
                      ##    /                                        /
                      ##  - | (grad N_A dot nu) N_B dV - (1. - beta) | N_A ( div nu ) N_B dV
                      ##    /                                        /
                      ##      /                                   /
                      ##  + I | N_A_i (nu dot n) N_B_o ds + (1-I) | N_A_i (nu dot n) N_B_i ds
                      ##      /                                   /
                      ## where beta is set in conservative_advection,
                      ## N is a shape function (uppercase
                      ## subscripts indicate nodes A or B while
                      ## lowercase subscripts indicate inner or outer
                      ## faces i and o respectively), nu is the
                      ## nonlinear velocity and n is the outward
                      ## pointing normal from the element.
                      element once {
                        empty
                      }
                    )
                  },
                  ## If activated the conservation term:
                  ##  /
                  ##  | N_A ( div nu ) N_B dV
                  ##  /
                  ## is integrated_by_parts such that the element
                  ## advection matrix becomes:
                  ##         /                                        /
                  ##  - beta | (grad N_A dot nu) N_B dV + (1. - beta) | N_A (nu dot grad N_B) dV
                  ##         /                                        /
                  ##      /                                                /
                  ##  + I | N_A_i (nu dot n) N_B_o ds + [(1-I) - (1-beta)] | N_A_i (nu dot n) N_B_i ds
                  ##      /                                                /                  
                  ## where beta is set in conservative_advection, N is
                  ## a shape function (uppercase
                  ## subscripts indicate nodes A or B while lowercase
                  ## subscripts indicate inner or outer
                  ## faces i and o respectively), nu is the nonlinear
                  ## velocity and n is the outward pointing normal
                  ## from the element.
                  ## This is invariant regardless of whether the main
                  ## advection term is integrated by parts once or
                  ## twice.
                  element integrate_conservation_term_by_parts {
                    empty
                  }?
               }
            }
         ),
         ## Conservative discretisation of momentum equations
         ##  BETA=1. -- conservative (divergence form)
         ##  BETA=0. -- non-conservative
         ##  0. < BETA < 1.
         element conservative_advection {
            real
         }
      },
      ## Temporal discretisation options
      element temporal_discretisation {
         ## Implicit/explicit control (THETA)
         ##  =0.  -- explicit
         ##  =0.5 -- Crank-Nicolson
         ##  =1.  -- implicit
         element theta {
            real
         },
         ## Non-linear relaxation term
         ##  = 0  -- previous timestep velocity solution used in non-linear terms of momentum equations
         ##  = 1  -- previous iteration velocity solution used in non-linear terms of momentum equations
         ##  0 <= ITHETA <= 1
         element relaxation {
            real
         },
         ## Implicit/explicit control of velocity-divergence temporal
         ##  discretisation, theta_divergence
         ##  =0.  -- explicit
         ##  =0.5 -- Crank-Nicolson
         ##  =1.  -- implicit
         ##  Specification of this parameter will only affect
         ##  solution procedure when a free-surface is present or 
         ##  compressible projection is used. If left unspecified
         ##  the code defaults to theta_divergence = theta.
         element theta_divergence {
            real
         }?,
         element discontinuous_galerkin {
            (
               ## Use timestep subcycling to solve this equation.
               ## Specify the maximum courant number per subcycle.
               element maximum_courant_number_per_subcycle {
                  real
               }
            )
         }?
      },
      ## <b>ONLY MAKES SENSE WITH STOKES</b>
      ##
      ## Reference node (Node at which all components of velocity = 0.)
      ##
      ## Must be less than the total number of nodes.
      ## If parallel must be less than the total number of nodes of the first processor.
      ##
      ## WARNING: This only makes sense if you are solving a Stokes
      ## equation (i.e. excluding mass and advection terms in the 
      ## spatial_discretisation above) with all Neumann or periodic boundaries.
      ## 
      ##
      ## Note: it is also an option to remove the null-space of the residual vector. This
      ## option is available under solvers but only removes a single null space so will
      ## only work if your Stokes velocities are coupled in some way (not generally the 
      ## case unless using stress form viscosity and/or coriolis).
      element reference_node {
         integer
      }?,
      ## Solver
      element solver {
         linear_solver_options_asym
      },
      (
         ## Initial condition for WholeMesh
         ##
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_vector
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids?,
            input_choice_initial_condition_vector
         }
      )+,
      (
         ## Prescribed different regions of the field
            element prescribed_region {
            attribute name { string },
            region_ids,
            input_choice_initial_condition_vector
         }
      )*,
      ## Boundary conditions
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         velocity_boundary_conditions
      }*,
      ## For a Newtonian fluid this is the shear viscosity.
      ##
      ## For continuous_galerkin see stress_terms to see how the
      ## viscosity tensor is dealt with in the momentum equation.
      element tensor_field {
         attribute name { "Viscosity" },
         attribute rank { "2" },
         (
            element prescribed {
               mesh_choice?,
               prescribed_tensor_field_no_adapt
            }|
            element diagnostic {
               mesh_choice?,
               (
                  internal_algorithm |
                  bulk_viscosity_algorithm |
                  tensor_python_diagnostic_algorithm
               ),
               diagnostic_tensor_field
            }
         )
      }?,
      ## Source
      element vector_field {
         attribute name { "Source" },
         attribute rank { "1" },
         (
            element prescribed {
               mesh_choice?,
               prescribed_vector_field_no_adapt
            }|
            element diagnostic {
               mesh_choice?,
               (
                  vector_python_diagnostic_algorithm |
                  imposed_material_velocity_source_algorithm |
                  internal_velocity_source_algorithm
               ),
               diagnostic_vector_field
            }
         ),
         element lump_source {
            empty
         }?
      }?,
      ## Absorption
      ##
      ## Note: When in spherical geometry the absorption is now automatically rotated.
      ## The input values below correspond to setting the diagonal of the absorption matrix
      ## in the rotated frame of reference. The columns correspond to phi, theta and r 
      ## respectively.
      element vector_field {
         attribute name { "Absorption" },
         attribute rank { "1" },
         (
            element prescribed {
               mesh_choice?,
               prescribed_vector_field_no_adapt
            }|
            element diagnostic { 
               mesh_choice?,
               (
                  vector_python_diagnostic_algorithm |
                  imposed_material_velocity_absorption_algorithm |
                  internal_velocity_absorption_algorithm
               ),
               diagnostic_vector_field
            }
         ),
         (
           ## Default absorption: no lumping, is fully evaluated before the
           ## the pressure correction.
           element default_absorption {
              empty
           }|
           ## Lump the inclusion of absorbtion terms.
           element lump_absorption {
              ## Lump on the submesh.
              ## This only works for simplex meshes and is only
              ## strictly valid on 2d meshes.
              element use_submesh {
                empty
              }?
           }|
           ## Includes the pressure correction to the velocity in the
           ## absorption term (for theta>0). This makes the absorption
           ## term more implicit. The absorption term is lumped if and
           ## only if the mass matrix is lumped (lump_mass_matrix).
           element include_pressure_correction {
              empty
           }
         )
      }?,
      ## Vertical stabilization options
      ##
      ## Note: Switching on one of these options will result in all
      ## absorption terms being included in the pressure correction
      ## if running a planar simulation.
      element vertical_stabilization {
         ## A depth dependent absorption term to
         ## increase stability in shallow regions 
         ## given by n_grav*g*dt*rho/d
         element vertical_velocity_relaxation{
            ## This option scales the vertical velocity
            ## relaxation absorption by the chosen factor.
            ## (Note: Typical value for a time step of 100s
            ##  is ~ 0.0001. i.e. it probably needs to be small.)
            element scale_factor{
              real
            }
         }?,
         ## Implicit buoyancy, calculated via
         ## theta*g*dt*drho/dr_grav
         element implicit_buoyancy{
            ## Use this option to set a 'minimum' drho/dr_grav
            ## to be used in the implicit buoyancy calculation.
            ## Note that the default value is zero. 
            element min_gradient{
              real
            }?
         }?
      }?,
      ## SurfaceTension
      element tensor_field {
         attribute name { "SurfaceTension" },
         attribute rank { "2" },
         (
            element diagnostic {
                internal_algorithm,
                attribute field_name { "MaterialVolumeFraction" },
                ## Choose whether the mass matrix is lumped or not for the calculation of the gradient
                element lump_mass_matrix {
                  empty
                }?,
                ## Solver options are necessary if you're not lumping your mass or if you're field isn't dg
                element solver {
                  linear_solver_options_sym
                }?,
                ## Choose whether the surface tension term in the momentum equation is integrated by parts or not
                element integrate_by_parts {
                  empty
                }?,
                diagnostic_tensor_field
            }
         )
      }?,
      ## DrainageK1
      ## Used for calculating drainage for foams.
      ## It is based on the properties of the liquid within the Plateau borders.
      ## K1 = (0.0, -density*gravity/3*drag_coefficient*viscosity, 0.0)
      element vector_field {
         attribute name { "DrainageK1" },
         attribute rank { "1" },
         (
            element prescribed {
               mesh_choice?,
               prescribed_vector_field_no_adapt
            }|
            element diagnostic {
               diagnostic_vector_field
            }
         )
      }?,
      ## DrainageK2
      ## Used for calculating drainage for foams
      ## It is based on the properties of the liquid within the Plateau borders.
      ## K2 = sqrt(sqrt(3)-pi/2)*surface_tension/(6*drag_coefficient*viscosity)
      element scalar_field {
         attribute name { "DrainageK2" },
         attribute rank { "1" },
         (
            element prescribed {
               mesh_choice?,
               prescribed_scalar_field_no_adapt
            }|
            element diagnostic { 
               diagnostic_scalar_field
            }
         )
      }?,
      prognostic_vector_output_options,
      prognostic_velocity_stat_options,
      vector_convergence_options,
      prognostic_detector_options,
      vector_steady_state_options,
      adaptivity_options_prognostic_vector_field,
      interpolation_algorithm_vector,
      discrete_properties_algorithm_vector?
   )

prognostic_pressure_field =
   (
      element spatial_discretisation {
         (
            element continuous_galerkin {
               ## remove the  fourth order pressure stabilisation term KCMC
               ## must be removed for multimaterial and free surface calculations
               element remove_stabilisation_term {
                  empty
               }?,
               ## Integrate the continuity equation by parts.
               ##
               ## This allows for the imposition of weak velocity boundary conditions with continuous_galerkin.
               ## If activated this means that the pressure gradient operator is not integrated by parts.
               element integrate_continuity_by_parts {
                  empty
               }?,
               ## ** UNDER DEVELOPMENT **
               ##
               ## Fix for low reynolds numbers by adding the viscous terms to the inversed lumped mass matrix for the pressure correction.
               ## 
               ## ** ONLY WORKS with continuous_galerkin Velocity and lumping the mass matrix and not with lumping on submesh.
               element low_re_p_correction_fix {
                  empty
               }?,
               ## Test the continuity equation with the control volume dual mesh of the finite element pressure mesh.
               ## Only works for incompressible flow. This will make the pressure matrix non symmetric which must be 
               ## considered when selecting the pressure solver options. This will not work with the free surface and 
               ## wetting and drying models. Also the mesh assoicated with the pressure field must use the lagrangian 
               ## element type (the default). This will not work with the implicit solids model using two way coupling. 
               element test_continuity_with_cv_dual {
                  comment
               }?
            }|
            ## Select this discretisation if Pressure is defined on a discontinous mesh.
            ## Only works if your Velocity (or Momentum) is continuous. With this option
            ## the continuity equation is never integrated by parts.
            element discontinuous_galerkin {
               empty
            }|
            element control_volumes {
               empty
            }
         )
      },
      (
         ## Reference node (Node at which pressure = 0.) Note that the node number must be less than the total number of nodes.
         ## If running in parallel, the node number must be less than the total number of nodes of the first processor.
         ## ** Note - it is also an option to remove the null-space of the residual vector. This
         ## option is available under solvers
         element reference_node {
            integer
         }|
         ## Input coordinates of desired reference node. If a node does not exist at these
         ## coordinates, the nearest vertex will be selected.
         element reference_coordinates {
            real_dim_vector
         }
      )?,
      ## **UNDER DEVELOPMENT**
      ## This searches the CMC matrix diagonal looking for nodes that are less than the maximum value time epsilon(0.0) (i.e. nodes that are effectively zero).
      ## It then zeros that row and column and places a one on the diagonal and a zero on the rhs.
      ## At a debug level of 2 it also prints out the value and the sum of the row values.
      ## This is useful as a debugging tool if PETSc complains about zeros on the diagonal (i.e. if you have a stiff node in your mesh) but doesn't necessary produce nice answers at the end.
      element repair_stiff_nodes {
         empty
      }?,
      ## Atmospheric pressure
      ##
      ## Manual suggests 1.01325E+6
      element atmospheric_pressure {
         real
      }?,
      ## scheme
      element scheme {
         ## Use a poisson pressure equation to calculate a first guess at pressure.
         ## This does not necessarily satisfy continuity.
         ##   = 1 -- use a poisson guess at every timestep
         ##   = 0 -- never use a poisson guess
         ##   =-1 -- use a poisson guess at the first timestep only
         ## Manual suggests -1
         element poisson_pressure_solution {
            (
               element string_value{
                  # Lines is a hint to the gui about the size of the text box.
                  # It is not an enforced limit on string length.
                  attribute lines { "1" },
                  ( "never" | "only first timestep")
               },
               comment
            )
         },
         (
            ## Use the incompressible projection method to determine
            ## the pressure and satisfy continuity
            element use_projection_method {
               ## Assemble and use the full schur complement.
               ## This allows you to not lump the mass matrix if you're using
               ## cg and to use the full momentum matrix in the projection if
               ## you so desire.
               element full_schur_complement {
                 ( 
                   ## Specify the inner matrix (IM) to form the projection schur complement (C^T*IM^{-1}*C). 
                   ## Use the full mass matrix.
                   ##
                   ## Make sure you've not lumped your mass in the velocity spatial_discretisation if you want to be consistent!
                   element inner_matrix {
                     attribute name { "FullMassMatrix" },
                     element solver {
                       linear_solver_options_sym
                     }
                   }|
                   ## Specify the inner matrix (IM) to form the projection schur complement (C^T*IM^{-1}*C). 
                   ## Use the full momentum matrix.
                   ##
                   ## Doesn't really matter if you've lumped your mass or not but why would you if you're doing a full inner solve anyway?
                   element inner_matrix {
                     attribute name { "FullMomentumMatrix" },
                     element solver {
                       linear_solver_options_asym
                     }
                   }
                 ),
                 (
                   ## Specify the preconditioner matrix to use on the schur complement.
                   ##
                   ## For DG, the LumpedSchurComplement is our best approximation to CMC.
                   element preconditioner_matrix {
                     attribute name { "LumpedSchurComplement" },
                     element lump_on_submesh {
                       empty
                     }?
                   }|
                   ## Specify the preconditioner matrix to use on the schur complement.
                   ##
                   ## DiagonalSchurComplement = C_P^T * [(Big_m)_diagonal]^-1 * C
                   element preconditioner_matrix {
                     attribute name { "DiagonalSchurComplement" },
                     empty
                   }|
                   ## Specify the preconditioner matrix to use on the schur complement.
                   ##
                   ## Pressure Mass Matrix, scaled with the inverse of viscosity. This is
                   ## shown to be spectrally equivalent to the Schur complement.
                   ## Note that this currently only works with isoviscous and/or isotropic
                   ## viscosity tensors.
                   element preconditioner_matrix {
                     attribute name { "ScaledPressureMassMatrix" },
                     empty
                   }|
                   ## Specify the preconditioner matrix to use on the schur complement.
                   element preconditioner_matrix {
                     attribute name { "NoPreconditionerMatrix" },
                     empty
                   }
                 )
               }?
            }|
            ## Use the compressible projection method to determine the
            ## pressure and satisfy continuity and the eos.
            ## This is only currently compatible with control volume
            ## pressure spatial discretisations and requires a
            ## multimaterial eos.
            element use_compressible_projection_method {
               (
                  ## Variable (normally a density) used to normalise
                  ## each materials contribution
                  ## to the C_P^T matrix.  Leave unselected for no normalisation.
                  ## Selects the MaterialDensity field.
                  element normalisation {
                     attribute name{ "MaterialDensity" },
                     empty
                  }|
                  ## Variable (normally a density) used to normalise
                  ## each materials contribution
                  ## to the C_P^T matrix.  Leave unselected for no normalisation.
                  ## Selects the bulk Density field.
                  element normalisation {
                     attribute name{ "Density" },
                     empty
                  }|
                  ## Variable (normally a density) used to normalise
                  ## each materials contribution
                  ## to the C_P^T matrix.  Leave unselected for no normalisation.
                  ## Allows the selection of an arbitrary field.
                  element normalisation {
                     attribute name{ string },
                     empty
                  }
               )?

            }
         ),
         ## rediscretise the equations at every timestep and iteration
         ## (this is useful as a debugging tool but shouldn't be necessary for any application runs)
         element update_discretised_equation {
            empty
         }?
      },
      ## Solver
      element solver {
         linear_solver_options_sym
      },
      (
         ## Initial condition for WholeMesh
         ##asc
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_pressure
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids?,
            input_choice_initial_condition_pressure
         }
      )*,
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         element type {
            attribute name { "dirichlet" },
            ## Apply the dirichlet bc weakly.  Available
            ## automatically with discontinuous_galerkin and
            ## control_volume spatial_discretisations.
            ## If not selected boundary conditions are applied strongly.
            element apply_weakly {
              ## If the initial condition and boundary conditions
              ## differ, setting this option will cause the initial
              ## condition on the boundary to be overwritten with
              ## the boundary condition. Since you are applying the
              ## boundary condition weakly, you probably do *not*
              ## want this.
              element boundary_overwrites_initial_condition {
                 empty
              }?
            }?,
            input_choice_real_plus_boundary_forcing
         }
      }*,
      pressure_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      detector_options_disabled_default,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )

prognostic_geostrophic_pressure_field =
   (
      element spatial_discretisation {
         ## Enables / disables RHS terms in the geopressure solver:
         ##
         ##   include_buoyancy - Include both the buoyancy and Coriolis terms on the RHS
         ##   exclude_buoyancy - Include only the Coriolis term on the RHS
         ##   exclude_coriolis - Include only the buoyancy term on the RHS
         element geostrophic_pressure_option {
            element string_value {
               "include_buoyancy" | "exclude_buoyancy" | "exclude_coriolis"
            }
         }
      },
      (
         ## Sets node 1 in the mesh as a reference node
         element reference_node {
            attribute name { "node_1" },
            element integer_value {
              attribute rank { "0" },
              attribute shape { "1" },
              "1"
            },
            comment
         }|
         ## Sets a custom node in the mesh as a reference node
         element reference_node {
            attribute name { "custom"},
            integer
         }|
         ## Sets the value of the field to zero at a supplied coordinate.
         ## This is a post-processing step after the solve, and hence should
         ## be used with the solver/remove_null_space option.
         element zero_coord {
           real_dim_vector
         }
      )?,
      (
         ## Solver
         element solver {
            linear_solver_options_sym
         }
      ),
      (
         ## Initial condition for WholeMesh
         ##
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_real
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids?,
            input_choice_initial_condition_real
         }
      )*,
      ## Apply a strong dirichlet boundary condition to GeostrophicPressure.
      ## If applied, this would normally be a homogeneous bc on the top but
      ## this only makes sense when excluding coriolis.
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         element type {
            attribute name { "dirichlet" },
            input_choice_real_plus_boundary_forcing
         }
      }*,
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )
   
# Vertical balance pressure field, this is a copy of prognostic_scalar_field above
# removing all options that don't apply (mainly advection related)
prognostic_vertical_balance_pressure_field =
   (
      ## Solver
      element solver {
         linear_solver_options_sym
      },
      ## Apply a strong dirichlet boundary condition to VerticalBalancePressure.
      ## This is normally be a homogeneous bc on the top surface.
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         element type {
            attribute name { "dirichlet" },
            input_choice_real_plus_boundary_forcing
         }
      }+,      
      ## Disables checkpointing of this field
      element exclude_from_checkpointing {
        comment
      },
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )
   
# Hydrostatic pressure field, this is a copy of prognostic_scalar_field above
# removing all options that don't apply (mainly advection related)
prognostic_hydrostatic_pressure_field =
   (
      ## Spatial discretisation options
      element spatial_discretisation {
        (
          ## Uses an advancing front technique to integrate
          ## downwards through the mesh.
          ##
          ## Requires a discontinuous mesh!
          element discontinuous_galerkin {
            empty
          }|
          ## Solves a continuous steady state equation.
          ##
          ## Requires a continuous mesh and solver options below.
          element continuous_galerkin {
            advection_stabilisation_options,
            ## By default when the gradient of the HydrostaticPressure is
            ## subtracted from the rhs of the momentum equation, it is 
            ## integrated by parts.  This is the most general case as the
            ## HydrostaticPressure can be discontinuous.
            ## Use this option to turn off this behaviour, which will
            ## be valid for a continuous HydrostaticPressure.
            element do_not_integrate_gradient_by_parts {
              empty
            }?
          }
        )
      },
      ## Solver
      ## Only required for continuous_galerkin spatial_discretisations!
      element solver {
         linear_solver_options_asym
      }?,
      ## Disables checkpointing of this field
      element exclude_from_checkpointing {
        comment
      },
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )
# Hydrostatic pressure gradient field
prognostic_hydrostatic_pressure_gradient_field =
   (
      ## Disables checkpointing of this field
      element exclude_from_checkpointing {
        comment
      },
      prognostic_vector_output_options,
      prognostic_velocity_stat_options,
      vector_convergence_options,
      prognostic_detector_options,
      vector_steady_state_options,
      adaptivity_options_prognostic_vector_field,
      interpolation_algorithm_vector_full
   )

# Foam Velocity Potential field.
# Used to calculate the velocity of flowing foams.
prognostic_foam_velocity_potential_field =
   (
      ## Spatial discretisation options
      element spatial_discretisation {
         element foam_velocity_option {
            empty
         }
      },
     (
         ## Solver
         element solver {
            linear_solver_options_sym
         }
      ),
      (
         ## Initial condition for WholeMesh
         ##
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_real
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids,
            input_choice_initial_condition_real
         }
      )+,
      ## Boundary conditions
      element boundary_conditions {
         attribute replaces { "boundary, TTPER1 TTPER2 TTPERI" },
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         (
            element type {
               attribute name { "dirichlet" },
               ## Apply the dirichlet bc weakly.  Available
               ## automatically with discontinuous_galerkin,
               ## control_volume, and mixed_cv_cg
               ## spatial_discretisations.
               ## If not selected boundary conditions are applied strongly.
               element apply_weakly {
                  ## If the initial condition and boundary conditions
                  ## differ, setting this option will cause the initial
                  ## condition on the boundary to be overwritten with
                  ## the boundary condition. Since you are applying the
                  ## boundary condition weakly, you probably do *not*
                  ## want this.
                  element boundary_overwrites_initial_condition {
                     empty
                  }?
               }?,
               input_choice_real
            }|
            element type {
               attribute name { "neumann" },
               input_choice_real
            }|
            robin_bc_scalar|
            ## Prevent the field from fluxing out of the boundary.
            ## Only applicable to control volume spatial discretisations.
            element type {
              attribute name { "zero_flux" },
              empty
            }
         )
      }*,
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )
   
# free surface field, this is a copy of prognostic_scalar_field above
# removing all options that don't apply (mainly advection related)
prognostic_free_surface_field =
   (
      (
         ## Spatial discretisation options
         element spatial_discretisation {
            ## Form a full 3D system for the free surface
            element free_surface_3D {
               empty
            }?,
            element fourth_order_dissipation {
               empty
            }?,
            ## low order (linear) free surface
            element low_order_free_surface {
               empty
            }?,
            (
               ## Select free surface filter
               ##
               ## With PN-PN we need some filter to supress spurious modes.
               element default_free_surface_filter {
                  empty
               }|
               ## Select free surface filter
               ##
               ## With PN-PN we need some filter to supress spurious modes.
               element user_specified_free_surface_filter {
                  ## Default is to apply 0.01 and for wetting and drying cases 1.0
                  element non_linear_filter_coefficient {
                     real
                  }
               }|
               ## Switch off free surface filter, this is more efficient than setting the coefficient to 0.
               element switch_off_free_surface_filter {
                  empty
               }
            ),
            ## Apply wetting and drying routines
            element wetting_drying {
               empty
            }?,
            ## Tidal forcing options 
            element tidal_forcing {
               ## M2
               element M2 {
                 empty
               }?,
               ## S2
               element S2 {
                  empty
               }?,
               ## N2
               element N2 {
                  empty
               }?,
               ## K2
               element K2 {
                  empty
               }?,
               ## K1
               element K1 {
                  empty
               }?,
               ## O1
               element O1 {
                  empty
               }?,
               ## P1
               element P1 {
                  empty
               }?,
               ## Q1
               element Q1 {
                  empty
               }?,             
               ## Switch on all tidal components
               element all_tidal_components {
                  empty
               }?,
               ## Switches on a Love number of 0.3
               element love_number {
                  empty
               }?,
               ## Use static tidal force for testing
               element static_tidal_force {
                  empty
               }?
            }?
         }
      ),
      # atheta, ctheta and fstheta (absorption, coriolis and free surface)
      # need to go in temporal discretisation
      # they are currently hard-coded however
      element temporal_discretisation {
         ## Implicit/explicitness for the free surface.
         ##
         ## Suggested value 1.0 (should be at least bigger than 0.5).
         ##  =0.  -- explicit
         ##  =0.5 -- Crank-Nicolson
         ##  =1.  -- implicit
         element theta {
            real
         },
         # Maybe this should go under a proper absorption field under free surface?
         ## Implicit/explicitness for absorption
         ## =0.  -- explicit (default)
         ## =0.5 -- Crank-Nicolson
         ## =1.  -- implicit
         element absorption_theta {
            real
         }?
      },
      ## Solver
      element solver {
         linear_solver_options_sym
      },
      (
         ## Initial condition for WholeMesh
         ##
         ## Only specify one condition if not using mesh regions.
         ## Otherwise select other initial_condition option, specify region_ids
         ## and distinct names.  Then add extra intial conditions for other regions.
         element initial_condition {
            attribute name { "WholeMesh" },
            input_choice_initial_condition_real
         }|
         ## Multiple initial_conditions are allowed if specifying
         ## different values in different
         ## regions of the mesh (defined by region_ids).  In this case
         ## each initial_condition
         ## requires a distinct name for the options dictionary.
         element initial_condition {
            attribute name { string },
            region_ids?,
            input_choice_initial_condition_real
         }
      )+,
      ## Boundary conditions
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Type
         (
            element type {
               attribute name { "dirichlet" },
               (
                  input_choice_real_contents|
                  element from_file {
                     element tidal {
                        attribute file_name { string },
                        attribute variable_name_amplitude { string },
                        attribute variable_name_phase { string },
                        ## See E.W. Schwiderski - Rev. Geophys. Space
                        ## Phys. Vol. 18 No. 1 pp. 243--268, 1980
                        ## for details of these constituent.
                        attribute name {"M2"|"S2"|"N2"|"K2"|"K1"|"O1"|"P1"|"Q1"|"Mf"|"Mm"|"Ssa"}
                     }+
                  }|
                  ## Set the boundary free-surface height from NEMO data.
                  ## A prescribed NEMO pressure scalar field must be set to use this option.
                  ## Set the name of the prescribed NEMO pressure scalar field below.
                  element NEMO_data {
                     attribute field_name { string }
                  }
               )
            }|
            element type {
               attribute name { "neumann" },
               input_choice_real
            }|
            robin_bc_scalar
         )
      }*,
      # no Diffusivity for field
      # no source term
      # no Absorption term
      # no Adaptive timestepping option
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      scalar_convergence_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar,
      discrete_properties_algorithm_scalar?
   )

# stream function, this is a copy of prognostic_scalar_field above
# removing all options that don't apply (mainly advection related)
prognostic_stream_function_field =
   (
      ## Solver
      element solver {
         linear_solver_options_asym
      },
      ## Disables checkpointing of this field
      element exclude_from_checkpointing {
        comment
      },
      # no Diffusivity for field
      # no source term
      # no Absorption term
      # no Adaptive timestepping option
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      prognostic_detector_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )


# stream function, this is a copy of prognostic_scalar_field above
# removing all options that don't apply (mainly advection related)
prognostic_multipath_stream_function_field =
   (
      ## Solver
      element solver {
         linear_solver_options_asym
      },
      ## Boundary conditions
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## The streamfunction will be zero on the primary boundary. There must be exactly one primary boundary.
          element primary_boundary{
            empty
         },
         ## Type
         (
            element type {
               attribute name { "dirichlet" },
               element internally_calculated {
                  empty
               }
            }
         )
      },
      ## Boundary conditions
      element boundary_conditions {
         attribute name { string },
         ## Surface id:
         element surface_ids {
            integer_vector
         },
         ## Secondary boundaries have a value given by the flux between this boundary and the primary boundary.  
         element secondary_boundary{
            ## A point on or behind the primary boundary *from* which the flux line should extend. 
            ## Note: Path should not go through periodic boundary
            element primary_point {
               real_dim_vector
            },
            ## A point on or behind the secondary boundary *to* which the flux line should extend. 
            ## Note: Path should not go through periodic boundary
            element secondary_point {
               real_dim_vector
            }
         },
         ## Type
         (
            element type {
               attribute name { "dirichlet" },
               element internally_calculated {
                  empty
               }
            }
         )
      }*,
      ## Disables checkpointing of this field
      element exclude_from_checkpointing {
        comment
      },
      # no Diffusivity for field
      # no source term
      # no Absorption term
      # no Adaptive timestepping option
      prognostic_scalar_output_options,
      prognostic_scalar_stat_options,
      prognostic_detector_options,
      scalar_steady_state_options,
      adaptivity_options_prognostic_scalar_field,
      interpolation_algorithm_scalar_full,
      discrete_properties_algorithm_scalar?
   )

scalar_equation_choice =
   (
      (
         ## Select the equation used to solve for this field.
         ## Advection Diffusion is the norm for scalar fields.
         ## Works for all discretisation types.
         element equation { 
            attribute name { "AdvectionDiffusion" },
            empty
         }|
         ## ***UNDER TESTING***
         ##
         ## Select the equation used to solve for this field.
         ## Heat Transfer equation - requires the selection of a Density field.
         ##
         ## ONLY WORKS FOR CONTROL VOLUME DISCRETISATIONS.
         ##
         ## This equation is very similar to a standard advection of temperature equation
         ## except that a coefficient density field may be spatially and/or temporally
         ## varying.
         element equation {
            attribute name { "HeatTransfer" },
            equation_coefficients
         }|
         ## ***UNDER TESTING***
         ##
         ## Select the equation used to solve for this field.
         ## Conservation of Mass equation - requires the selection of a Density field.
         ## ONLY WORKS FOR CONTROL VOLUME DISCRETISATIONS
         element equation {
            attribute name { "ConservationOfMass" },
            equation_coefficients
         }|
         ## ***UNDER TESTING***
         ##
         ## Select the equation used to solve for this field.
         ## Reduced Conservation of Mass equation - requires the selection of a Density field.
         ##
         ## ONLY WORKS FOR CONTROL VOLUME DISCRETISATIONS
         ##
         ## This equation is very similar to a standard conservation of mass equation
         ## except that the time discretisation uses only a single time level of density.
         ## This enables consistency between the
         ## MaterialVolumeFraction (ReducedConservationOfMass) and
         ## MaterialDensity (Advection) equations in compressible multimaterial simulations.
         element equation {
            attribute name { "ReducedConservationOfMass" },
            equation_coefficients
         }|
         ## ***UNDER TESTING***
         ##
         ## Select the equation used to solve for this field.
         ## Internal Energy equation - requires the selection of a Density field.
         ## ONLY WORKS FOR CONTROL VOLUME DISCRETISATIONS
         ## Solve the internal energy equation for this field.
         ## Requires pressure and velocity fields to be present.
         ## Uses a nonconservative time discretisation.
         element equation {
            attribute name { "InternalEnergy" },
            equation_coefficients
         }|
         ## Option to solve for electrical potential from
         ## electrokinetic, electrochemical or electrothermal sources 
         element equation { 
            attribute name { "ElectricalPotential" }
         }
      )
   )

equation_coefficients =
   (
      ## Select density to use in the equation
      ## Use the MaterialDensity - useful for multimaterial simulations
      ## Clearly this requires a MaterialDensity field to be present
      ## Whatever field is selected must be present.
      element density {
        attribute name { "MaterialDensity" },
        coefficient_discretisation_options?
      }|
      ## Select density to use in the equation
      ## Use the bulk Density
      ## Clearly this requires a Density field to be present
      ## Whatever field is selected must be present.
      element density {
        attribute name { "Density" },
        coefficient_discretisation_options?
      }|
      ## Select density to use in the equation
      ## Whatever field is selected must be present.
      element density {
        attribute name { string },
        coefficient_discretisation_options?
      }
   )

coefficient_discretisation_options =
  (
    ## Provide discretisation options for the coefficient density field.
    ##
    ## If not provided then the discretisation options will default to those
    ## under the field that is named (hence it will generally have to be a prognostic
    ## field itself).
    element discretisation_options {
      element spatial_discretisation {
        element control_volumes {
          spatial_control_volume_options_excluding_none
        }
      },
      element temporal_discretisation {
        ## Implicit/explicit control (TTHETA)
        ##  =0.  -- explicit
        ##  =0.5 -- Crank-Nicolson
        ##  =1.  -- implicit
        element theta {
          real
        },
        element control_volumes {
          ## Only works if a control volume or coupled_cv spatial discretisation is selected.
          ## If not active then the theta specified above will be used.
          ## Otherwise use variable limited theta on individual faces.
          element limit_theta {
              empty
          }?
        }
      }
    }
  )

velocity_equation_choice =
   (
      ## Select the equation used to solve for velocity.
      ## LinearMomentum is the norm and works for all discretisation types.
      element equation {
         attribute name { "LinearMomentum" }
      }|
      ## Select the equation used to solve for velocity.
      ## Boussinesq only works for continuous_galerkin and discontinuous_galerkin.
      element equation {
         attribute name { "Boussinesq" }
      }|
      ## Select the equation used to solve for velocity.
      ## Drainage only works for continuous_galerkin and discontinuous_galerkin.
      element equation {
         attribute name { "Drainage" }
      }
   )