~swag/armagetronad/0.2.9-sty+ct+ap-fork

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/python
# purpose: process ladderlog.txt and generate a usefull ladder league from it

import math


# collects statistics how two players scored against each other
class PairScore:
    def __init__(self):
        self.weight = 0                      # total statistical weight
        self.weightAverage = self.weight *.5 # weight times the average score of the first player (between zero and one)

    def AddRound( self, scoreOne, scoreTwo ):
        if scoreOne + scoreTwo <= 0:
            return
        self.AddRound( scoreOne/float(scoreOne + scoreTwo ) )

    def AddRound( self, score ):
        self.weight        += 1.0
        self.weightAverage += score

    def Average( self ):
        return self.weightAverage/self.weight

    def Weight( self ):
        return self.weight

    # TODO: persistence

def AddToMatrix( matrix, row, column, value ):
    try:
        matrix[column][row] += value
    except KeyError:
        matrix[column][row] = value

def NormalizeVector( vector ):
    sum = 0.0
    for i in vector:
        sum += vector[i]
    for i in vector:
        vector[i]/=sum

# has one PairScore for each pair of players
class PairScoreDictionary:
    def __init__(self):
        self.pairs = {}

    def GetPairScore( self, playerOne, playerTwo ):
        # sort alphabetically
        if playerOne > playerTwo:
            raise KeyError

        pair = playerOne + " " + playerTwo
        try:
            return self.pairs[pair]
        except KeyError:
            self.pairs[pair] = PairScore()
            return self.pairs[pair] 
    
    # processes scores. scores is supposed to be a list of pairs, each pair consisting of a score and player name. Scores are expected to be non-negative.
    def ReadScore_( self, scores ):
        #print scores
        # determine total score sum
        sum = 0
        max = 0
        for pair in scores:
            sum += pair[0]
            if pair[0] > max:
                max = pair[0]
    
        if max <= 0:
            return
    
        # create database
        for first in scores:
            for second in scores:
                if first[1] < second[1]:
                    self.GetPairScore( first[1], second[1] ).AddRound( (max + first[0] - second[0])/(2.0*max) )

    # processes scores. scores is supposed to be a list of pairs, each pair consisting of a score and player name. Sanity checks are made.
    def ReadScore( self, scores ):
        # sum up the scores and find minimum
        minscore = 0
        sum = 0
        for pair in scores:
            sum += pair[0]
            if pair[0] < minscore: minscore = pair[0]

        sum += minscore * len(scores)

        # normalize scores
        normscores = []
        for pair in scores:
            normscores = normscores + [(pair[0] - minscore, pair[1])]
    
        if sum == 0:
            return
   
        self.ReadScore_( normscores )

    # read a log file
    def ReadLog( self, log ):
        scores = []
        for line in log:
            # print line
            tokens = line.split()
            if tokens[0] == "ROUND_SCORE":
                scores = scores + [(int (tokens[1]),tokens[2])]
            if tokens[0] == "NEW_ROUND":
                self.ReadScore( scores )
                scores = []

    # generates the ladder out of the collected data
    def GenerateLadder( self ):
        # extract players from pair database, assign each one a number
        players = {}
        for pair in self.pairs:
            for player in pair.split():
                try:
                    x = players[player]
                except KeyError:
                    players[player] = len(players)

        #print players

        # generate sparse player-player scoring matrix using a dictionary of dictionaries in column-row order (so normalizing it gets easier)
        matrix = {}
        for i in range(0, len(players)):
            matrix[i] = {}
        
        for pair in self.pairs:
            playerPair = pair.split();
            averager = self.pairs[pair];
            weight = averager.Weight()
            if weight > 0.1:
                if weight > 10:
                    weight = 10
                i = players[playerPair[0]]
                j = players[playerPair[1]]
                scoreFori = averager.Average()
                AddToMatrix(matrix,j,j,-scoreFori*weight);
                AddToMatrix(matrix,i,j,scoreFori*weight);
                AddToMatrix(matrix,j,i,(1-scoreFori)*weight);
                AddToMatrix(matrix,i,i,(scoreFori-1)*weight);

        minDiagonal = 0
        averageDiagonal = 0
        for i in range(0, len(players)):
            diagonal = matrix[i][i]
            if diagonal < minDiagonal: minDiagonal = diagonal
            averageDiagonal += diagonal/len(players)

        print averageDiagonal   

        maxDeviation = 1
        if minDiagonal < 0:
            maxDeviation = -1/minDiagonal
        print maxDeviation

        # initialize score vector
        score = {}
        for i in range(0, len(players)):
            score[i] = 1.0/len(players)

        # load old ladder for better init values
        try:
            for line in open( "newladder.txt" ):
                thisScore, player = line.split()
                thisScore = math.exp(float(thisScore)*math.log(2)/10.0)/len(players)
                try:
                    score[players[player]] = thisScore;
                except KeyError: pass
        except IOError: pass

        #print matrix

        # iterate matrix multiplication
        error = 1000
        iter = 0
        while error > .001:

            # matrix multiplication to determine direction to move to
            deltascore = {}
            for i in range(0, len(players)):
                deltascore[i] = -( 1.0/len(players) - score[i] )*averageDiagonal*.1
            for i in matrix:
                column = matrix[i]
                for j in column:
                    deltascore[j] += column[j] * score[i]

            #print score        
            #print deltascore

            # determine minimum and maximum deviation
            error = 0
            for i in range(0, len(players)):
                error += abs(deltascore[i])

            if iter == 100:
                print error 
                iter = 0   
            iter += 1

            # add just as much of the delta to the score so that no score gets negative
            for i in range(0, len(players)):
               score[i] += deltascore[i] * maxDeviation

            NormalizeVector( score )    
        
        #print score
        #print players        

        ladder = []
        for player in players:
            i = players[player]
            if score[i] > 0:
                ladder = ladder + [( math.log(score[i]*len(players))*10/math.log(2), player )]

        ladder.sort()
        ladder.reverse()

        # print ladder
        out = open( "newladder.txt", "w" )
        for entry in ladder:
            out.write(str(entry[0]))
            out.write("\t")
            out.write(entry[1])
            out.write("\n")
        return ladder

scoreDataBase = PairScoreDictionary()
scoreDataBase.ReadLog( open( "ladderlog.txt" ) )
#print "read"
ladder = scoreDataBase.GenerateLadder()

for entry in ladder:
    print entry[1], entry[0]