1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
|
/*
* RampingIOS V3: FSM-based version of RampingIOS V2 UI, with upgrades.
*
* Copyright (C) 2018 Selene Scriven
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/********* User-configurable options *********/
// Physical driver type (uncomment one of the following or define it at the gcc command line)
//#define FSM_EMISAR_D4_DRIVER
//#define FSM_EMISAR_D4S_DRIVER
//#define FSM_EMISAR_D4S_219c_DRIVER
//#define FSM_BLF_Q8_DRIVER
//#define FSM_FW3A_DRIVER
//#define FSM_BLF_GT_DRIVER
#define USE_LVP // FIXME: won't build when this option is turned off
#define USE_THERMAL_REGULATION
#define DEFAULT_THERM_CEIL 45
#define MIN_THERM_STEPDOWN MAX_1x7135 // lowest value it'll step down to
#ifdef MAX_Nx7135
#define THERM_DOUBLE_SPEED_LEVEL MAX_Nx7135 // throttle back faster when high
#else
#define THERM_DOUBLE_SPEED_LEVEL (RAMP_SIZE*4/5) // throttle back faster when high
#endif
#ifdef USE_THERMAL_REGULATION
#define USE_SET_LEVEL_GRADUALLY // isn't used except for thermal adjustments
#endif
// short blips while ramping
#define BLINK_AT_CHANNEL_BOUNDARIES
//#define BLINK_AT_RAMP_FLOOR
#define BLINK_AT_RAMP_CEILING
//#define BLINK_AT_STEPS // whenever a discrete ramp mode is passed in smooth mode
// ramp down via regular button hold if a ramp-up ended <1s ago
// ("hold, release, hold" ramps down instead of up)
#define USE_REVERSING
// battery readout style (pick one)
#define BATTCHECK_VpT
//#define BATTCHECK_8bars // FIXME: breaks build
//#define BATTCHECK_4bars // FIXME: breaks build
/***** specific settings for known driver types *****/
#if defined(FSM_BLF_GT_DRIVER)
#include "cfg-blf-gt.h"
#elif defined(FSM_BLF_Q8_DRIVER)
#include "cfg-blf-q8.h"
#elif defined(FSM_EMISAR_D1_DRIVER)
#include "cfg-emisar-d1.h"
#elif defined(FSM_EMISAR_D1S_DRIVER)
#include "cfg-emisar-d1s.h"
#elif defined(FSM_EMISAR_D4_DRIVER)
#include "cfg-emisar-d4.h"
#elif defined(FSM_EMISAR_D4S_219c_DRIVER)
#include "cfg-emisar-d4s-219c.h"
#elif defined(FSM_EMISAR_D4S_DRIVER)
#include "cfg-emisar-d4s.h"
#elif defined(FSM_FW3A_DRIVER)
#include "cfg-fw3a.h"
#endif
/********* Configure SpaghettiMonster *********/
#define USE_DELAY_ZERO
#define USE_RAMPING
#define RAMP_LENGTH 150
#define USE_BATTCHECK
#define MAX_CLICKS 10
#define USE_IDLE_MODE // reduce power use while awake and no tasks are pending
#define USE_DYNAMIC_UNDERCLOCKING // cut clock speed at very low modes for better efficiency
// try to auto-detect how many eeprom bytes
#define USE_EEPROM
#define EEPROM_BYTES_BASE 7
#ifdef USE_INDICATOR_LED
#define EEPROM_INDICATOR_BYTES 1
#else
#define EEPROM_INDICATOR_BYTES 0
#endif
#ifdef USE_THERMAL_REGULATION
#define EEPROM_THERMAL_BYTES 2
#else
#define EEPROM_THERMAL_BYTES 0
#endif
#define EEPROM_BYTES (EEPROM_BYTES_BASE+EEPROM_INDICATOR_BYTES+EEPROM_THERMAL_BYTES)
#include "spaghetti-monster.h"
// FSM states
uint8_t off_state(EventPtr event, uint16_t arg);
// simple numeric entry config menu
uint8_t config_state_base(EventPtr event, uint16_t arg,
uint8_t num_config_steps,
void (*savefunc)());
#define MAX_CONFIG_VALUES 3
uint8_t config_state_values[MAX_CONFIG_VALUES];
// ramping mode and its related config mode
uint8_t steady_state(EventPtr event, uint16_t arg);
uint8_t ramp_config_state(EventPtr event, uint16_t arg);
#ifdef USE_BATTCHECK
uint8_t battcheck_state(EventPtr event, uint16_t arg);
#endif
#ifdef USE_THERMAL_REGULATION
uint8_t tempcheck_state(EventPtr event, uint16_t arg);
uint8_t thermal_config_state(EventPtr event, uint16_t arg);
#endif
// beacon mode and its related config mode
uint8_t beacon_state(EventPtr event, uint16_t arg);
uint8_t beacon_config_state(EventPtr event, uint16_t arg);
// soft lockout
#define MOON_DURING_LOCKOUT_MODE
uint8_t lockout_state(EventPtr event, uint16_t arg);
// momentary / signalling mode
uint8_t momentary_state(EventPtr event, uint16_t arg);
// general helper function for config modes
uint8_t number_entry_state(EventPtr event, uint16_t arg);
// return value from number_entry_state()
volatile uint8_t number_entry_value;
void blink_confirm(uint8_t num);
#if defined(USE_INDICATOR_LED) && defined(TICK_DURING_STANDBY)
void indicator_blink(uint8_t arg);
#endif
#ifdef USE_INDICATOR_LED
uint8_t auxled_next_state(EventPtr event, uint16_t arg);
#endif
// remember stuff even after battery was changed
void load_config();
void save_config();
// default ramp options if not overridden earlier per-driver
#ifndef RAMP_SMOOTH_FLOOR
#define RAMP_SMOOTH_FLOOR 1
#endif
#ifndef RAMP_SMOOTH_CEIL
#if PWM_CHANNELS == 3
#define RAMP_SMOOTH_CEIL MAX_Nx7135
#else
#define RAMP_SMOOTH_CEIL MAX_LEVEL - 30
#endif
#endif
#ifndef RAMP_DISCRETE_FLOOR
#define RAMP_DISCRETE_FLOOR 20
#endif
#ifndef RAMP_DISCRETE_CEIL
#define RAMP_DISCRETE_CEIL RAMP_SMOOTH_CEIL
#endif
#ifndef RAMP_DISCRETE_STEPS
#define RAMP_DISCRETE_STEPS 7
#endif
// brightness control
uint8_t memorized_level = MAX_1x7135;
// smooth vs discrete ramping
volatile uint8_t ramp_style = 0; // 0 = smooth, 1 = discrete
volatile uint8_t ramp_smooth_floor = RAMP_SMOOTH_FLOOR;
volatile uint8_t ramp_smooth_ceil = RAMP_SMOOTH_CEIL;
volatile uint8_t ramp_discrete_floor = RAMP_DISCRETE_FLOOR;
volatile uint8_t ramp_discrete_ceil = RAMP_DISCRETE_CEIL;
volatile uint8_t ramp_discrete_steps = RAMP_DISCRETE_STEPS;
uint8_t ramp_discrete_step_size; // don't set this
#ifdef USE_INDICATOR_LED
// bits 2-3 control lockout mode
// bits 0-1 control "off" mode
// modes are: 0=off, 1=low, 2=high, 3=blinking (if TICK_DURING_STANDBY enabled)
#ifdef USE_INDICATOR_LED_WHILE_RAMPING
//uint8_t indicator_led_mode = (1<<2) + 2;
uint8_t indicator_led_mode = (2<<2) + 1;
#else
uint8_t indicator_led_mode = (3<<2) + 1;
#endif
#endif
// calculate the nearest ramp level which would be valid at the moment
// (is a no-op for smooth ramp, but limits discrete ramp to only the
// correct levels for the user's config)
uint8_t nearest_level(int16_t target);
#ifdef USE_THERMAL_REGULATION
// brightness before thermal step-down
uint8_t target_level = 0;
#endif
// beacon timing
volatile uint8_t beacon_seconds = 2;
uint8_t off_state(EventPtr event, uint16_t arg) {
// turn emitter off when entering state
if (event == EV_enter_state) {
set_level(0);
#ifdef USE_INDICATOR_LED
indicator_led(indicator_led_mode & 0x03);
#endif
// sleep while off (lower power use)
go_to_standby = 1;
return MISCHIEF_MANAGED;
}
// go back to sleep eventually if we got bumped but didn't leave "off" state
else if (event == EV_tick) {
if (arg > TICKS_PER_SECOND*2) {
go_to_standby = 1;
#ifdef USE_INDICATOR_LED
indicator_led(indicator_led_mode & 0x03);
#endif
}
return MISCHIEF_MANAGED;
}
#if defined(TICK_DURING_STANDBY) && defined(USE_INDICATOR_LED)
// blink the indicator LED, maybe
else if (event == EV_sleep_tick) {
if ((indicator_led_mode & 0b00000011) == 0b00000011) {
indicator_blink(arg);
}
return MISCHIEF_MANAGED;
}
#endif
// hold (initially): go to lowest level, but allow abort for regular click
else if (event == EV_click1_press) {
set_level(nearest_level(1));
return MISCHIEF_MANAGED;
}
// hold: go to lowest level
else if (event == EV_click1_hold) {
// don't start ramping immediately;
// give the user time to release at moon level
if (arg >= HOLD_TIMEOUT) {
set_state(steady_state, 1);
}
return MISCHIEF_MANAGED;
}
// hold, release quickly: go to lowest level
else if (event == EV_click1_hold_release) {
set_state(steady_state, 1);
return MISCHIEF_MANAGED;
}
// 1 click (before timeout): go to memorized level, but allow abort for double click
else if (event == EV_click1_release) {
set_level(nearest_level(memorized_level));
return MISCHIEF_MANAGED;
}
// 1 click: regular mode
else if (event == EV_1click) {
set_state(steady_state, memorized_level);
return MISCHIEF_MANAGED;
}
// 2 clicks (initial press): off, to prep for later events
else if (event == EV_click2_press) {
set_level(0);
return MISCHIEF_MANAGED;
}
// click, hold: go to highest level (for ramping down)
else if (event == EV_click2_hold) {
set_state(steady_state, MAX_LEVEL);
return MISCHIEF_MANAGED;
}
// 2 clicks: highest mode
else if (event == EV_2clicks) {
set_state(steady_state, nearest_level(MAX_LEVEL));
return MISCHIEF_MANAGED;
}
#ifdef USE_BATTCHECK
// 3 clicks: battcheck mode / blinky mode group 1
else if (event == EV_3clicks) {
set_state(battcheck_state, 0);
return MISCHIEF_MANAGED;
}
#endif
// 4 clicks: momentary
else if (event == EV_4clicks) {
blink_confirm(1);
set_state(momentary_state, 0);
return MISCHIEF_MANAGED;
}
// 6 clicks: lockout mode
else if (event == EV_6clicks) {
blink_confirm(2);
set_state(lockout_state, 0);
return MISCHIEF_MANAGED;
}
#ifdef USE_INDICATOR_LED
// 7 clicks: next aux LED mode
else if (event == EV_7clicks) {
blink_confirm(1);
set_state(auxled_next_state, 0);
return MISCHIEF_MANAGED;
}
#endif
// 8 clicks: beacon mode
else if (event == EV_8clicks) {
set_state(beacon_state, 0);
return MISCHIEF_MANAGED;
}
// 10 clicks: thermal config mode
else if (event == EV_10clicks) {
push_state(thermal_config_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
uint8_t steady_state(EventPtr event, uint16_t arg) {
uint8_t mode_min = ramp_smooth_floor;
uint8_t mode_max = ramp_smooth_ceil;
uint8_t ramp_step_size = 1;
#ifdef USE_REVERSING
static int8_t ramp_direction = 1;
#endif
if (ramp_style) {
mode_min = ramp_discrete_floor;
mode_max = ramp_discrete_ceil;
ramp_step_size = ramp_discrete_step_size;
}
// turn LED on when we first enter the mode
if ((event == EV_enter_state) || (event == EV_reenter_state)) {
// if we just got back from config mode, go back to memorized level
if (event == EV_reenter_state) {
arg = memorized_level;
}
// remember this level, unless it's moon or turbo
if ((arg > mode_min) && (arg < mode_max))
memorized_level = arg;
// use the requested level even if not memorized
#ifdef USE_THERMAL_REGULATION
target_level = arg;
#endif
set_level(nearest_level(arg));
#ifdef USE_REVERSING
ramp_direction = 1;
#endif
return MISCHIEF_MANAGED;
}
// 1 click: off
else if (event == EV_1click) {
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
// 2 clicks: go to/from highest level
else if (event == EV_2clicks) {
if (actual_level < MAX_LEVEL) {
#ifdef USE_THERMAL_REGULATION
target_level = MAX_LEVEL;
#endif
// true turbo, not the mode-specific ceiling
set_level(MAX_LEVEL);
}
else {
#ifdef USE_THERMAL_REGULATION
target_level = memorized_level;
#endif
set_level(memorized_level);
}
return MISCHIEF_MANAGED;
}
// 3 clicks: toggle smooth vs discrete ramping
else if (event == EV_3clicks) {
ramp_style = !ramp_style;
memorized_level = nearest_level(memorized_level);
#ifdef USE_THERMAL_REGULATION
target_level = memorized_level;
#ifdef USE_SET_LEVEL_GRADUALLY
//set_level_gradually(lvl);
#endif
#endif
save_config();
set_level(0);
delay_4ms(20/4);
set_level(memorized_level);
return MISCHIEF_MANAGED;
}
// 4 clicks: configure this ramp mode
else if (event == EV_4clicks) {
push_state(ramp_config_state, 0);
return MISCHIEF_MANAGED;
}
// hold: change brightness (brighter)
else if (event == EV_click1_hold) {
// ramp slower in discrete mode
if (ramp_style && (arg % HOLD_TIMEOUT != 0)) {
return MISCHIEF_MANAGED;
}
#ifdef USE_REVERSING
// make it ramp down instead, if already at max
if ((arg <= 1) && (actual_level >= mode_max)) {
ramp_direction = -1;
}
memorized_level = nearest_level((int16_t)actual_level \
+ (ramp_step_size * ramp_direction));
#else
memorized_level = nearest_level((int16_t)actual_level + ramp_step_size);
#endif
#ifdef USE_THERMAL_REGULATION
target_level = memorized_level;
#endif
#if defined(BLINK_AT_RAMP_CEILING) || defined(BLINK_AT_CHANNEL_BOUNDARIES)
// only blink once for each threshold
if ((memorized_level != actual_level) && (
0 // for easier syntax below
#ifdef BLINK_AT_CHANNEL_BOUNDARIES
|| (memorized_level == MAX_1x7135)
#if PWM_CHANNELS >= 3
|| (memorized_level == MAX_Nx7135)
#endif
#endif
#ifdef BLINK_AT_RAMP_CEILING
|| (memorized_level == mode_max)
#endif
#if defined(USE_REVERSING) && defined(BLINK_AT_RAMP_FLOOR)
|| (memorized_level == mode_min)
#endif
)) {
set_level(0);
delay_4ms(8/4);
}
#endif
#if defined(BLINK_AT_STEPS)
uint8_t foo = ramp_style;
ramp_style = 1;
uint8_t nearest = nearest_level((int16_t)actual_level);
ramp_style = foo;
// only blink once for each threshold
if ((memorized_level != actual_level) &&
(ramp_style == 0) &&
(memorized_level == nearest)
)
{
set_level(0);
delay_4ms(8/4);
}
#endif
set_level(memorized_level);
return MISCHIEF_MANAGED;
}
#if defined(USE_REVERSING)
// reverse ramp direction on hold release
else if (event == EV_click1_hold_release) {
#ifdef USE_REVERSING
ramp_direction = -ramp_direction;
#endif
return MISCHIEF_MANAGED;
}
#endif
// click, hold: change brightness (dimmer)
else if (event == EV_click2_hold) {
#ifdef USE_REVERSING
ramp_direction = 1;
#endif
// ramp slower in discrete mode
if (ramp_style && (arg % HOLD_TIMEOUT != 0)) {
return MISCHIEF_MANAGED;
}
// TODO? make it ramp up instead, if already at min?
memorized_level = nearest_level((int16_t)actual_level - ramp_step_size);
#ifdef USE_THERMAL_REGULATION
target_level = memorized_level;
#endif
#if defined(BLINK_AT_RAMP_FLOOR) || defined(BLINK_AT_CHANNEL_BOUNDARIES)
// only blink once for each threshold
if ((memorized_level != actual_level) && (
0 // for easier syntax below
#ifdef BLINK_AT_CHANNEL_BOUNDARIES
|| (memorized_level == MAX_1x7135)
#if PWM_CHANNELS >= 3
|| (memorized_level == MAX_Nx7135)
#endif
#endif
#ifdef BLINK_AT_RAMP_FLOOR
|| (memorized_level == mode_min)
#endif
)) {
set_level(0);
delay_4ms(8/4);
}
#endif
#if defined(BLINK_AT_STEPS)
uint8_t foo = ramp_style;
ramp_style = 1;
uint8_t nearest = nearest_level((int16_t)actual_level);
ramp_style = foo;
// only blink once for each threshold
if ((memorized_level != actual_level) &&
(ramp_style == 0) &&
(memorized_level == nearest)
)
{
set_level(0);
delay_4ms(8/4);
}
#endif
set_level(memorized_level);
return MISCHIEF_MANAGED;
}
#if defined(USE_SET_LEVEL_GRADUALLY) || defined(USE_REVERSING)
else if (event == EV_tick) {
#ifdef USE_REVERSING
// un-reverse after 1 second
if (arg == TICKS_PER_SECOND) ramp_direction = 1;
#endif
#ifdef USE_SET_LEVEL_GRADUALLY
// make thermal adjustment speed scale with magnitude
// if we're on a really high mode, drop faster
if ((arg & 1) && (actual_level < THERM_DOUBLE_SPEED_LEVEL)) {
return MISCHIEF_MANAGED; // adjust slower when not a high mode
}
// [int(62*4 / (x**0.8)) for x in (1,2,4,8,16,32,64,128)]
//uint8_t intervals[] = {248, 142, 81, 46, 26, 15, 8, 5};
// [int(62*4 / (x**0.9)) for x in (1,2,4,8,16,32,64,128)]
//uint8_t intervals[] = {248, 132, 71, 38, 20, 10, 5, 3};
// [int(62*4 / (x**0.95)) for x in (1,2,4,8,16,32,64,128)]
uint8_t intervals[] = {248, 128, 66, 34, 17, 9, 4, 2};
uint8_t diff;
static uint8_t ticks_since_adjust = 0;
ticks_since_adjust ++;
if (gradual_target > actual_level) diff = gradual_target - actual_level;
else {
diff = actual_level - gradual_target;
}
uint8_t magnitude = 0;
// if we're on a really high mode, drop faster
if (actual_level >= THERM_DOUBLE_SPEED_LEVEL) { magnitude ++; }
while (diff) {
magnitude ++;
diff >>= 1;
}
uint8_t ticks_per_adjust = intervals[magnitude];
if (ticks_since_adjust > ticks_per_adjust)
{
gradual_tick();
ticks_since_adjust = 0;
}
//if (!(arg % ticks_per_adjust)) gradual_tick();
#endif
return MISCHIEF_MANAGED;
}
#endif
#ifdef USE_THERMAL_REGULATION
// overheating: drop by an amount proportional to how far we are above the ceiling
else if (event == EV_temperature_high) {
#if 0
uint8_t foo = actual_level;
set_level(0);
delay_4ms(2);
set_level(foo);
#endif
if (actual_level > MIN_THERM_STEPDOWN) {
int16_t stepdown = actual_level - arg;
if (stepdown < MIN_THERM_STEPDOWN) stepdown = MIN_THERM_STEPDOWN;
else if (stepdown > MAX_LEVEL) stepdown = MAX_LEVEL;
#ifdef USE_SET_LEVEL_GRADUALLY
set_level_gradually(stepdown);
#else
set_level(stepdown);
#endif
}
return MISCHIEF_MANAGED;
}
// underheating: increase slowly if we're lower than the target
// (proportional to how low we are)
else if (event == EV_temperature_low) {
#if 0
uint8_t foo = actual_level;
set_level(0);
delay_4ms(2);
set_level(foo);
#endif
if (actual_level < target_level) {
//int16_t stepup = actual_level + (arg>>1);
int16_t stepup = actual_level + arg;
if (stepup > target_level) stepup = target_level;
else if (stepup < MIN_THERM_STEPDOWN) stepup = MIN_THERM_STEPDOWN;
#ifdef USE_SET_LEVEL_GRADUALLY
set_level_gradually(stepup);
#else
set_level(stepup);
#endif
}
return MISCHIEF_MANAGED;
}
#endif
return EVENT_NOT_HANDLED;
}
#ifdef USE_BATTCHECK
uint8_t battcheck_state(EventPtr event, uint16_t arg) {
// 1 click: off
if (event == EV_1click) {
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
// 2 clicks: tempcheck mode
else if (event == EV_2clicks) {
set_state(tempcheck_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
#endif
#ifdef USE_THERMAL_REGULATION
uint8_t tempcheck_state(EventPtr event, uint16_t arg) {
// 1 click: off
if (event == EV_1click) {
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
// 4 clicks: thermal config mode
else if (event == EV_4clicks) {
push_state(thermal_config_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
#endif
uint8_t beacon_state(EventPtr event, uint16_t arg) {
// 1 click: off
if (event == EV_1click) {
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
// TODO: use sleep ticks to measure time between pulses,
// to save power
// 4 clicks: beacon config mode
else if (event == EV_4clicks) {
push_state(beacon_config_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
uint8_t lockout_state(EventPtr event, uint16_t arg) {
#ifdef MOON_DURING_LOCKOUT_MODE
// momentary(ish) moon mode during lockout
// not all presses will be counted;
// it depends on what is in the master event_sequences table
// FIXME: maybe do this only if arg == 0?
// (so it'll only get turned on once, instead of every frame)
uint8_t last = 0;
for(uint8_t i=0; pgm_read_byte(event + i) && (i<EV_MAX_LEN); i++)
last = pgm_read_byte(event + i);
if ((last == A_PRESS) || (last == A_HOLD)) {
// detect moon level and activate it
uint8_t lvl = ramp_smooth_floor;
#ifdef LOCKOUT_MOON_LOWEST
// Use lowest moon configured
if (ramp_discrete_floor < lvl) lvl = ramp_discrete_floor;
#else
// Use moon from current ramp
if (ramp_style) lvl = ramp_discrete_floor;
#endif
set_level(lvl);
}
else if ((last == A_RELEASE) || (last == A_RELEASE_TIMEOUT)) {
set_level(0);
}
#endif
// regular event handling
// conserve power while locked out
// (allow staying awake long enough to exit, but otherwise
// be persistent about going back to sleep every few seconds
// even if the user keeps pressing the button)
#ifdef USE_INDICATOR_LED
if (event == EV_enter_state) {
indicator_led(indicator_led_mode >> 2);
} else
#endif
if (event == EV_tick) {
if (arg > TICKS_PER_SECOND*2) {
go_to_standby = 1;
#ifdef USE_INDICATOR_LED
indicator_led(indicator_led_mode >> 2);
#endif
}
return MISCHIEF_MANAGED;
}
#if defined(TICK_DURING_STANDBY) && defined(USE_INDICATOR_LED)
else if (event == EV_sleep_tick) {
if ((indicator_led_mode & 0b00001100) == 0b00001100) {
indicator_blink(arg);
}
return MISCHIEF_MANAGED;
}
#endif
#ifdef USE_INDICATOR_LED
// 3 clicks: rotate through indicator LED modes (lockout mode)
else if (event == EV_3clicks) {
uint8_t mode = indicator_led_mode >> 2;
#ifdef TICK_DURING_STANDBY
mode = (mode + 1) & 3;
#else
mode = (mode + 1) % 3;
#endif
indicator_led_mode = (mode << 2) + (indicator_led_mode & 0x03);
indicator_led(mode);
save_config();
return MISCHIEF_MANAGED;
}
#endif
// 6 clicks: exit
else if (event == EV_6clicks) {
blink_confirm(1);
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
#ifdef USE_INDICATOR_LED
uint8_t auxled_next_state(EventPtr event, uint16_t arg) {
if (event == EV_enter_state) {
uint8_t mode = indicator_led_mode & 3;
#ifdef TICK_DURING_STANDBY
mode = (mode + 1) & 3;
#else
mode = (mode + 1) % 3;
#endif
indicator_led_mode = mode + (indicator_led_mode & 0b00001100);
indicator_led(mode);
save_config();
return MISCHIEF_MANAGED;
}
else if (event == EV_tick) {
set_state(off_state, 0);
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
#endif
uint8_t momentary_state(EventPtr event, uint16_t arg) {
// TODO: momentary strobe here? (for light painting)
if (event == EV_click1_press) {
set_level(memorized_level);
empty_event_sequence(); // don't attempt to parse multiple clicks
return MISCHIEF_MANAGED;
}
else if (event == EV_release) {
set_level(0);
empty_event_sequence(); // don't attempt to parse multiple clicks
//go_to_standby = 1; // sleep while light is off
// TODO: lighted button should use lockout config?
return MISCHIEF_MANAGED;
}
// Sleep, dammit! (but wait a few seconds first)
// (because standby mode uses such little power that it can interfere
// with exiting via tailcap loosen+tighten unless you leave power
// disconnected for several seconds, so we want to be awake when that
// happens to speed up the process)
else if ((event == EV_tick) && (actual_level == 0)) {
if (arg > TICKS_PER_SECOND*15) { // sleep after 15 seconds
go_to_standby = 1; // sleep while light is off
}
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
// ask the user for a sequence of numbers, then save them and return to caller
uint8_t config_state_base(EventPtr event, uint16_t arg,
uint8_t num_config_steps,
void (*savefunc)()) {
static uint8_t config_step;
if (event == EV_enter_state) {
config_step = 0;
set_level(0);
return MISCHIEF_MANAGED;
}
// advance forward through config steps
else if (event == EV_tick) {
if (config_step < num_config_steps) {
push_state(number_entry_state, config_step + 1);
}
else {
// TODO: blink out some sort of success pattern
savefunc();
save_config();
//set_state(retstate, retval);
pop_state();
}
return MISCHIEF_MANAGED;
}
// an option was set (return from number_entry_state)
else if (event == EV_reenter_state) {
config_state_values[config_step] = number_entry_value;
config_step ++;
return MISCHIEF_MANAGED;
}
//return EVENT_NOT_HANDLED;
// eat all other events; don't pass any through to parent
return EVENT_HANDLED;
}
void ramp_config_save() {
// parse values
uint8_t val;
if (ramp_style) { // discrete / stepped ramp
val = config_state_values[0];
if (val) { ramp_discrete_floor = val; }
val = config_state_values[1];
if (val) { ramp_discrete_ceil = MAX_LEVEL + 1 - val; }
val = config_state_values[2];
if (val) ramp_discrete_steps = val;
} else { // smooth ramp
val = config_state_values[0];
if (val) { ramp_smooth_floor = val; }
val = config_state_values[1];
if (val) { ramp_smooth_ceil = MAX_LEVEL + 1 - val; }
}
}
uint8_t ramp_config_state(EventPtr event, uint16_t arg) {
uint8_t num_config_steps;
num_config_steps = 2 + ramp_style;
return config_state_base(event, arg,
num_config_steps, ramp_config_save);
}
#ifdef USE_THERMAL_REGULATION
void thermal_config_save() {
// parse values
uint8_t val;
// calibrate room temperature
val = config_state_values[0];
if (val) {
int8_t rawtemp = (temperature >> 1) - therm_cal_offset;
therm_cal_offset = val - rawtemp;
}
val = config_state_values[1];
if (val) {
// set maximum heat limit
therm_ceil = 30 + val;
}
if (therm_ceil > MAX_THERM_CEIL) therm_ceil = MAX_THERM_CEIL;
}
uint8_t thermal_config_state(EventPtr event, uint16_t arg) {
return config_state_base(event, arg,
2, thermal_config_save);
}
#endif
void beacon_config_save() {
// parse values
uint8_t val = config_state_values[0];
if (val) {
beacon_seconds = val;
}
}
uint8_t beacon_config_state(EventPtr event, uint16_t arg) {
return config_state_base(event, arg,
1, beacon_config_save);
}
uint8_t number_entry_state(EventPtr event, uint16_t arg) {
static uint8_t value;
static uint8_t blinks_left;
static uint8_t entry_step;
static uint16_t wait_ticks;
if (event == EV_enter_state) {
value = 0;
blinks_left = arg;
entry_step = 0;
wait_ticks = 0;
return MISCHIEF_MANAGED;
}
// advance through the process:
// 0: wait a moment
// 1: blink out the 'arg' value
// 2: wait a moment
// 3: "buzz" while counting clicks
// 4: save and exit
else if (event == EV_tick) {
// wait a moment
if ((entry_step == 0) || (entry_step == 2)) {
if (wait_ticks < TICKS_PER_SECOND/2)
wait_ticks ++;
else {
entry_step ++;
wait_ticks = 0;
}
}
// blink out the option number
else if (entry_step == 1) {
if (blinks_left) {
if ((wait_ticks & 31) == 10) {
set_level(RAMP_SIZE/4);
}
else if ((wait_ticks & 31) == 20) {
set_level(0);
}
else if ((wait_ticks & 31) == 31) {
blinks_left --;
}
wait_ticks ++;
}
else {
entry_step ++;
wait_ticks = 0;
}
}
else if (entry_step == 3) { // buzz while waiting for a number to be entered
wait_ticks ++;
// buzz for N seconds after last event
if ((wait_ticks & 3) == 0) {
set_level(RAMP_SIZE/6);
}
else if ((wait_ticks & 3) == 2) {
set_level(RAMP_SIZE/8);
}
// time out after 3 seconds
if (wait_ticks > TICKS_PER_SECOND*3) {
//number_entry_value = value;
set_level(0);
entry_step ++;
}
}
else if (entry_step == 4) {
number_entry_value = value;
pop_state();
}
return MISCHIEF_MANAGED;
}
// count clicks
else if (event == EV_click1_release) {
empty_event_sequence();
if (entry_step == 3) { // only count during the "buzz"
value ++;
wait_ticks = 0;
// flash briefly
set_level(RAMP_SIZE/2);
delay_4ms(8/2);
set_level(0);
}
return MISCHIEF_MANAGED;
}
return EVENT_NOT_HANDLED;
}
// find the ramp level closest to the target,
// using only the levels which are allowed in the current state
uint8_t nearest_level(int16_t target) {
// bounds check
// using int16_t here saves us a bunch of logic elsewhere,
// by allowing us to correct for numbers < 0 or > 255 in one central place
uint8_t mode_min = ramp_smooth_floor;
uint8_t mode_max = ramp_smooth_ceil;
if (ramp_style) {
mode_min = ramp_discrete_floor;
mode_max = ramp_discrete_ceil;
}
if (target < mode_min) return mode_min;
if (target > mode_max) return mode_max;
// the rest isn't relevant for smooth ramping
if (! ramp_style) return target;
uint8_t ramp_range = ramp_discrete_ceil - ramp_discrete_floor;
ramp_discrete_step_size = ramp_range / (ramp_discrete_steps-1);
uint8_t this_level = ramp_discrete_floor;
for(uint8_t i=0; i<ramp_discrete_steps; i++) {
this_level = ramp_discrete_floor + (i * (uint16_t)ramp_range / (ramp_discrete_steps-1));
int8_t diff = target - this_level;
if (diff < 0) diff = -diff;
if (diff <= (ramp_discrete_step_size>>1))
return this_level;
}
return this_level;
}
void blink_confirm(uint8_t num) {
for (; num>0; num--) {
set_level(MAX_LEVEL/4);
delay_4ms(10/4);
set_level(0);
delay_4ms(100/4);
}
}
#if defined(USE_INDICATOR_LED) && defined(TICK_DURING_STANDBY)
// beacon-like mode for the indicator LED
void indicator_blink(uint8_t arg) {
if (! (arg & 7)) {
indicator_led(2);
}
else {
indicator_led(0);
}
}
#endif
void load_config() {
if (load_eeprom()) {
ramp_style = eeprom[0];
ramp_smooth_floor = eeprom[1];
ramp_smooth_ceil = eeprom[2];
ramp_discrete_floor = eeprom[3];
ramp_discrete_ceil = eeprom[4];
ramp_discrete_steps = eeprom[5];
beacon_seconds = eeprom[6];
#ifdef USE_THERMAL_REGULATION
therm_ceil = eeprom[EEPROM_BYTES_BASE];
therm_cal_offset = eeprom[EEPROM_BYTES_BASE+1];
#endif
#ifdef USE_INDICATOR_LED
indicator_led_mode = eeprom[EEPROM_BYTES_BASE+EEPROM_THERMAL_BYTES];
#endif
}
}
void save_config() {
eeprom[0] = ramp_style;
eeprom[1] = ramp_smooth_floor;
eeprom[2] = ramp_smooth_ceil;
eeprom[3] = ramp_discrete_floor;
eeprom[4] = ramp_discrete_ceil;
eeprom[5] = ramp_discrete_steps;
eeprom[6] = beacon_seconds;
#ifdef USE_THERMAL_REGULATION
eeprom[EEPROM_BYTES_BASE ] = therm_ceil;
eeprom[EEPROM_BYTES_BASE+1] = therm_cal_offset;
#endif
#ifdef USE_INDICATOR_LED
eeprom[EEPROM_BYTES_BASE+EEPROM_THERMAL_BYTES] = indicator_led_mode;
#endif
save_eeprom();
}
void low_voltage() {
StatePtr state = current_state;
// in normal mode, step down or turn off
if (state == steady_state) {
if (actual_level > 1) {
uint8_t lvl = (actual_level >> 1) + (actual_level >> 2);
set_level(lvl);
#ifdef USE_THERMAL_REGULATION
target_level = lvl;
#ifdef USE_SET_LEVEL_GRADUALLY
// not needed?
//set_level_gradually(lvl);
#endif
#endif
}
else {
set_state(off_state, 0);
}
}
// all other modes, just turn off when voltage is low
else {
set_state(off_state, 0);
}
}
void setup() {
// blink at power-on to let user know power is connected
set_level(RAMP_SIZE/8);
delay_4ms(3);
set_level(0);
load_config();
push_state(off_state, 0);
}
void loop() {
StatePtr state = current_state;
#ifdef USE_DYNAMIC_UNDERCLOCKING
auto_clock_speed();
#endif
if (0) {}
#ifdef USE_BATTCHECK
else if (state == battcheck_state) {
battcheck();
}
#endif
#ifdef USE_THERMAL_REGULATION
// TODO: blink out therm_ceil during thermal_config_state
else if (state == tempcheck_state) {
blink_num(temperature>>1);
nice_delay_ms(1000);
}
#endif
else if (state == beacon_state) {
set_level(memorized_level);
if (! nice_delay_ms(500)) return;
set_level(0);
nice_delay_ms(((beacon_seconds) * 1000) - 500);
}
#ifdef USE_IDLE_MODE
else {
// doze until next clock tick
idle_mode();
}
#endif
}
|