~toykeeper/flashlight-firmware/fsm

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
/*
 * Werner: Werner-style dual-switch UI for SpaghettiMonster.
 * Side click to go up, side hold to go down, tail click for on/off.
 *
 * Copyright (C) 2018 Selene Scriven
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/********* User-configurable options *********/
// Physical driver type (uncomment one of the following or define it at the gcc command line)
//#define CONFIGFILE cfg-emisar-d4.h

#define USE_LVP  // FIXME: won't build when this option is turned off

// parameters for this defined below or per-driver
#define USE_THERMAL_REGULATION
#define DEFAULT_THERM_CEIL 45  // try not to get hotter than this

// battery readout style (pick one)
#define BATTCHECK_VpT
//#define BATTCHECK_8bars  // FIXME: breaks build
//#define BATTCHECK_4bars  // FIXME: breaks build

// cut clock speed at very low modes for better efficiency
// (defined here so config files can override it)
#define USE_DYNAMIC_UNDERCLOCKING

/***** specific settings for known driver types *****/
#ifdef CONFIGFILE
#include "tk.h"
#include incfile(CONFIGFILE)
#else
#error You need to define CONFIGFILE
#endif

// thermal properties, if not defined per-driver
#ifndef MIN_THERM_STEPDOWN
#define MIN_THERM_STEPDOWN MAX_1x7135  // lowest value it'll step down to
#endif
#ifndef THERM_FASTER_LEVEL
    #ifdef MAX_Nx7135
    #define THERM_FASTER_LEVEL MAX_Nx7135  // throttle back faster when high
    #else
    #define THERM_FASTER_LEVEL (RAMP_SIZE*4/5)  // throttle back faster when high
    #endif
#endif
#ifdef USE_THERMAL_REGULATION
#define USE_SET_LEVEL_GRADUALLY  // isn't used except for thermal adjustments
#endif


/********* Configure SpaghettiMonster *********/
#define USE_DELAY_ZERO
#define USE_RAMPING
#define RAMP_LENGTH 150  // default, if not overridden in a driver cfg file
#define USE_BATTCHECK
#define USE_IDLE_MODE  // reduce power use while awake and no tasks are pending

// auto-detect how many eeprom bytes
#define USE_EEPROM
#ifdef USE_THERMAL_REGULATION
#define EEPROM_BYTES 5
#else
#define EEPROM_BYTES 3
#endif
// for mode memory on tail switch
#define USE_EEPROM_WL
#define EEPROM_WL_BYTES 1

#include "spaghetti-monster.h"


// FSM states
uint8_t off_state(Event event, uint16_t arg);
// simple numeric entry config menu
uint8_t config_state_base(Event event, uint16_t arg,
                          uint8_t num_config_steps,
                          void (*savefunc)());
#define MAX_CONFIG_VALUES 3
uint8_t config_state_values[MAX_CONFIG_VALUES];
// ramping mode and its related config mode
uint8_t steady_state(Event event, uint16_t arg);
uint8_t ramp_config_state(Event event, uint16_t arg);
#ifdef USE_BATTCHECK
uint8_t battcheck_state(Event event, uint16_t arg);
#endif
#ifdef USE_THERMAL_REGULATION
uint8_t tempcheck_state(Event event, uint16_t arg);
uint8_t thermal_config_state(Event event, uint16_t arg);
#endif

// general helper function for config modes
uint8_t number_entry_state(Event event, uint16_t arg);
// return value from number_entry_state()
volatile uint8_t number_entry_value;

void blink_confirm(uint8_t num);

// remember stuff even after battery was changed
void load_config();
void save_config();
void save_config_wl();

// default ramp options if not overridden earlier per-driver
#ifndef RAMP_DISCRETE_FLOOR
  #define RAMP_DISCRETE_FLOOR 1
#endif
#ifndef RAMP_DISCRETE_CEIL
  #define RAMP_DISCRETE_CEIL RAMP_SIZE
#endif
#ifndef RAMP_DISCRETE_STEPS
  #define RAMP_DISCRETE_STEPS 7
#endif

// brightness control
uint8_t memorized_level = MAX_1x7135;
// smooth vs discrete ramping
volatile uint8_t ramp_discrete_floor = RAMP_DISCRETE_FLOOR;
volatile uint8_t ramp_discrete_ceil = RAMP_DISCRETE_CEIL;
volatile uint8_t ramp_discrete_steps = RAMP_DISCRETE_STEPS;
uint8_t ramp_discrete_step_size;  // don't set this

// calculate the nearest ramp level which would be valid at the moment
// (is a no-op for smooth ramp, but limits discrete ramp to only the
// correct levels for the user's config)
uint8_t nearest_level(int16_t target);

#ifdef USE_THERMAL_REGULATION
// brightness before thermal step-down
uint8_t target_level = 0;
#endif


uint8_t off_state(Event event, uint16_t arg) {
    // turn emitter off when entering state
    if ((event == EV_enter_state) || (event == EV_reenter_state)) {
        // let the user know the power is connected
        blink_confirm(1);
        // but otherwise stay off
        set_level(0);
        // sleep while off  (lower power use)
        go_to_standby = 1;
        return EVENT_HANDLED;
    }
    // go back to sleep eventually if we got bumped but didn't leave "off" state
    else if (event == EV_tick) {
        if (arg > TICKS_PER_SECOND*2) {
            go_to_standby = 1;
        }
        return EVENT_HANDLED;
    }
    // hold (initially): go to lowest level, but allow abort for regular click
    else if (event == EV_click1_press) {
        set_level(nearest_level(1));
        return EVENT_HANDLED;
    }
    // hold: go to lowest level
    else if (event == EV_click1_hold) {
        // don't start ramping immediately;
        // give the user time to release at moon level
        if (arg >= HOLD_TIMEOUT) {
            set_state(steady_state, 1);
        }
        return EVENT_HANDLED;
    }
    // hold, release quickly: go to lowest level
    else if (event == EV_click1_hold_release) {
        set_state(steady_state, 1);
        return EVENT_HANDLED;
    }
    // 1 click (before timeout): go to memorized level, but allow abort for double click
    else if (event == EV_click1_release) {
        set_level(nearest_level(memorized_level));
        return EVENT_HANDLED;
    }
    // 1 click: regular mode
    else if (event == EV_1click) {
        set_state(steady_state, memorized_level);
        return EVENT_HANDLED;
    }
    // 2 clicks (initial press): off, to prep for later events
    else if (event == EV_click2_press) {
        set_level(0);
        return EVENT_HANDLED;
    }
    // click, hold: go to highest level (for ramping down)
    else if (event == EV_click2_hold) {
        set_state(steady_state, MAX_LEVEL);
        return EVENT_HANDLED;
    }
    // 2 clicks: highest mode
    else if (event == EV_2clicks) {
        set_state(steady_state, nearest_level(MAX_LEVEL));
        return EVENT_HANDLED;
    }
    #ifdef USE_BATTCHECK
    // 3 clicks: battcheck mode / blinky mode group
    else if (event == EV_3clicks) {
        set_state(battcheck_state, 0);
        return EVENT_HANDLED;
    }
    #endif
    // 4 clicks: configure ramp
    else if (event == EV_4clicks) {
        push_state(ramp_config_state, 0);
        return EVENT_HANDLED;
    }
    return EVENT_NOT_HANDLED;
}


uint8_t steady_state(Event event, uint16_t arg) {
    uint8_t mode_min = ramp_discrete_floor;
    uint8_t mode_max = ramp_discrete_ceil;
    uint8_t ramp_step_size = ramp_discrete_step_size;

    // turn LED on when we first enter the mode
    if ((event == EV_enter_state) || (event == EV_reenter_state)) {
        // if we just got back from config mode, go back to memorized level
        if (event == EV_reenter_state) {
            arg = memorized_level;
        }
        // remember this level, unless it's moon or turbo
        if ((arg > mode_min) && (arg < mode_max))
            memorized_level = arg;
        // use the requested level even if not memorized
        #ifdef USE_THERMAL_REGULATION
        target_level = arg;
        #endif
        set_level(nearest_level(arg));
        return EVENT_HANDLED;
    }
    // click: brighter
    else if (event == EV_click1_release) {
        memorized_level = nearest_level((int16_t)actual_level + ramp_step_size);
        #ifdef USE_THERMAL_REGULATION
        target_level = memorized_level;
        #endif
        set_level(memorized_level);
        // make sure next click will respond quickly
        empty_event_sequence();
        // remember mode for later
        save_config_wl();
        return EVENT_HANDLED;
    }
    // hold: dimmer
    else if (event == EV_click1_hold) {
        // ramp slower in discrete mode
        if (arg % HOLD_TIMEOUT != 0) {
            return EVENT_HANDLED;
        }
        memorized_level = nearest_level((int16_t)actual_level - ramp_step_size);
        #ifdef USE_THERMAL_REGULATION
        target_level = memorized_level;
        #endif
        set_level(memorized_level);
        return EVENT_HANDLED;
    }
    // reverse ramp direction on hold release
    else if (event == EV_click1_hold_release) {
        save_config_wl();
        return EVENT_HANDLED;
    }
    #if defined(USE_SET_LEVEL_GRADUALLY)
    // gradual thermal regulation
    else if (event == EV_tick) {
        #ifdef USE_SET_LEVEL_GRADUALLY
        // make thermal adjustment speed scale with magnitude
        if ((arg & 1) && (actual_level < THERM_FASTER_LEVEL)) {
            return EVENT_HANDLED;  // adjust slower when not a high mode
        }
        #ifdef THERM_HARD_TURBO_DROP
        else if ((! (actual_level < THERM_FASTER_LEVEL))
                && (actual_level > gradual_target)) {
            gradual_tick();
        }
        else {
        #endif
        // [int(62*4 / (x**0.95)) for x in (1,2,4,8,16,32,64,128)]
        uint8_t intervals[] = {248, 128, 66, 34, 17, 9, 4, 2};
        uint8_t diff;
        static uint8_t ticks_since_adjust = 0;
        ticks_since_adjust ++;
        if (gradual_target > actual_level) diff = gradual_target - actual_level;
        else {
            diff = actual_level - gradual_target;
        }
        uint8_t magnitude = 0;
        #ifndef THERM_HARD_TURBO_DROP
        // if we're on a really high mode, drop faster
        if (actual_level >= THERM_FASTER_LEVEL) { magnitude ++; }
        #endif
        while (diff) {
            magnitude ++;
            diff >>= 1;
        }
        uint8_t ticks_per_adjust = intervals[magnitude];
        if (ticks_since_adjust > ticks_per_adjust)
        {
            gradual_tick();
            ticks_since_adjust = 0;
        }
        //if (!(arg % ticks_per_adjust)) gradual_tick();
        #ifdef THERM_HARD_TURBO_DROP
        }
        #endif
        #endif
        return EVENT_HANDLED;
    }
    #endif
    #ifdef USE_THERMAL_REGULATION
    // overheating: drop by an amount proportional to how far we are above the ceiling
    else if (event == EV_temperature_high) {
        #ifdef THERM_HARD_TURBO_DROP
        if (actual_level > THERM_FASTER_LEVEL) {
            #ifdef USE_SET_LEVEL_GRADUALLY
            set_level_gradually(THERM_FASTER_LEVEL);
            #else
            set_level(THERM_FASTER_LEVEL);
            #endif
        } else
        #endif
        if (actual_level > MIN_THERM_STEPDOWN) {
            int16_t stepdown = actual_level - arg;
            if (stepdown < MIN_THERM_STEPDOWN) stepdown = MIN_THERM_STEPDOWN;
            else if (stepdown > MAX_LEVEL) stepdown = MAX_LEVEL;
            #ifdef USE_SET_LEVEL_GRADUALLY
            set_level_gradually(stepdown);
            #else
            set_level(stepdown);
            #endif
        }
        return EVENT_HANDLED;
    }
    // underheating: increase slowly if we're lower than the target
    //               (proportional to how low we are)
    else if (event == EV_temperature_low) {
        if (actual_level < target_level) {
            //int16_t stepup = actual_level + (arg>>1);
            int16_t stepup = actual_level + arg;
            if (stepup > target_level) stepup = target_level;
            else if (stepup < MIN_THERM_STEPDOWN) stepup = MIN_THERM_STEPDOWN;
            #ifdef USE_SET_LEVEL_GRADUALLY
            set_level_gradually(stepup);
            #else
            set_level(stepup);
            #endif
        }
        return EVENT_HANDLED;
    }
    #endif
    return EVENT_NOT_HANDLED;
}


#ifdef USE_BATTCHECK
uint8_t battcheck_state(Event event, uint16_t arg) {
    // 1 click: off
    if (event == EV_1click) {
        set_state(off_state, 0);
        return EVENT_HANDLED;
    }
    #ifdef USE_THERMAL_REGULATION
    // 2 clicks: tempcheck mode
    else if (event == EV_2clicks) {
        blink_confirm(2);
        set_state(tempcheck_state, 0);
        return EVENT_HANDLED;
    }
    #endif
    return EVENT_NOT_HANDLED;
}
#endif

#ifdef USE_THERMAL_REGULATION
uint8_t tempcheck_state(Event event, uint16_t arg) {
    // 1 click: off
    if (event == EV_1click) {
        set_state(off_state, 0);
        return EVENT_HANDLED;
    }
    // 2 clicks: battcheck mode
    else if (event == EV_2clicks) {
        blink_confirm(1);
        set_state(battcheck_state, 0);
        return EVENT_HANDLED;
    }
    // 4 clicks: thermal config mode
    else if (event == EV_4clicks) {
        push_state(thermal_config_state, 0);
        return EVENT_HANDLED;
    }
    return EVENT_NOT_HANDLED;
}
#endif


// ask the user for a sequence of numbers, then save them and return to caller
uint8_t config_state_base(Event event, uint16_t arg,
                          uint8_t num_config_steps,
                          void (*savefunc)()) {
    static uint8_t config_step;
    if (event == EV_enter_state) {
        config_step = 0;
        set_level(0);
        return EVENT_HANDLED;
    }
    // advance forward through config steps
    else if (event == EV_tick) {
        if (config_step < num_config_steps) {
            push_state(number_entry_state, config_step + 1);
        }
        else {
            // TODO: blink out some sort of success pattern
            savefunc();
            save_config();
            //set_state(retstate, retval);
            pop_state();
        }
        return EVENT_HANDLED;
    }
    // an option was set (return from number_entry_state)
    else if (event == EV_reenter_state) {
        config_state_values[config_step] = number_entry_value;
        config_step ++;
        return EVENT_HANDLED;
    }
    //return EVENT_NOT_HANDLED;
    // eat all other events; don't pass any through to parent
    return EVENT_HANDLED;
}

void ramp_config_save() {
    // parse values
    uint8_t val;

    val = config_state_values[0];
    if (val) { ramp_discrete_floor = val; }

    val = config_state_values[1];
    if (val) { ramp_discrete_ceil = MAX_LEVEL + 1 - val; }

    val = config_state_values[2];
    if (val) ramp_discrete_steps = val;
}

uint8_t ramp_config_state(Event event, uint16_t arg) {
    uint8_t num_config_steps;
    num_config_steps = 3;
    return config_state_base(event, arg,
                             num_config_steps, ramp_config_save);
}


#ifdef USE_THERMAL_REGULATION
void thermal_config_save() {
    // parse values
    uint8_t val;

    // calibrate room temperature
    val = config_state_values[0];
    if (val) {
        int8_t rawtemp = temperature - therm_cal_offset;
        therm_cal_offset = val - rawtemp;
        reset_thermal_history = 1;  // invalidate all recent temperature data
    }

    val = config_state_values[1];
    if (val) {
        // set maximum heat limit
        therm_ceil = 30 + val - 1;
    }
    if (therm_ceil > MAX_THERM_CEIL) therm_ceil = MAX_THERM_CEIL;
}

uint8_t thermal_config_state(Event event, uint16_t arg) {
    return config_state_base(event, arg,
                             2, thermal_config_save);
}
#endif


uint8_t number_entry_state(Event event, uint16_t arg) {
    static uint8_t value;
    static uint8_t blinks_left;
    static uint8_t entry_step;
    static uint16_t wait_ticks;
    if (event == EV_enter_state) {
        value = 0;
        blinks_left = arg;
        entry_step = 0;
        wait_ticks = 0;
        return EVENT_HANDLED;
    }
    // advance through the process:
    // 0: wait a moment
    // 1: blink out the 'arg' value
    // 2: wait a moment
    // 3: "buzz" while counting clicks
    // 4: save and exit
    else if (event == EV_tick) {
        // wait a moment
        if ((entry_step == 0) || (entry_step == 2)) {
            if (wait_ticks < TICKS_PER_SECOND/2)
                wait_ticks ++;
            else {
                entry_step ++;
                wait_ticks = 0;
            }
        }
        // blink out the option number
        else if (entry_step == 1) {
            if (blinks_left) {
                if ((wait_ticks & 31) == 10) {
                    set_level(RAMP_SIZE/4);
                }
                else if ((wait_ticks & 31) == 20) {
                    set_level(0);
                }
                else if ((wait_ticks & 31) == 31) {
                    blinks_left --;
                }
                wait_ticks ++;
            }
            else {
                entry_step ++;
                wait_ticks = 0;
            }
        }
        else if (entry_step == 3) {  // buzz while waiting for a number to be entered
            wait_ticks ++;
            // buzz for N seconds after last event
            if ((wait_ticks & 3) == 0) {
                set_level(RAMP_SIZE/6);
            }
            else if ((wait_ticks & 3) == 2) {
                set_level(RAMP_SIZE/8);
            }
            // time out after 3 seconds
            if (wait_ticks > TICKS_PER_SECOND*3) {
                //number_entry_value = value;
                set_level(0);
                entry_step ++;
            }
        }
        else if (entry_step == 4) {
            number_entry_value = value;
            pop_state();
        }
        return EVENT_HANDLED;
    }
    // count clicks
    else if (event == EV_click1_release) {
        empty_event_sequence();
        if (entry_step == 3) {  // only count during the "buzz"
            value ++;
            wait_ticks = 0;
            // flash briefly
            set_level(RAMP_SIZE/2);
            delay_4ms(8/2);
            set_level(0);
        }
        return EVENT_HANDLED;
    }
    return EVENT_NOT_HANDLED;
}


// find the ramp level closest to the target,
// using only the levels which are allowed in the current state
uint8_t nearest_level(int16_t target) {
    // bounds check
    // using int16_t here saves us a bunch of logic elsewhere,
    // by allowing us to correct for numbers < 0 or > 255 in one central place
    uint8_t mode_min = ramp_discrete_floor;
    uint8_t mode_max = ramp_discrete_ceil;
    if (target < mode_min) return mode_min;
    if (target > mode_max) return mode_max;

    uint8_t ramp_range = ramp_discrete_ceil - ramp_discrete_floor;
    ramp_discrete_step_size = ramp_range / (ramp_discrete_steps-1);
    uint8_t this_level = ramp_discrete_floor;

    for(uint8_t i=0; i<ramp_discrete_steps; i++) {
        this_level = ramp_discrete_floor + (i * (uint16_t)ramp_range / (ramp_discrete_steps-1));
        int16_t diff = target - this_level;
        if (diff < 0) diff = -diff;
        if (diff <= (ramp_discrete_step_size>>1))
            return this_level;
    }
    return this_level;
}


void blink_confirm(uint8_t num) {
    for (; num>0; num--) {
        set_level(MAX_LEVEL/4);
        delay_4ms(10/4);
        set_level(0);
        delay_4ms(100/4);
    }
}


void load_config() {
    if (load_eeprom()) {
        ramp_discrete_floor = eeprom[0];
        ramp_discrete_ceil = eeprom[1];
        ramp_discrete_steps = eeprom[2];
        #ifdef USE_THERMAL_REGULATION
        therm_ceil = eeprom[3];
        therm_cal_offset = eeprom[4];
        #endif
    }
    if (load_eeprom_wl()) {
        memorized_level = eeprom_wl[0];
    }
}


void save_config() {
    eeprom[0] = ramp_discrete_floor;
    eeprom[1] = ramp_discrete_ceil;
    eeprom[2] = ramp_discrete_steps;
    #ifdef USE_THERMAL_REGULATION
    eeprom[3] = therm_ceil;
    eeprom[4] = therm_cal_offset;
    #endif

    save_eeprom();
}


void save_config_wl() {
    eeprom_wl[0] = memorized_level;
    save_eeprom_wl();
}


void low_voltage() {
    StatePtr state = current_state;

    // in normal mode, step down or turn off
    if (state == steady_state) {
        if (actual_level > 1) {
            uint8_t lvl = (actual_level >> 1) + (actual_level >> 2);
            set_level(lvl);
            #ifdef USE_THERMAL_REGULATION
            target_level = lvl;
            #endif
        }
        else {
            set_state(off_state, 0);
        }
    }
    // all other modes, just turn off when voltage is low
    else {
        set_state(off_state, 0);
    }
}


void setup() {
    // dual switch: e-switch + power clicky
    // power clicky acts as a momentary mode
    load_config();

    if (button_is_pressed())
        // hold button to go to moon
        push_state(off_state, 0);
    else
        // otherwise use memory
        push_state(steady_state, memorized_level);
}


void loop() {

    StatePtr state = current_state;

    if (0) {}

    #ifdef USE_BATTCHECK
    else if (state == battcheck_state) {
        battcheck();
    }
    #endif
    #ifdef USE_THERMAL_REGULATION
    // TODO: blink out therm_ceil during thermal_config_state
    else if (state == tempcheck_state) {
        blink_num(temperature);
        nice_delay_ms(1000);
    }
    #endif

    #ifdef USE_IDLE_MODE
    else {
        // doze until next clock tick
        idle_mode();
    }
    #endif

}