1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
/*
* This is intended for use on bike tail lights with a clicky switch.
* Ideally, a red XP-E2 running at 700mA.
* It's mostly based on JonnyC's STAR on-time firmware.
*
* Original author: JonnyC
* Modifications: ToyKeeper / Selene Scriven
*
* NANJG 105C Diagram
* ---
* -| |- VCC
* Star 4 -| |- Voltage ADC
* Star 3 -| |- PWM
* GND -| |- Star 2
* ---
*
* CPU speed is 4.8Mhz without the 8x divider when low fuse is 0x75
*
* define F_CPU 4800000 CPU: 4.8MHz PWM: 9.4kHz ####### use low fuse: 0x75 #######
* /8 PWM: 1.176kHz ####### use low fuse: 0x65 #######
* define F_CPU 9600000 CPU: 9.6MHz PWM: 19kHz ####### use low fuse: 0x7a #######
* /8 PWM: 2.4kHz ####### use low fuse: 0x6a #######
*
* Above PWM speeds are for phase-correct PWM. This program uses Fast-PWM,
* which when the CPU is 4.8MHz will be 18.75 kHz
*
* FUSES
* I use these fuse settings
* Low: 0x75
* High: 0xff
*
* STARS (not used)
*
* VOLTAGE
* Resistor values for voltage divider (reference BLF-VLD README for more info)
* Reference voltage can be anywhere from 1.0 to 1.2, so this cannot be all that accurate
*
* VCC
* |
* Vd (~.25 v drop from protection diode)
* |
* 1912 (R1 19,100 ohms)
* |
* |---- PB2 from MCU
* |
* 4701 (R2 4,700 ohms)
* |
* GND
*
* ADC = ((V_bat - V_diode) * R2 * 255) / ((R1 + R2 ) * V_ref)
* 125 = ((3.0 - .25 ) * 4700 * 255) / ((19100 + 4700) * 1.1 )
* 121 = ((2.9 - .25 ) * 4700 * 255) / ((19100 + 4700) * 1.1 )
*
* Well 125 and 121 were too close, so it shut off right after lowering to low mode, so I went with
* 130 and 120
*
* To find out what value to use, plug in the target voltage (V) to this equation
* value = (V * 4700 * 255) / (23800 * 1.1)
*
*/
#define F_CPU 4800000UL
/*
* =========================================================================
* Settings to modify per driver
*/
#define VOLTAGE_MON // Comment out to disable
#define OWN_DELAY // Should we use the built-in delay or our own?
#define MODE_MOON 6 // Can comment out to remove mode, but should be set through soldering stars
#define MODE_LOW 14 // Can comment out to remove mode
#define MODE_MED 39 // Can comment out to remove mode
#define MODE_HIGH 120 // Can comment out to remove mode
#define MODE_HIGHER 255 // Can comment out to remove mode
#define SOLID_MODES 5 // How many non-blinky modes will we have?
#define DUAL_BEACON_MODES 5+3 // How many beacon modes will we have (with background light on)?
#define SINGLE_BEACON_MODES 5+3+1 // How many beacon modes will we have (without background light on)?
#define BATT_CHECK_MODE 5+3+1+1 // which level is the battery check?
#define TOTAL_MODES 5+3+1+1 // Total number of modes
#define WDT_TIMEOUT 2 // Number of WTD ticks before mode is saved (.5 sec each)
//#define ADC_LOW 130 // When do we start ramping
//#define ADC_CRIT 120 // When do we shut the light off
#define ADC_42 184 // the ADC value we expect for 4.20 volts
#define ADC_100 184 // the ADC value for 100% full (4.2V resting)
#define ADC_75 174 // the ADC value for 75% full (4.0V resting)
#define ADC_50 164 // the ADC value for 50% full (3.8V resting)
#define ADC_25 154 // the ADC value for 25% full (3.6V resting)
#define ADC_0 139 // the ADC value for 0% full (3.3V resting)
#define ADC_LOW 123 // When do we start ramping down
#define ADC_CRIT 113 // When do we shut the light off
/*
* =========================================================================
*/
#ifdef OWN_DELAY
#include <util/delay_basic.h>
// Having own _delay_ms() saves some bytes AND adds possibility to use variables as input
static void _delay_ms(uint16_t n)
{
while(n-- > 0)
_delay_loop_2(1000);
}
#else
#include <util/delay.h>
#endif
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/eeprom.h>
#include <avr/sleep.h>
#define STAR2_PIN PB0
#define STAR3_PIN PB4
#define STAR4_PIN PB3
#define PWM_PIN PB1
#define VOLTAGE_PIN PB2
#define ADC_CHANNEL 0x01 // MUX 01 corresponds with PB2
#define ADC_DIDR ADC1D // Digital input disable bit corresponding with PB2
#define ADC_PRSCL 0x06 // clk/64
#define PWM_LVL OCR0B // OCR0B is the output compare register for PB1
/*
* global variables
*/
// Mode storage
uint8_t eepos = 0;
uint8_t eep[32];
#define memory 1
//uint8_t memory = 0;
// Modes (gets set when the light starts up)
static uint8_t modes[TOTAL_MODES] = { // high enough to handle all
MODE_MOON, MODE_LOW, MODE_MED, MODE_HIGH, MODE_HIGHER, // regular solid modes
MODE_MOON, MODE_LOW, MODE_MED, // dual beacon modes
MODE_HIGHER, // single beacon modes
MODE_MED, // battery check
};
volatile uint8_t mode_idx = 0;
// int mode_dir = 0; // 1 or -1. Determined when checking stars. Do we increase or decrease the idx when moving up to a higher mode.
#define mode_dir 1
PROGMEM const uint8_t voltage_blinks[] = {
ADC_0, // 1 blink for 0%-25%
ADC_25, // 2 blinks for 25%-50%
ADC_50, // 3 blinks for 50%-75%
ADC_75, // 4 blinks for 75%-100%
ADC_100, // 5 blinks for >100%
};
void store_mode_idx(uint8_t lvl) { //central method for writing (with wear leveling)
uint8_t oldpos=eepos;
eepos=(eepos+1)&31; //wear leveling, use next cell
// Write the current mode
EEARL=eepos; EEDR=lvl; EECR=32+4; EECR=32+4+2; //WRITE //32:write only (no erase) 4:enable 2:go
while(EECR & 2); //wait for completion
// Erase the last mode
EEARL=oldpos; EECR=16+4; EECR=16+4+2; //ERASE //16:erase only (no write) 4:enable 2:go
}
inline void read_mode_idx() {
eeprom_read_block(&eep, 0, 32);
while((eep[eepos] == 0xff) && (eepos < 32)) eepos++;
if (eepos < 32) mode_idx = eep[eepos];//&0x40; What the?
else eepos=0;
}
inline void next_mode() {
mode_idx += mode_dir;
if (mode_idx > (TOTAL_MODES - 1)) {
// Wrap around
mode_idx = 0;
}
}
inline void WDT_on() {
// Setup watchdog timer to only interrupt, not reset, every 500ms.
cli(); // Disable interrupts
wdt_reset(); // Reset the WDT
WDTCR |= (1<<WDCE) | (1<<WDE); // Start timed sequence
WDTCR = (1<<WDTIE) | (1<<WDP2) | (1<<WDP0); // Enable interrupt every 500ms
sei(); // Enable interrupts
}
inline void WDT_off()
{
cli(); // Disable interrupts
wdt_reset(); // Reset the WDT
MCUSR &= ~(1<<WDRF); // Clear Watchdog reset flag
WDTCR |= (1<<WDCE) | (1<<WDE); // Start timed sequence
WDTCR = 0x00; // Disable WDT
sei(); // Enable interrupts
}
inline void ADC_on() {
ADMUX = (1 << REFS0) | (1 << ADLAR) | ADC_CHANNEL; // 1.1v reference, left-adjust, ADC1/PB2
DIDR0 |= (1 << ADC_DIDR); // disable digital input on ADC pin to reduce power consumption
ADCSRA = (1 << ADEN ) | (1 << ADSC ) | ADC_PRSCL; // enable, start, prescale
}
inline void ADC_off() {
ADCSRA &= ~(1<<7); //ADC off
}
#ifdef VOLTAGE_MON
uint8_t get_voltage() {
// Start conversion
ADCSRA |= (1 << ADSC);
// Wait for completion
while (ADCSRA & (1 << ADSC));
// See if voltage is lower than what we were looking for
return ADCH;
}
#endif
ISR(WDT_vect) {
static uint8_t ticks = 0;
if (ticks < 255) ticks++;
if (ticks == WDT_TIMEOUT) {
#if memory
store_mode_idx(mode_idx);
#else
// Reset the mode to the start for next time
store_mode_idx(0);
#endif
}
}
int main(void)
{
// All ports default to input, but turn pull-up resistors on for the stars
// (not the ADC input! Made that mistake already)
// (stars not used)
//PORTB = (1 << STAR2_PIN) | (1 << STAR3_PIN) | (1 << STAR4_PIN);
// Set PWM pin to output
DDRB = (1 << PWM_PIN);
// Set timer to do PWM for correct output pin and set prescaler timing
TCCR0A = 0x23; // phase corrected PWM is 0x21 for PB1, fast-PWM is 0x23
TCCR0B = 0x01; // pre-scaler for timer (1 => 1, 2 => 8, 3 => 64...)
// Turn features on or off as needed
#ifdef VOLTAGE_MON
ADC_on();
#else
ADC_off();
#endif
ACSR |= (1<<7); //AC off
// memory is always enabled
//memory = 1;
// Enable sleep mode set to Idle that will be triggered by the sleep_mode() command.
// Will allow us to go idle between WDT interrupts
set_sleep_mode(SLEEP_MODE_IDLE);
// Determine what mode we should fire up
// Read the last mode that was saved
read_mode_idx();
if (mode_idx&0x40) {
// Indicates we did a short press last time, go to the next mode
// Remove short press indicator first
mode_idx &= 0x3f;
next_mode(); // Will handle wrap arounds
} else {
// Didn't have a short press, keep the same mode
}
// Store mode with short press indicator
store_mode_idx(mode_idx|0x40);
WDT_on();
// Now just fire up the mode
PWM_LVL = modes[mode_idx];
uint8_t i = 0;
#ifdef VOLTAGE_MON
uint8_t lowbatt_cnt = 0;
uint8_t voltage;
voltage = get_voltage();
#endif
while(1) {
if(mode_idx < SOLID_MODES) {
sleep_mode();
} else if (mode_idx < DUAL_BEACON_MODES) {
for(i=0; i<4; i++) {
PWM_LVL = modes[mode_idx-SOLID_MODES+2];
_delay_ms(5);
PWM_LVL = modes[mode_idx];
_delay_ms(65);
}
_delay_ms(720);
} else if (mode_idx < SINGLE_BEACON_MODES) {
PWM_LVL = modes[SINGLE_BEACON_MODES-1];
_delay_ms(1);
PWM_LVL = 0;
_delay_ms(249);
PWM_LVL = modes[SINGLE_BEACON_MODES-1];
_delay_ms(1);
PWM_LVL = 0;
_delay_ms(749);
} else if (mode_idx < BATT_CHECK_MODE) {
uint8_t blinks = 0;
// turn off and wait one second before showing the value
// (also, ensure voltage is measured while not under load)
PWM_LVL = 0;
_delay_ms(1000);
voltage = get_voltage();
voltage = get_voltage(); // the first one is unreliable
// division takes too much flash space
//voltage = (voltage-ADC_LOW) / (((ADC_42 - 15) - ADC_LOW) >> 2);
// a table uses less space than 5 logic clauses
for (i=0; i<sizeof(voltage_blinks); i++) {
if (voltage > pgm_read_byte(voltage_blinks + i)) {
blinks ++;
}
}
// blink up to five times to show voltage
// (~0%, ~25%, ~50%, ~75%, ~100%, >100%)
for(i=0; i<blinks; i++) {
PWM_LVL = MODE_MED;
_delay_ms(100);
PWM_LVL = 0;
_delay_ms(400);
}
_delay_ms(1000); // wait at least 1 second between readouts
}
#ifdef VOLTAGE_MON
if (ADCSRA & (1 << ADIF)) { // if a voltage reading is ready
voltage = get_voltage();
// See if voltage is lower than what we were looking for
if (voltage < ((mode_idx == 0) ? ADC_CRIT : ADC_LOW)) {
++lowbatt_cnt;
} else {
lowbatt_cnt = 0;
}
// See if it's been low for a while, and maybe step down
if (lowbatt_cnt >= 3) {
if (mode_idx > 0) {
// Go to a dimmer mode
if (mode_idx == DUAL_BEACON_MODES) {
// step down from heartbeat beacon to lowest solid
mode_idx = 0;
}
else if (mode_idx == SOLID_MODES) {
// step down from lowest flasher to lowest solid
mode_idx = 0;
}
else { // lower the brightness
mode_idx -= 1;
}
} else { // Already at the lowest mode
// Turn off the light
PWM_LVL = 0;
// Disable WDT so it doesn't wake us up
WDT_off();
// Power down as many components as possible
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
sleep_mode();
}
lowbatt_cnt = 0;
// Wait at least 1 second before lowering the level again
_delay_ms(1000); // this will interrupt blinky modes
}
// Make sure conversion is running for next time through
ADCSRA |= (1 << ADSC);
}
#endif
}
}
|