~toykeeper/flashlight-firmware/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 * NANJG 105C Diagram
 *           ---
 *         -|   |- VCC
 *  Star 4 -|   |- Voltage ADC
 *  Star 3 -|   |- PWM
 *     GND -|   |- Star 2
 *           ---
 *
 * FUSES
 *      (check bin/flash*.sh for recommended values)
 *
 * STARS
 *      Star 2 = second PWM output channel
 *      Star 3 = mode memory if soldered, no memory by default
 *      Star 4 = Capacitor for off-time
 *
 * VOLTAGE
 *      Resistor values for voltage divider (reference BLF-VLD README for more info)
 *      Reference voltage can be anywhere from 1.0 to 1.2, so this cannot be all that accurate
 *
 *           VCC
 *            |
 *           Vd (~.25 v drop from protection diode)
 *            |
 *          1912 (R1 19,100 ohms)
 *            |
 *            |---- PB2 from MCU
 *            |
 *          4701 (R2 4,700 ohms)
 *            |
 *           GND
 *
 *      ADC = ((V_bat - V_diode) * R2   * 255) / ((R1    + R2  ) * V_ref)
 *      125 = ((3.0   - .25    ) * 4700 * 255) / ((19100 + 4700) * 1.1  )
 *      121 = ((2.9   - .25    ) * 4700 * 255) / ((19100 + 4700) * 1.1  )
 *
 *      Well 125 and 121 were too close, so it shut off right after lowering to low mode, so I went with
 *      130 and 120
 *
 *      To find out what value to use, plug in the target voltage (V) to this equation
 *          value = (V * 4700 * 255) / (23800 * 1.1)
 *
 */
#define F_CPU 4800000UL

/*
 * =========================================================================
 * Settings to modify per driver
 */

//#define FAST 0x23           // fast PWM channel 1 only
//#define PHASE 0x21          // phase-correct PWM channel 1 only
#define FAST 0xA3             // fast PWM both channels
#define PHASE 0xA1            // phase-correct PWM both channels

#define VOLTAGE_MON         // Comment out to disable
#define OWN_DELAY           // Should we use the built-in delay or our own?
// Adjust the timing per-driver, since the hardware has high variance
// Higher values will run slower, lower values run faster.
#define DELAY_TWEAK         950

//#define TICKS_250MS       // If enabled, ticks are every 250 ms. If disabled, ticks are every 500 ms
                            // Affects turbo timeout/rampdown timing

#define OFFTIM3             // Use short/med/long off-time presses
                            // instead of just short/long

// PWM levels for the big circuit (FET or Nx7135)
#define MODESNx             0,0,0,70,255
// PWM levels for the small circuit (1x7135)
// (if the big circuit is a FET, use 0 for high modes here instead of 255)
#define MODES1x             3,15,128,255,255
#define MODES_PWM           PHASE,FAST,FAST,FAST,PHASE
// Hidden modes are *before* the lowest (moon) mode, and should be specified
// in reverse order.  So, to go backward from moon to turbo to strobe to
// battcheck, use BATTCHECK,STROBE,255 .
#define HIDDENMODES         BATTCHECK,STROBE,255
#define HIDDENMODES_PWM     PHASE,PHASE,PHASE

#define MODE_TURBO_LOW      140 // Level turbo ramps down to if turbo enabled
#define TURBO                   // comment out to disable turbo step-down
#define TURBO_TIMEOUT       240 // How many WTD ticks before before dropping down.  If ticks set for 500 ms, then 240 x .5 = 120 seconds.  Max value of 255 unless you change "ticks"
                                // variable to uint8_t
//#define TURBO_RAMP_DOWN           // By default we will start to gradually ramp down, once TURBO_TIMEOUT ticks are reached, 1 PWM_LVL each tick until reaching MODE_TURBO_LOW PWM_LVL
                                // If commented out, we will step down to MODE_TURBO_LOW once TURBO_TIMEOUT ticks are reached

// These values were measured using "Moonlight Special" driver from RMM.
// Your mileage may vary.
#define ADC_42          195 // the ADC value we expect for 4.20 volts
#define ADC_100         195 // the ADC value for 100% full (4.2V resting)
#define ADC_75          184 // the ADC value for 75% full (4.0V resting)
#define ADC_50          174 // the ADC value for 50% full (3.8V resting)
#define ADC_25          159 // the ADC value for 25% full (3.5V resting)
#define ADC_0           133 // the ADC value for 0% full (3.0V resting)
#define ADC_LOW         123 // When do we start ramping down (2.8V)
#define ADC_CRIT        118 // When do we shut the light off (2.7V)
// These were JonnyC's original values
//#define ADC_LOW             130     // When do we start ramping
//#define ADC_CRIT            120     // When do we shut the light off

#ifdef OFFTIM3
#define CAP_SHORT           190  // Value between 1 and 255 corresponding with cap voltage (0 - 1.1v) where we consider it a short press to move to the next mode
#define CAP_MED             100  // Value between 1 and 255 corresponding with cap voltage (0 - 1.1v) where we consider it a short press to move to the next mode
#else
#define CAP_SHORT           130  // Value between 1 and 255 corresponding with cap voltage (0 - 1.1v) where we consider it a short press to move to the next mode
                                 // Not sure the lowest you can go before getting bad readings, but with a value of 70 and a 1uF cap, it seemed to switch sometimes
                                 // even when waiting 10 seconds between presses.
#endif

// Comment these out to disable the mode and save space
#define STROBE    254       // Convenience code for strobe mode
#define BATTCHECK 253       // Convenience code for battery check mode

/*
 * =========================================================================
 */

#ifdef OWN_DELAY
#include <util/delay_basic.h>
// Having own _delay_ms() saves some bytes AND adds possibility to use variables as input
static void _delay_ms(uint16_t n)
{
    // TODO: make this take tenths of a ms instead of ms,
    // for more precise timing?
    while(n-- > 0) _delay_loop_2(DELAY_TWEAK);
}
#else
#include <util/delay.h>
#endif

#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/eeprom.h>
#include <avr/sleep.h>
//#include <avr/power.h>

#define STAR2_PIN   PB0
#define STAR3_PIN   PB4
#define CAP_PIN     PB3
#define CAP_CHANNEL 0x03    // MUX 03 corresponds with PB3 (Star 4)
#define CAP_DIDR    ADC3D   // Digital input disable bit corresponding with PB3
#define PWM_PIN     PB1
#define VOLTAGE_PIN PB2
#define ADC_CHANNEL 0x01    // MUX 01 corresponds with PB2
#define ADC_DIDR    ADC1D   // Digital input disable bit corresponding with PB2
#define ADC_PRSCL   0x06    // clk/64

#define PWM_LVL     OCR0B   // OCR0B is the output compare register for PB1
#define ALT_PWM_LVL OCR0A   // OCR0A is the output compare register for PB0

/*
 * global variables
 */

// Mode storage
uint8_t eepos = 0;
uint8_t eep[32];
uint8_t memory = 0;

// Modes (gets set when the light starts up based on stars)
PROGMEM const uint8_t modesNx[] = { MODESNx , HIDDENMODES };
PROGMEM const uint8_t modes1x[] = { MODES1x , HIDDENMODES };
PROGMEM const uint8_t modes_pwm[] = { MODES_PWM , HIDDENMODES_PWM };
volatile uint8_t mode_idx = 0;
// NOTE: Only '1' is known to work; -1 will probably break and is untested.
// In other words, short press goes to the next (higher) mode,
// medium press goes to the previous (lower) mode.
#define mode_dir 1
uint8_t mode_cnt = sizeof(modesNx);

uint8_t lowbatt_cnt = 0;

PROGMEM const uint8_t voltage_blinks[] = {
    ADC_0,    // 1 blink  for 0%-25%
    ADC_25,   // 2 blinks for 25%-50%
    ADC_50,   // 3 blinks for 50%-75%
    ADC_75,   // 4 blinks for 75%-100%
    ADC_100,  // 5 blinks for >100%
};

void store_mode_idx(uint8_t lvl) {  //central method for writing (with wear leveling)
    uint8_t oldpos=eepos;
    eepos=(eepos+1)&31;  //wear leveling, use next cell
    // Write the current mode
    EEARL=eepos;  EEDR=lvl; EECR=32+4; EECR=32+4+2;  //WRITE  //32:write only (no erase)  4:enable  2:go
    while(EECR & 2); //wait for completion
    // Erase the last mode
    EEARL=oldpos;           EECR=16+4; EECR=16+4+2;  //ERASE  //16:erase only (no write)  4:enable  2:go
}
inline void read_mode_idx() {
    eeprom_read_block(&eep, 0, 32);
    while((eep[eepos] == 0xff) && (eepos < 32)) eepos++;
    if (eepos < 32) mode_idx = eep[eepos];//&0x10; What the?
    else eepos=0;
}

inline void next_mode() {
    mode_idx += mode_dir;
    if (mode_idx >= mode_cnt) {
        // Wrap around
        mode_idx = 0;
    }
}

#ifdef OFFTIM3
inline void prev_mode() {
    if (mode_idx > 0) {
        // Regular mode: is between 1 and TOTAL_MODES
        mode_idx -= mode_dir;
    } else {
        // Otherwise, wrap around
        mode_idx = mode_cnt - 1;
    }
    /* For future use:
    // FIXME: use a different mechanism for hidden modes
    if ((0x40 > mode_idx) && (mode_idx > 0)) {
        // Regular mode: is between 1 and TOTAL_MODES
        mode_idx -= mode_dir;
    // FIXME: use a different mechanism for hidden modes
    } else if ((mode_idx&0x3f) < sizeof(neg_modes)) {
        // "Negative" mode (uses 0x40 bit to indicate "negative")
        mode_idx = (mode_idx|0x40) + mode_dir;
    } else {
        // Otherwise, always reset to first mode
        // (mode was too negative or otherwise out of range)
        mode_idx = 0;
    }
    */
}
#endif

inline void check_stars() {
    // Configure options based on stars
    // 0 being low for soldered, 1 for pulled-up for not soldered
#if 0  // not implemented, STAR2_PIN is used for second PWM channel
    // Moon
    // enable moon mode?
    if ((PINB & (1 << STAR2_PIN)) == 0) {
        modes[mode_cnt++] = MODE_MOON;
    }
#endif
#if 0  // Mode order not as important as mem/no-mem
    // Mode order
    if ((PINB & (1 << STAR3_PIN)) == 0) {
        // High to Low
        mode_dir = -1;
    } else {
        mode_dir = 1;
    }
#endif
    // Memory
    if ((PINB & (1 << STAR3_PIN)) == 0) {
        memory = 1;  // solder to enable memory
    } else {
        memory = 0;  // unsolder to disable memory
    }
}

inline void WDT_on() {
    // Setup watchdog timer to only interrupt, not reset
    cli();                          // Disable interrupts
    wdt_reset();                    // Reset the WDT
    WDTCR |= (1<<WDCE) | (1<<WDE);  // Start timed sequence
    #ifdef TICKS_250MS
    WDTCR = (1<<WDTIE) | (1<<WDP2); // Enable interrupt every 250ms
    #else
    WDTCR = (1<<WDTIE) | (1<<WDP2) | (1<<WDP0); // Enable interrupt every 500ms
    #endif
    sei();                          // Enable interrupts
}

inline void WDT_off()
{
    cli();                          // Disable interrupts
    wdt_reset();                    // Reset the WDT
    MCUSR &= ~(1<<WDRF);            // Clear Watchdog reset flag
    WDTCR |= (1<<WDCE) | (1<<WDE);  // Start timed sequence
    WDTCR = 0x00;                   // Disable WDT
    sei();                          // Enable interrupts
}

inline void ADC_on() {
    DIDR0 |= (1 << ADC_DIDR);                           // disable digital input on ADC pin to reduce power consumption
    ADMUX  = (1 << REFS0) | (1 << ADLAR) | ADC_CHANNEL; // 1.1v reference, left-adjust, ADC1/PB2
    ADCSRA = (1 << ADEN ) | (1 << ADSC ) | ADC_PRSCL;   // enable, start, prescale
}

inline void ADC_off() {
    ADCSRA &= ~(1<<7); //ADC off
}

void set_output(uint8_t pwm1, uint8_t pwm2) {
    // Need PHASE to properly turn off the light
    if ((pwm1==0) && (pwm2==0)) {
        TCCR0A = PHASE;
    }
    PWM_LVL = pwm1;
    ALT_PWM_LVL = pwm2;
}

void set_mode(uint8_t mode) {
    TCCR0A = pgm_read_byte(modes_pwm + mode);
    // Only set output for solid modes
    uint8_t out = pgm_read_byte(modesNx + mode);
    if ((out < 250) || (out == 255)) {
        set_output(pgm_read_byte(modesNx + mode), pgm_read_byte(modes1x + mode));
    }
}

#ifdef VOLTAGE_MON
uint8_t get_voltage() {
    // Start conversion
    ADCSRA |= (1 << ADSC);
    // Wait for completion
    while (ADCSRA & (1 << ADSC));
    // See if voltage is lower than what we were looking for
    return ADCH;
}

uint8_t low_voltage(uint8_t voltage_val) {
    uint8_t voltage = get_voltage();
    // See if voltage is lower than what we were looking for
    if (voltage < voltage_val) {
        // See if it's been low for a while
        if (++lowbatt_cnt > 8) {
            lowbatt_cnt = 0;
            return 1;
        }
        _delay_ms(100);  // don't take a reading *too* often
    } else {
        lowbatt_cnt = 0;
    }
    return 0;
}
#endif

ISR(WDT_vect) {
    static uint8_t ticks = 0;
    if (ticks < 255) ticks++;
    // If you want more than 255 for longer turbo timeouts
    //static uint16_t ticks = 0;
    //if (ticks < 60000) ticks++;

#ifdef TURBO
    //if (ticks == TURBO_TIMEOUT && modes[mode_idx] == MODE_TURBO) { // Doesn't make any sense why this doesn't work
    if (ticks >= TURBO_TIMEOUT && mode_idx == (mode_cnt - 1) && PWM_LVL > MODE_TURBO_LOW) {
        #ifdef TURBO_RAMP_DOWN
        set_output(PWM_LVL - 1, PWM_LVL - 1);
        #else
        // Turbo mode is always at end
        set_output(MODE_TURBO_LOW, MODE_TURBO_LOW);
        /*
        if (MODE_TURBO_LOW <= modes[mode_idx-1]) {
            // Dropped at or below the previous mode, so set it to the stored mode
            // Kept this as it was the same functionality as before.  For the TURBO_RAMP_DOWN feature
            // it doesn't do this logic because I don't know what makes the most sense
            store_mode_idx(--mode_idx);
        }
        */
        #endif
    }
#endif

}

int main(void)
{
    // All ports default to input, but turn pull-up resistors on for the stars (not the ADC input!  Made that mistake already)
    // only one star, because one is used for PWM channel 2
    // and the other is used for the off-time capacitor
    PORTB = (1 << STAR3_PIN);

    // Determine what mode we should fire up
    // Read the last mode that was saved
    read_mode_idx();

    check_stars(); // Moving down here as it might take a bit for the pull-up to turn on?

    // Start up ADC for capacitor pin
    DIDR0 |= (1 << CAP_DIDR);                           // disable digital input on ADC pin to reduce power consumption
    ADMUX  = (1 << REFS0) | (1 << ADLAR) | CAP_CHANNEL; // 1.1v reference, left-adjust, ADC3/PB3
    ADCSRA = (1 << ADEN ) | (1 << ADSC ) | ADC_PRSCL;   // enable, start, prescale

    // Wait for completion
    while (ADCSRA & (1 << ADSC));
    // Start again as datasheet says first result is unreliable
    ADCSRA |= (1 << ADSC);
    // Wait for completion
    while (ADCSRA & (1 << ADSC));
    if (ADCH > CAP_SHORT) {
        // Indicates they did a short press, go to the next mode
        next_mode(); // Will handle wrap arounds
        store_mode_idx(mode_idx);
#ifdef OFFTIM3
    } else if (ADCH > CAP_MED) {
        // User did a medium press, go back one mode
        prev_mode(); // Will handle "negative" modes and wrap-arounds
        store_mode_idx(mode_idx);
#endif
    } else {
        // Didn't have a short press, keep the same mode
        // ... or reset to the first mode
        if (! memory) {
            // Reset to the first mode
            mode_idx = 0;
            store_mode_idx(mode_idx);
        }
    }
    // Turn off ADC
    ADC_off();

    // Charge up the capacitor by setting CAP_PIN to output
    DDRB  |= (1 << CAP_PIN);    // Output
    PORTB |= (1 << CAP_PIN);    // High

    // Set PWM pin to output
    DDRB |= (1 << PWM_PIN);     // enable main channel
    DDRB |= (1 << STAR2_PIN);   // enable second channel

    // Set timer to do PWM for correct output pin and set prescaler timing
    //TCCR0A = 0x23; // phase corrected PWM is 0x21 for PB1, fast-PWM is 0x23
    //TCCR0B = 0x01; // pre-scaler for timer (1 => 1, 2 => 8, 3 => 64...)

    // Turn features on or off as needed
    #ifdef VOLTAGE_MON
    ADC_on();
    #else
    ADC_off();
    #endif
    ACSR   |=  (1<<7); //AC off

    // Enable sleep mode set to Idle that will be triggered by the sleep_mode() command.
    // Will allow us to go idle between WDT interrupts
    //set_sleep_mode(SLEEP_MODE_IDLE);  // not used due to blinky modes

    WDT_on();

    // Now just fire up the mode
    // Set timer to do PWM for correct output pin and set prescaler timing
    TCCR0B = 0x01; // pre-scaler for timer (1 => 1, 2 => 8, 3 => 64...)

    set_mode(mode_idx);

    uint8_t output;
#ifdef VOLTAGE_MON
    uint8_t i = 0;
    uint8_t hold_pwm;
#ifdef BATTCHECK
    uint8_t voltage;
#endif
#endif
    while(1) {
        output = pgm_read_byte(modesNx + mode_idx);
        if (0) {}  // placeholder in case STROBE isn't defined
#ifdef STROBE
        else if (output == STROBE) {
            set_output(255,255);
            _delay_ms(50);
            set_output(0,0);
            _delay_ms(50);
        }
#endif
#ifdef BATTCHECK
        else if (output == BATTCHECK) {
            uint8_t blinks = 0;
            // turn off and wait one second before showing the value
            // (also, ensure voltage is measured while not under load)
            set_output(0,0);
            _delay_ms(1000);
            voltage = get_voltage();
            voltage = get_voltage(); // the first one is unreliable
            // division takes too much flash space
            //voltage = (voltage-ADC_LOW) / (((ADC_42 - 15) - ADC_LOW) >> 2);
            // a table uses less space than 5 logic clauses
            for (i=0; i<sizeof(voltage_blinks); i++) {
                if (voltage > pgm_read_byte(voltage_blinks + i)) {
                    blinks ++;
                }
            }

            // blink up to five times to show voltage
            // (~0%, ~25%, ~50%, ~75%, ~100%, >100%)
            for(i=0; i<blinks; i++) {
                set_output(0,40);
                _delay_ms(100);
                set_output(0,0);
                _delay_ms(400);
            }

            _delay_ms(1000);  // wait at least 1 second between readouts
        }
#endif
    #ifdef VOLTAGE_MON
        if (low_voltage(ADC_LOW)) {
            // We need to go to a lower level
            if (mode_idx == 0 && ALT_PWM_LVL <= modes1x[mode_idx]) {
                // Can't go any lower than the lowest mode
                // Wait until we hit the critical level before flashing 10 times and turning off
                while (!low_voltage(ADC_CRIT));
                i = 0;
                while (i++<10) {
                    set_output(0,0);
                    _delay_ms(250);
                    set_mode(0);
                    _delay_ms(500);
                }
                // Turn off the light
                set_output(0,0);
                // Disable WDT so it doesn't wake us up
                WDT_off();
                // Power down as many components as possible
                set_sleep_mode(SLEEP_MODE_PWR_DOWN);
                sleep_mode();
            } else {
                // Flash 3 times before lowering
                hold_pwm = ALT_PWM_LVL;
                i = 0;
                while (i++<3) {
                    set_output(0,0);
                    _delay_ms(250);
                    set_output(hold_pwm,hold_pwm);
                    _delay_ms(500);
                }
                // Lower the mode by half, but don't go below lowest level
                if ((ALT_PWM_LVL >> 1) < modes1x[0]) {
                    set_mode(0);
                    mode_idx = 0;
                } else {
                    set_output(0,ALT_PWM_LVL >> 1);
                }
                // See if we should change the current mode level if we've gone under the current mode.
                if (ALT_PWM_LVL < modes1x[mode_idx]) {
                    // Lower our recorded mode
                    mode_idx--;
                }
            }
            // Wait 3 seconds before lowering the level again
            _delay_ms(3000);
        }
    #endif
        //sleep_mode();  // incompatible with blinky modes
    }

    return 0; // Standard Return Code
}