~toykeeper/flashlight-firmware/trunk

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/* STAR_dual_switch version 1.0
 *
 * Changelog
 *
 * 1.0 Initial version
 * 1.1 Changed modes to static and no longer access through progmem. Also changed mode levels to more closely match STAR_momentary
 *
 */

/*
 * NANJG 105C Diagram
 *           ---
 *         -|   |- VCC
 *  Star 4 -|   |- Voltage ADC
 *  Star 3 -|   |- PWM
 *     GND -|   |- Star 2
 *           ---
 *
 * FUSES
 *		I use these fuse settings
 *		Low:  0x75	(4.8MHz CPU without 8x divider, 9.4kHz phase-correct PWM or 18.75kHz fast-PWM)
 *		High: 0xff
 *
 *      For more details on these settings, visit http://github.com/JCapSolutions/blf-firmware/wiki/PWM-Frequency
 *
 * STARS
 *		Star 2 = H-L if connected, L-H if not
 *		Star 3 = Memory if not connected
 *		Star 4 = Input for switch
 *
 * VOLTAGE
 *		Resistor values for voltage divider (reference BLF-VLD README for more info)
 *		Reference voltage can be anywhere from 1.0 to 1.2, so this cannot be all that accurate
 *
 *           VCC
 *            |
 *           Vd (~.25 v drop from protection diode)
 *            |
 *          1912 (R1 19,100 ohms)
 *            |
 *            |---- PB2 from MCU
 *            |
 *          4701 (R2 4,700 ohms)
 *            |
 *           GND
 *
 *		ADC = ((V_bat - V_diode) * R2   * 255) / ((R1    + R2  ) * V_ref)
 *		125 = ((3.0   - .25    ) * 4700 * 255) / ((19100 + 4700) * 1.1  )
 *		121 = ((2.9   - .25    ) * 4700 * 255) / ((19100 + 4700) * 1.1  )
 *
 *		Well 125 and 121 were too close, so it shut off right after lowering to low mode, so I went with
 *		130 and 120
 *
 *		To find out what value to use, plug in the target voltage (V) to this equation
 *			value = (V * 4700 * 255) / (23800 * 1.1)
 *      
 */
#define F_CPU 4800000UL

/*
 * =========================================================================
 * Settings to modify per driver
 */

#define VOLTAGE_MON			// Comment out to disable - ramp down and eventual shutoff when battery is low
#define MODES			8,14,39,125,255	// Must be low to high, star determines which way we cycle through them
#define TURBO				// Comment out to disable - full output with a step down after n number of seconds
							// If turbo is enabled, it will be where 255 is listed in the modes above
#define TURBO_TIMEOUT	5625 // How many WTD ticks before before dropping down (.016 sec each)
							// 90  = 5625
							// 120 = 7500
							
#define ADC_LOW			130	// When do we start ramping
#define ADC_CRIT		120 // When do we shut the light off
#define ADC_DELAY		188	// Delay in ticks between low-bat rampdowns (188 ~= 3s)

/*
 * =========================================================================
 */

//#include <avr/pgmspace.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>	
#include <avr/eeprom.h>
#include <avr/sleep.h>
//#include <avr/power.h>

#define STAR2_PIN   PB0		// If not connected, will cycle L-H.  Connected, H-L
#define STAR3_PIN   PB4		// If not connected, will enable memory
#define SWITCH_PIN  PB3		// what pin the switch is connected to, which is Star 4
#define PWM_PIN     PB1
#define VOLTAGE_PIN PB2
#define ADC_CHANNEL 0x01	// MUX 01 corresponds with PB2
#define ADC_DIDR 	ADC1D	// Digital input disable bit corresponding with PB2
#define ADC_PRSCL   0x06	// clk/64

#define PWM_LVL OCR0B       // OCR0B is the output compare register for PB1

#define DB_REL_DUR 0b00001111 // time before we consider the switch released after
							  // each bit of 1 from the right equals 16ms, so 0x0f = 64ms

// Switch handling
#define LONG_PRESS_DUR   32 // How many WDT ticks until we consider a press a long press
                            // 32 is roughly .5 s	

/*
 * The actual program
 * =========================================================================
 */

/*
 * global variables
 */
static   uint8_t modes[] = { MODES };
volatile uint8_t mode_idx = 0;
volatile uint8_t press_duration = 0;
volatile uint8_t low_to_high = 0;

// Mode storage
uint8_t eepos = 0;
uint8_t eep[32];
uint8_t memory = 0;

void store_mode_idx(uint8_t lvl) {  //central method for writing (with wear leveling)
	uint8_t oldpos=eepos;
	eepos=(eepos+1)&31;  //wear leveling, use next cell
	// Write the current mode
	EEARL=eepos;  EEDR=lvl; EECR=32+4; EECR=32+4+2;  //WRITE  //32:write only (no erase)  4:enable  2:go
	while(EECR & 2); //wait for completion
	// Erase the last mode
	EEARL=oldpos;           EECR=16+4; EECR=16+4+2;  //ERASE  //16:erase only (no write)  4:enable  2:go
}
inline void read_mode_idx() {
	eeprom_read_block(&eep, 0, 32);
	while((eep[eepos] == 0xff) && (eepos < 32)) eepos++;
	if (eepos < 32) mode_idx = eep[eepos];//&0x10; What the?
	else eepos=0;
}

// Debounced switch press value
int is_pressed()
{
	// Keep track of last switch values polled
	static uint8_t buffer = 0x00;
	// Shift over and tack on the latest value, 0 being low for pressed, 1 for pulled-up for released
	buffer = (buffer << 1) | ((PINB & (1 << SWITCH_PIN)) == 0);
	return (buffer & DB_REL_DUR);
}

void next_mode(uint8_t save) {
	if (++mode_idx >= sizeof(modes)) {
		// Wrap around
		mode_idx = 0;
	}
	if (memory && save)	{
		store_mode_idx(mode_idx);
	}
}

void prev_mode(uint8_t save) {
	if (mode_idx == 0) {
		// Wrap around
		mode_idx = sizeof(modes) - 1;
	} else {
		--mode_idx;
	}
	if (memory && save)	{
		store_mode_idx(mode_idx);
	}
}
/*
inline void PCINT_on() {
	// Enable pin change interrupts
	GIMSK |= (1 << PCIE);
}

inline void PCINT_off() {
	// Disable pin change interrupts
	GIMSK &= ~(1 << PCIE);
}
*/

// Need an interrupt for when pin change is enabled to ONLY wake us from sleep.
// All logic of what to do when we wake up will be handled in the main loop.
EMPTY_INTERRUPT(PCINT0_vect);

inline void WDT_on() {
	// Setup watchdog timer to only interrupt, not reset, every 16ms.
	cli();							// Disable interrupts
	wdt_reset();					// Reset the WDT
	WDTCR |= (1<<WDCE) | (1<<WDE);  // Start timed sequence
	WDTCR = (1<<WDTIE);				// Enable interrupt every 16ms
	sei();							// Enable interrupts
}
/*
inline void WDT_off()
{
	cli();							// Disable interrupts
	wdt_reset();					// Reset the WDT
	MCUSR &= ~(1<<WDRF);			// Clear Watchdog reset flag
	WDTCR |= (1<<WDCE) | (1<<WDE);  // Start timed sequence
	WDTCR = 0x00;					// Disable WDT
	sei();							// Enable interrupts
}
*/

inline void ADC_on() {
	ADMUX  = (1 << REFS0) | (1 << ADLAR) | ADC_CHANNEL; // 1.1v reference, left-adjust, ADC1/PB2
    DIDR0 |= (1 << ADC_DIDR);							// disable digital input on ADC pin to reduce power consumption
	ADCSRA = (1 << ADEN ) | (1 << ADSC ) | ADC_PRSCL;   // enable, start, prescale
}

inline void ADC_off() {
	ADCSRA &= ~(1<<7); //ADC off
}

/*
void sleep_until_switch_press()
{
	// This routine takes up a lot of program memory :(
	// Turn the WDT off so it doesn't wake us from sleep
	// Will also ensure interrupts are on or we will never wake up
	WDT_off();
	// Need to reset press duration since a button release wasn't recorded
	press_duration = 0;
	// Enable a pin change interrupt to wake us up
	// However, we have to make sure the switch is released otherwise we will wake when the user releases the switch
	while (is_pressed()) {
		_delay_ms(16);
	}
	PCINT_on();
	// Enable sleep mode set to Power Down that will be triggered by the sleep_mode() command.
	//set_sleep_mode(SLEEP_MODE_PWR_DOWN);
	// Now go to sleep
	sleep_mode();
	// Hey, someone must have pressed the switch!!
	// Disable pin change interrupt because it's only used to wake us up
	PCINT_off();
	// Turn the WDT back on to check for switch presses
	WDT_on();
	// Go back to main program
}
*/

// The watchdog timer is called every 16ms
ISR(WDT_vect) {

	//static uint8_t  press_duration = 0;  // Pressed or not pressed
	static uint16_t turbo_ticks = 0;
	static uint8_t  adc_ticks = ADC_DELAY;
	static uint8_t  lowbatt_cnt = 0;

	if (is_pressed()) {
		if (press_duration < 255) {
			press_duration++;
		}
		
		if (press_duration == LONG_PRESS_DUR) {
			// Long press
			if (low_to_high) {
				prev_mode(1);
			} else {
				next_mode(1);
			}			
		}
		// Just always reset turbo timer whenever the button is pressed
		turbo_ticks = 0;
		// Same with the ramp down delay
		adc_ticks = ADC_DELAY;
	} else {
		// Not pressed
		if (press_duration > 0 && press_duration < LONG_PRESS_DUR) {
			// Short press
			if (low_to_high) {
				next_mode(1);
			} else {
				prev_mode(1);
			}	
		} else {
			// Only do turbo check when switch isn't pressed
		#ifdef TURBO
			if (modes[mode_idx] == 255) {
				turbo_ticks++;
				if (turbo_ticks > TURBO_TIMEOUT) {
					// Go to the previous mode
					prev_mode(0);
				}
			}
		#endif
			// Only do voltage monitoring when the switch isn't pressed and we aren't at the lowest level
		#ifdef VOLTAGE_MON
			if (mode_idx > 0) {
				if (adc_ticks > 0) {
					--adc_ticks;
				}
				if (adc_ticks == 0) {
					// See if conversion is done
					if (ADCSRA & (1 << ADIF)) {
						// See if voltage is lower than what we were looking for
						if (ADCH < ((mode_idx == 1) ? ADC_CRIT : ADC_LOW)) {
							++lowbatt_cnt;
						} else {
							lowbatt_cnt = 0;
						}
					}
				
					// See if it's been low for a while
					if (lowbatt_cnt >= 4) {
						prev_mode(0);
						lowbatt_cnt = 0;
						// Restart the counter to when we step down again
						adc_ticks = ADC_DELAY;
					}
				
					// Make sure conversion is running for next time through
					ADCSRA |= (1 << ADSC);
				}
			}			
		#endif
		}
		press_duration = 0;
	}
}

int main(void)
{	
	// Set all ports to input, and turn pull-up resistors on for the inputs we are using
	DDRB = 0x00;
	PORTB = (1 << SWITCH_PIN) | (1 << STAR2_PIN) | (1 << STAR3_PIN);

	// Set the switch as an interrupt for when we turn pin change interrupts on
	PCMSK = (1 << SWITCH_PIN);
	
    // Set PWM pin to output
    DDRB = (1 << PWM_PIN);

    // Set timer to do PWM for correct output pin and set prescaler timing
    TCCR0A = 0x23; // phase corrected PWM is 0x21 for PB1, fast-PWM is 0x23
    TCCR0B = 0x01; // pre-scaler for timer (1 => 1, 2 => 8, 3 => 64...)
	
	// Turn features on or off as needed
	#ifdef VOLTAGE_MON
	ADC_on();
	#else
	ADC_off();
	#endif
	ACSR   |=  (1<<7); //AC off
	
	// Determine if we are going L-H, or H-L based on STAR 2
	if ((PINB & (1 << STAR2_PIN)) == 0) {
		// High to Low
		low_to_high = 0;
	} else {
		low_to_high = 1;
	}
	// Not soldered (1) should enable memory
	memory = ((PINB & (1 << STAR3_PIN)) > 0) ? 1 : 0;
	
	// Don't think we want to ever go to sleep
	// Enable sleep mode set to Power Down that will be triggered by the sleep_mode() command.
	//set_sleep_mode(SLEEP_MODE_PWR_DOWN);
	//sleep_until_switch_press();
	
	WDT_on();
	
	// Determine what mode we should fire up
	// Read the last mode that was saved
	if (memory) {
		read_mode_idx();
	} else {
		if (low_to_high) {
			mode_idx = 0;
		} else {
			mode_idx = sizeof(modes);
		}		
	}
	
	PWM_LVL = modes[mode_idx];
	
	uint8_t last_mode_idx = mode_idx;
	
	while(1) {
		// We will never leave this loop.  The WDT will interrupt to check for switch presses and 
		// will change the mode if needed.  If this loop detects that the mode has changed, run the
		// logic for that mode while continuing to check for a mode change.
		if (mode_idx != last_mode_idx) {
			// Save the new mode
			last_mode_idx = mode_idx;
			// The WDT changed the mode.
			PWM_LVL = modes[mode_idx];
		}
	}

    return 0; // Standard Return Code
}