
Phatch Contributors Guide

Table of Contents
Introduction ..1

Welcome ..1
Required Skills ...2

Developping Action Plugins ..2
Getting Started: Invert ..2
Advanced: Drop Shadow ...4
Further Study ...6

Writing Documentation ...7
Introduction ..7
Installing AsciiDoc ..7

Phatch = Photo & Batch!

Phatch is a simple to use cross-platform GUI Photo Batch Processor which handles all popular
image formats and can duplicate (sub)folder hierarchies. Phatch can batch resize, rotate, rename,
… and more in minutes instead of hours or days if you do it manually. Phatch will also support a
console version in the future to batch photos on webservers.

Introduction
Welcome

Thanks for contributing to Phatch!

1

• You might have exciting ideas how to extend the functionality with new features. The good news is that
Phatch was designed from the ground up to make the development of actions as easy as possible.

• Or you might want to write some documentation or tutorial.

Required Skills

Developping Action plugins

To develop actions for Phatch you only need to know Python [http://www.python.org] and PIL
[http://www.pythonware.com/products/pil] (Python Image Library). Although Phatch uses wxPython
[http://www.wxpython.org] for its cross-platform GUI, you don't need at all wxPython to write actions.
Phatch will do all the GUI work automatically for you behind the scenes, so you can fully concentrate on
the image manipulation. Also don't worry about internationalisation, Phatch will take care of that too.

Writing documentation

Can you work with notepad, gedit or kate? Fine, that is all you need. The documentation is generated
from plain text files, which follow the asciidoc [http://www.methods.co.nz/asciidoc] format. They can be
translated afterwards in a lot of different formats, such as html and pdf. You don't need to install asciidoc
to write documentation. You can send the plain text files to the Phatch development team and we will take
care of it. However if you are curious, you will find instructions in this manual on how to install asciidoc
on Ubuntu Feisty to generate pdfs. This might be usefull as well to install asciidoc on other operating
systems.

Translating

• Translating the application Phatch is done through launchpad
[https://translations.launchpad.net/phatch/trunk/+pots/phatch].

• Translating of documentation is done with plain text asciidoc files. Be sure to keep a copy of the source
file on which you base your translation. This will allow you to quickly see what has changed with a diff
viewer when new documentation is available for translation.

Developping Action Plugins
Getting Started: Invert

Introduction

The best way to start is first to develop an PIL function which handles the manipulation. Afterwards you
create input fields in order to pass the required parameters to the PIL function. Invert is taken as a first
case study as it doesn't require any parameters except for the image itself. Let's look at the source code:

Example 1. Invert Action Source Code

Phatch Contributors Guide

2

http://www.python.org
http://www.python.org
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil
http://www.wxpython.org
http://www.wxpython.org
http://www.methods.co.nz/asciidoc
http://www.methods.co.nz/asciidoc
https://translations.launchpad.net/phatch/trunk/+pots/phatch
https://translations.launchpad.net/phatch/trunk/+pots/phatch

from core import models
from core.translation import _t

def invert(image):
"""PIL function"""
return ImageChops.invert(image)

class Action(models.Action):
label = _t('Invert')
author = 'Stani'
email = 'spe.stani.be@gmail.com'
version = '0.1'
tags = ['Colours']
__doc__ = _t('Invert the colors of an image')

def import_modules(self):
global ImageChops
import ImageChops

def apply(self,photo,setting,cache):
return self.apply_to_current_layer_image(photo)

description = _t("""Invert the colors of the image.""")

#icon = 'icon data'

Importing Modules
Defining The Action
Applying The Action
Describing The Action
Adding An Icon

Importing Modules

For every action you need to add the first two lines which import the basic functionality for writing action
plugins. The module models provide the architecture for the plugin: the class Action and the input
fields. (As invert doesn't require any input, there are no fields here.) Every other module you need to
import with the method import_modules, in which you declare them as global. For example to invert an
image with PIL you need the ImageChops module.

Why do modules have to be imported in a seperate method? The reason is that Phatch at
startup imports all actions to extract the information it needs about the actions. If the imports
would be declared normally, the startup would be delayed by maybe unneeded modules.

Defining The Action

You need to create a new class Action which is derived from models.Action. You need to define the
action with the label, author, email, version, tags and __doc__ properties. label and __doc__ will
appear translated in the Add Action dialog box. That is why you need to mark them with the _t function.
At the moment tags and description, which can contain a longer description than the __doc__

one-liner, are not exposed yet.

Applying The Action

Phatch Contributors Guide

3

Internally Phatch works with photos. Photos consist of multiple layers. Every layer contains an image,
but also has its own offset postion. Phatch doesn't expose this functionality yet, but will later support full
layered photos, just like in Gimp. The hierarchy to remember is: Photo>Layer>Image. Luckily you don't
have to worry about this in the beginning as Phatch provides you an easy method to apply a PIL function
the current layer image: apply_to_current_layer_image.

Describing The Action

In the description property you can describe the action more elaborately. Use triple quotes for multi-line
text.

Adding An Icon

As in the example no specific icon was added, Phatch will use a default one. In the folder
phatch/pyWx/lib there is an utility img2py.py. With the following command you can convert any image
(eg.png) to a python file:

$ python img2py.py fileName icon.py

This will generate an icon.py file, in which you will find the following code:

def getData():
return zlib.decompress('icon data')

You can add now the icon data to your action source file to define the icon:

class Action(models.Action):
description = """Invert the colors of the image."""
icon = 'icon data'

Advanced: Drop Shadow

Introduction

The following code was taken from the Python Cookbook:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/474116 It demonstrates how easy it is to
integrate existing PIL code into Phatch.

Source Code

Example 2. Shadow Action Source Code

from core import models
from core.translation import _t

def dropShadow(image, x_offset=5, y_offset=5, back_colour=(255,255,255,0),
shadow_colour=0x444444, border=8, iterations=3,
force_back=False, cache={}):

"""
Add a gaussian blur drop shadow to an image.

image - The image to overlay on top of the shadow.

Phatch Contributors Guide

4

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/474116

offset - Offset of the shadow from the image as an (x,y) tuple.
Can be positive or negative.

back_colour - Background colour behind the image.
shadow_colour - Shadow colour (darkness).
border - Width of the border around the image. This must be wide

enough to account for the blurring of the shadow.
iterations - Number of times to apply the filter. More iterations

produce a more blurred shadow, but increase processing
time.

"""
#get info
size = image.size
mode = image.mode

back = None

#assert image is RGBA
if mode != 'RGBA':

#create cache id
id = ''.join([str(x) for x in ['shadow_',size,x_offset,y_offset,

border, iterations,back_colour,shadow_colour]])

#look up in cache
if cache.has_key(id):

#retrieve from cache
back, back_size = cache[id]

if back is None:
#size of backdrop
back_size = (size[0] + abs(x_offset) + 2*border,

size[1] + abs(y_offset) + 2*border)

#create shadow mask
if mode == 'RGBA':

image_mask = image.split()[-1]
shadow = Image.new('L',back_size,0)

else:
image_mask = Image.new(mode,size,shadow_colour)
shadow = Image.new(mode,back_size,back_colour)

shadow_left = border + max(x_offset, 0)
shadow_top = border + max(y_offset, 0)
shadow.paste(image_mask, (shadow_left, shadow_top,

shadow_left + size[0], shadow_top + size[1]))
del image_mask #free up memory

#blur shadow mask

#Apply the filter to blur the edges of the shadow. Since a small
#kernel is used, the filter must be applied repeatedly to get a decent
#blur.
n = 0
while n < iterations:

shadow = shadow.filter(ImageFilter.BLUR)
n += 1

#create back
if mode == 'RGBA':

back = Image.new('RGBA',back_size,shadow_colour)
back.putalpha(shadow)
del shadow #free up memory

else:
back = shadow
cache[id] = back, back_size

#Paste the input image onto the shadow backdrop
image_left = border - min(x_offset, 0)
image_top = border - min(y_offset, 0)
if mode == 'RGBA':

back.paste(image, (image_left, image_top),image)
if force_back:

mask = back.split()[-1]

Phatch Contributors Guide

5

back.paste(Image.new('RGB',back.size,back_colour),(0,0),
ImageChops.invert(mask))

back.putalpha(mask)
else:

back.paste(image, (image_left, image_top))

return back

class Action(models.Action):
"""Drops shadow"""

label = _t('Shadow')
author = 'Stani'
email = 'spe.stani.be@gmail.com'
version = '0.1'
tags = [_t('filter')]
__doc__ = _t('Drops a blurred shadow under a photo')

def __init__(self):
fields = models.Fields()

fields[_t('Horizontal Offset')] = models.PixelField('5')
fields[_t('Vertical Offset')] = models.PixelField('5')
fields[_t('Border')] = models.PixelField('8')
fields[_t('Shadow Blur')] = models.SliderField(3,1,20)
fields[_t('Background Colour')] = models.ColourField('#FFFFFF')
fields[_t('Shadow Colour')] = models.ColourField('#444444')
fields[_t('Force Background Colour')] = models.BooleanField(True)

super(Action,self).__init__(fields)

def apply(self,photo,setting,cache):
#get info
info = photo.get_info()
#size
x0, y0 = info['new_size']
dpi = info['new_dpi']
#dpi
parameters = {

'x_offset' : self.get_field_size('Horizontal Offset',
info,x0,dpi),

'y_offset' : self.get_field_size('Vertical Offset',
info,x0,dpi),

'border' : self.get_field_size('Border', info,x0,dpi),
'iterations' : self.get_field_value('Shadow Blur', info,),
'force_back' : self.get_field_value('Force Background Colour',

info),
'back_colour' : self.get_field_value('Background Colour', info),
'shadow_colour' : self.get_field_value('Shadow Colour', info),
'cache' : cache,

}

#manipulate layer
return self.apply_to_current_layer_image(photo,dropShadow,**parameters)

def import_modules(self):
#lazily import
global Image, ImageChops, ImageFilter
import Image, ImageChops, ImageFilter

Further Study
Probably looking at the source code of the actions, will teach you the most. You find all the actions in the
folder phatch/actions

Phatch Contributors Guide

6

If you installed Phatch on Ubuntu, probably the actions are in the folder:
/usr/lib/python2.5/site-packages/phatch/actions

Writing Documentation
Introduction

The mechanism used for documentation is asciidoc. You can find more information here:
http://www.methods.co.nz/asciidoc/

You can send plain text files which will be translated into pdf an html. The html will be published on the
Phatch website, which might include some advertisements. The pdf version will be a present to anyone
who donates. If you contribute documentation, you agree with these conditions

Installing AsciiDoc

Ubuntu Feisty

You need to install these packages:

$ sudo apt-get install asciidoc docbook-xml docbook-xsl source-highlight

To generate pdfs you will need FOP [http://xmlgraphics.apache.org/fop/], which unfortunately is not
available as a package. Also we need an older version, as the current one is not compatible with the
Ubuntu packages. Therefore download fop-0.20.5-bin.zip
[http://archive.apache.org/dist/xmlgraphics/fop/binaries/fop-0.20.5-bin.zip].

Unzip this folder to where you want, for example /opt/fop. Make a symbolic link so fop.sh is recognized
as a command:

$ sudo ln -s /opt/fop/fop.sh /usr/local/bin/fop.sh

Add this line to fop.sh so that it can find your java version:

JAVA_HOME=/usr/lib/jvm/java-6-sun

Copy the filter (./examples/source-highlight-filter/source-highlight-filter.conf) to one of
the standard AsciiDoc filter locations — typically /etc/asciidoc/filters/ or
~/.asciidoc/filters/.

© copyright 2007 www.stani.be [http://www.stani.be]

Phatch Contributors Guide

7

http://www.methods.co.nz/asciidoc/
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/
http://archive.apache.org/dist/xmlgraphics/fop/binaries/fop-0.20.5-bin.zip
http://archive.apache.org/dist/xmlgraphics/fop/binaries/fop-0.20.5-bin.zip
http://www.stani.be
http://www.stani.be

	Phatch Contributors Guide
	Table of Contents
	Introduction
	Welcome
	Required Skills
	Developping Action plugins
	Writing documentation
	Translating

	Developping Action Plugins
	Getting Started: Invert
	Introduction
	Importing Modules
	Defining The Action
	Applying The Action
	Describing The Action
	Adding An Icon

	Advanced: Drop Shadow
	Introduction
	Source Code

	Further Study

	Writing Documentation
	Introduction
	Installing AsciiDoc
	Ubuntu Feisty

