BitRock InstallBuilder User Guide 5

Release 5.4.7 2008.04.25

Copyright 2003-2008 BitRock SL http://www.bitr ock.com

All rights reserved.

This product and its documentation are protected by copyright. The information in this document is
provided on an "asis"' basis, without warranty. Although every precaution has been taken in the
preparation of this document, the authors will not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the information contained in
thiswork.

Trademark names may appear in this document. All registered and unregistered trademarks in this
document are the sole property of their respective owners.

http://www.bitrock.com

Overview

Welcome to BitRock InstallBuilder Multiplatform, the smart way to distribute your applications.

BitRock InstallBuilder allows you to create easy to use multiplatform installers that can be run in GUI, text and
unattended modes. Having the right installer for your product will help you:

® Sell your software. A complicated, error-prone installation process can hinder your sales.
BitRock installers "just work", providing a great end-user experience that helps sell your programs.

® Reduce development time. BitRock InstallBuilder simplifies the process of creating installation
packages so you can focus on developing your product - not building installers.

® | ower support costs. BitRock installers simplify and automate many aspects of the installation
process, reducing support costs and end-user frustration.

Features

® Multiplatform Support : BitRock installers are native binaries that can run on Windows 98, ME,
2000, XP, 2003, Vista, Mac OS X, FreeBSD, OpenBSD, Solaris (Intel & Sparc), AlX, HP-UX, IRIX,
and Linux (Intel x86/x64, Itanium, s390 & PPC).

® Desktop Integration : BitRock installers provide native look and feel and desktop integration for
Windows, KDE and Gnome.

® RPM Integration : BitRock installers can register your software with the RPM package database,
combining ease of use with the powerful RPM package management system.

® RPM and DEB generation (beta) : In addition to creating native executables that can register
with the RPM subsystem, BitRock InstallBuilder can generate RPM and Debian packages that can
be installed using the native package management tools.

® Optimized : BitRock installers are optimized in size and speed and do not require a self-
extraction step, reducing download, startup and installation time. Built-in LZMA support provides
great compression ratios.

® No External Dependencies : BitRock installers are single-file, self-contained native executables
with no external dependencies and minimal overhead. Unlike competing products, all BitRock
installers are truly native code and do not require bundling a Java Runtime Environment.

® FEase of Use : BitRock installers provide an intuitive and easy to use interface on all platforms,
even for end users without previous Linux experience.

® FEase of Development : BitRock InstallBuilder includes an easy to learn, easy to use GUI
environment. Design, build and test installers with the click of a button.

® Time Saving Functionality : For advanced users, a friendly XML project format supports source
control integration, collaborative development and customizing projects both by hand and using
external scripts. A command line interface allows you to automate and integrate the building
process. QuickBuild functionality allows you to update installers in a few seconds, without having to
repack the entire application.

® Built-in actions : BitRock InstallBuilder provides convenient built-in actions for commonly
required installation functionality such as autodetecting a Java(tm) Runtime, changing file
permissions and ownership, substituting text in a file, adding environment variables, adding
directories to the path, creating symbolic links, changing the Windows registry, launching external
scripts and so on.

® Crossplatform Build Support : The installer builder tool can run on Windows, Mac OS X,
Solaris, HP-UX, AlX, FreeBSD, OpenBSD, IRIX, and Linux (Intel x86/x64, Itanium, s390, PPC) and
generate installers for all target platforms from a single project file. Create all your installers from a
single build environment!

® Customization : BitRock installers can be customized in a variety of ways, both graphically and in
functionality. It is possible to ask for multiple parameters, like username and passwords, in the
same installer screen. These helps simplify the installation process for end-users.

® Multiple Installation modes : BitRock installers provide: several GUI modes with native look-and-
feel, for installation in a variety of desktop environments, a text-based installation mode, for console-
based and remote installations, and a silent/unattended install mode which can be used for
integration in shell scripts for automated deployment.

® Support for Qt® GUI Frontend : The InstallBuilder for Qt family of products provides a new GUI
installation mode using the Qt crossplatform toolkit, enhancing the end-user experience

® Rollback Functionality : BitRock installers by default perform a backup of all the files overwritten
during installation, so in case there is an error, the system is recovered to its previous state.

® Uninstall Functionality : An uninstall program is created as part of every installation, allowing
users to easily uninstall the software. As the installer, it can be run in a variety of modes. On

Windows, uninstall functionality can also be accessed from the Add/Remove Programs entry in the
Control Panel.

® Startup Failure Detection : BitRock installers will automatically detect the best installation mode
available. Users also have the option to manually select a mode.

® | anguage and Platform Independent : BitRock installers can install applications written in any
language, including: Java, PHP, Perl, Python, Ruby, C/C++ and .NET/Mono.

® Multiple Language Support : BitRock installers support a variety of installation languages,
including English, German, Japanese, Spanish, Italian, French, Portuguese, Traditional Chinese,
Dutch, Polish, Valencian, Catalan, Estonian, Slovenian, Romanian, Hungarian, Russian and Welsh.
You can specify a default language or let the user decide. Please contact us if you require
additional language support.

What's new on InstallBuilder 5

In addition to the bugfixes, new actions and rules detailed in the Changelog available at
http://bitrock.com/download_installbuilder_changelog.html, the main features for this release are:

® | ZMA support : Optional LZMA support provides great compression ratios.
® |mproved startup speed : Optimized startup time of installers.
® |Improved Vista integration : Including UAC integration and recommended per-user directories.

http://bitrock.com/download_installbuilder_changelog.html

Specifications

Supported Platforms

Our goal is to build installers that work seamlessly in the greatest number of operating system versions. Please let
us know what your experience is with your particular operating system.

BitRock installers run in most Linux platforms and have been extensively tested in:

Windows 98, ME, 2000, XP, 2003, Vista
Mac OS X 10.2, 10.3, 10.4

Solaris Sparc 2.6, 7, 8, 9, 10

Solaris Intel 8, 9, 10

AIX 4.3, 5.x and later

HP-UX 11 and later (both PA-RISC and Itanium)
IRIX 6.5

FreeBSD 6.x, 5.x. 4.x

OpenBSD 3.x, 4.x

Ubuntu Linux PPC

Ubuntu 6.10, 7.04

Red Hat 8.x, 9.x series

Red Hat Enteprise Linux 3, 4, 5
FedoraCore 1, 2, 3,4,5,6,7

Suse 9.x series

Suse Enterprise Server 8, 9, 10

as well as in different versions of Gentoo, Mandrake and Debian.

Authoring Environment Requirements (Windows)

® Windows 98, ME, 2000, XP, 2003, Vista (contact us for Windows 95 support)
® 32Mb of free RAM
® Minimum of 640 x 480 screen resolution

Authoring Environment Requirements (Mac OS X)

® Mac OS X 10.2, 10.3, 10.4 (PPC or Intel)
® 64Mb of free RAM
® Minimum of 640 x 480 screen resolution

Authoring Environment Requirements (Unix)

® One of the following:

® Solaris Sparc 2.6, 7, 8, 9, 10

® Solaris Intel 8, 9, 10

® HP-UX 11 or later (both PA-RISC and Itanium supported)
® |BM AIX 4.3 or later (including 5.x)

® |RIX SGI 6.5 or later

® FreeBSD 6.x, 5., 4.X

® OpenBSD 3.x

® 32Mb of free RAM
® Minimum of 640 x 480 screen resolution

BitRock InstallBuilder can run in both GUI and command line modes. For GUI mode an X-Window installation must
be present.

Authoring Environment Requirements (Linux)

One of the following

x86 Linux system.

X64 Linux system.

ia64 (Itanium) Linux system.

PPC Linux system.

s$390 Linux system.

For x86, a glibc 2.2 distribution such as Red Hat 8.0 or later. For PPC, a glibc 2.3 distribution or
later. These configurations cover virtually all Linux distributions currently in use. InstallBuilder may
run in older systems but those configurations are not supported. The generated installers do not
have those requirements (see below).
® Minimum of 640 x 480 screen resolution.

BitRock InstallBuilder can run in both GUI and command line modes. For GUI mode an X-Window installation must
be present (X-Window is installed by default in most Linux distributions).

Generated Installer Requirements (Windows)

® Windows 98, ME, 2000, XP, 2003, Vista (contact us for Windows 95 support)
® 16Mb of free RAM
® Minimum of 640 x 480 screen resolution

Generated Installer Requirements (Mac OS X)

® Mac OS X 10.2, 10.3, 10.4 (PPC or Intel)
® 32Mb of free RAM
® Minimum of 640 x 480 screen resolution.

Generated Installer Requirements (Unix)

® One of the following
® Solaris Sparc 2.6, 7, 8, 9, 10
® Solaris Intel 8, 9, 10
® HP-UX 11 or later

® |BM AIX 4.3 or later (including 5.x)
® |RIX SGI 6.5 or later
® FreeBSD 6.%, 5.x, 4.X

® OpenBSD 3.x

® 16Mb of free RAM

® Minimum of 640 x 480 screen resolution.

Generated Installer Requirements (Linux)

® One of the following

x86 Linux system.

X64 Linux system.

ia64 (Itanium) Linux system.

PPC Linux system.

s$390 Linux system.

On x86, the minimum requirement is a glibc2-based Linux distribution. That includes most
distributions released on or after the year 2000. Please contact us if you require support for older
Linux versions.
® Minimum of 640 x 480 screen resolution.

X-Window installation mode

This mode requires an X-Window installation present in the system (otherwise an alternate text mode will be used).

GTK installation mode

This mode, supported on FreeBSD and Linux, requires GTK2 libraries installed in the system (otherwise an
alternate X-Window GUI mode will be used). These libraries are installed by default in most FreeBSD and Linux
installations.

How to Register

You can download a fully functional evaluation version of BitRock InstallBuilder from www.bitrock.com. It will add
a reminder message to each installer ("Created with an evaluation version of BitRock InstallBuilder") and can only
be used for evaluation purposes.

You can purchase a license for BitRock InstallBuilder online following the instructions you will find at
www.bitrock.com. Once you do so, you will receive a license file. To register the product, just copy the file as
I i cense. xnl to the directory where BitRock InstallBuilder was installed.

Alternatively you can install the license through the GUI interface. From the main application menu select
"License", then "Register License", and a window will appear where you can enter the license file location.

Visit www.bitrock.com for further information on the License Agreement.

http://www.bitrock.com/
http://www.bitrock.com/
http://www.bitrock.com/

Installing BitRock InstallBuilder

Installing on Windows

You can download the BitRock InstallBuilder binary from the BitRock website. It should have a hame similar to
i nstall builder-professional-5.1.1-w ndows-install er.exe.You can start the application by
double-clicking on the downloaded file.

You will be greeted by the Welcome screen shown in Figure 1.

Figure 1 : Windows Welcome Screen

Setup - BitRock InstallBuilder

‘Welcome to the BitRock InstallBuilder Setup Wizard

[Mext =][Cancel]

Pressing Next will take you to the License Agreement page, shown in Figure 2. You need to accept the agreement
to continue the installation. The next step is to select the installation directory (Figure 3). The default value is
C. \Program Fil es\Bi t Rock InstallBuil der\

Figure2: Windows License Agreement

I
License Agreement '.ﬁ

Flease read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

END-USER SOFTWARE LICENSE AGREEMENT ["ELILA")

11

CAREFULLY READ THE FOLLOWING LEGAL AGREEMENT.

Thiz End-User Licenze Agreement ["ELILA" iz a legally enforceable

contract between you ["Customer” or "v'ou'] and BitRock.

S.L["BitRock"). By clicking "'l agree". instaliing, copying, ar

othenwize using any part of the Software or any associated media, any

printed materialz, or any "online” or electronic documentation, you

agree to be bound by the terms of this EULA. IF ¥0LU DO MOT AGREE TO
THE TERMS OF THIS AGREEMENT, DO NOT INSTALL AND/OR USE THIS

|

Do you accept this license?
() 1do not accept the agreement

[< Back][Mext =][Cancel]

Figure 3: Windows Select I nstallation Directory

B¢ setu p E] |§|

==l
1
Installation Directory ﬁ
Flease specify the directory where BitRock InstallBuilder will be installed
Installation Directary |C:'I.Pr0gram Files\BitR.ock InstallBuilder | B
[< Back] [Mext =] [Cancel]

The rest of this guide assumes you installed BitRock InstallBuilder in C: \ Progr am Fi | es\ Bi t Rock
I nstal | Bui | der\

You are now ready to start the installation (Figure 4), which will take place once you press Next (Figure 5). When
the installation completes, you will see the Installation Completed page shown in Figure 6. You may choose to view
the README file at this point.

If you found a problem and could not complete the installation, please refer to the Troubleshooting
section or contact us at support@bitrock.com. Please refer to the Support section for details on what

information you should include with your request.

Figure4: Windows Ready To Install

Ready to Install I'.ﬁ

Setup is now ready to begin installing BitRock InstallBuilder on your computer,

[< Back]l Mext = |[Caniel]

Figure5: Windows Installation Under Way

Installing '.ﬁ

Flease wait while Setup installs BitRock InstallBuilder on your computer,

Installing
Unpacking C:YProgram [... JnstallBuilderidocsiuserguidelimagest 1 -gtk. png

i

Cancel

Figure6: Windows Installation Completed

Completing the BitRock InstallBuilder Setup
Wizard

Setup has finished installing BitRock InstallBuilder on your
corpuker,

Yigw README fils

Installing on Unix

The process for installing on Linux, OpenBSD, FreeBSD, AlX, HP-UX, IRIX, and Solaris is identical. The rest of this
section assumes you are running Linux.

You can download the BitRock InstallBuilder binary from the BitRock website. It should have a hame similar to

i nstal | bui | der - professional -5.1.1-1inux-installer.bin.Make sure it has read and executable
permissions by right clicking in the file, selecting "Properties" and then setting the appropriate permissions.
Alternatively you can issue the following shell command.

$
chnod 755 install buil der-professional-5.1.1-1inux-installer.bin

You can now start the installation by double-clicking on the file from your Desktop environment or by invoking it
directly from the command line with:

$./install builder-professional-5.1.1-linux-installer.bin

You will be greeted by the Welcome screen shown in Figure 7 .

Figure 7 : Linux Welcome Screen

[=l=]x]

Setup - BitRock InstallBuilder

Welcome to the BitRock InstallBuilder Setup Wizard

‘ < Back H P> Forward H # cancel ‘

Pressing Next will take you to the License Agreement page, shown in Figure 8. You need to accept the agreement
to continue the installation. The next step is to select the installation directory (Figure 9). The default value will be a
folder on your home directory if you are running the installer as a regular user (recommended) or
/opt/installbuilder-5.1.1/ if you are running the installation as superuser (root). If the destination
directory does not exist, it will be created.

Figure8: Linux License Agreement

[=l=]x]

—

License Agreement

END-USER SOFTWARE LICENSE AGREEMENT ("EULA")

[[+]

CAREFULLY READ THE FOLLOWING LEGAL AGREEMENT.

This End-User License Agreement ("EULA") is a legally enforceable

contract between you ("Customer” or "You") and BitRock

S.L.("BitRock"). By clicking "I agree”, installing, copying, or

otherwise using any part of the Software or any associated media, any

printed materials, or any "online” or electronic documentation, you

agree to be bound by the terms of this EULA. IF YOU DO NOT AGREE TO
THE TERMS OF THIS AGREEMENT, DO NOT INSTALL AND/OR USE THIS
SOFTWARE. All such software is referred to herein as the "Software”

[+]

Do you accept? () Yes () No

‘ <d Back H B> Forward H # cancel ‘

Figure9: Linux Select Installation Directory

[=l=]x]

—

Installation Directory

Please specify the directory where BitRock InstallBuilder will be installed

Installation Directory | /home/userjinstallbuilder-2.0 | @

‘ <d Back H P> Forward H # cancel ‘

The rest of this guide assumes you installed bitrock in /lhome/user/installbuilder-5.1.1/

You are ready to start the installation now (Figure 10), which will take place once you press Next (Figure 11). When
the installation finishes, you will see the Installation Finished page shown in Figure 12. You may choose to view the
README file at this point.

If you found a problem and could not complete the installation, please refer to the Troubleshooting
section or contact us at support@bitrock.com. Please refer to the Support section for details on what
information you should include with your request.

Figure10: Linux Ready To Install

Ready to Install %

Setup is now ready to begin installing BitRock InstallBuilder on your
computer.

‘ <d Back H P> Forward H # cancel ‘

Figure1l: Linux Installation Under Way

: [
Installing A

Please wait while Setup installs BitRock InstallBuilder on your computer.

Installing BitRock InstallBuilder

Creating uninstaller

L

‘ < Back H B Forward H # cancel ‘

Figure 12 : Linux Installation Completed

[=l=]x]

Completing the BitRock InstallBuilder
Setup Wizard

Setup has finished installing BitRock InstallBuilder on
your computer.

View Readme File

‘ <@ Back H Finish H 8 Cancel ‘

Directory Structure

The installation process will create several directories:

bi n: BitRock InstallBuilder application binaries.

paks: Support files necessary for creating installers.

pr oj ect s: Project files for your installers. See note below for Windows Vista.
docs: Product documentation.

deno: Files for the sample demo project.

out put : Finished installers. See note below for Windows Vista.

On Windows Vista, in line with the Application Development Requirements for User Account Control (UAC), the

pr oj ects and out put directories are installed under the user Docunent s folder, so usually they can be found at
C:\ Users\user\ Docunent s\ | nstal | Bui | der\ proj ects and

C.\ Users\user\ Docunent s\ | nst al | Bui | der\ out put, respectively

You are ready now to start the application and create your first installer, as described in the next section "Building
your First Installer”

Building Your First Installer

This section explains how to create your first installer in a few simple steps.

Startup and Basic Information

If you are running Gnome or KDE and performed the installation as a regular user, a shortcut was created on your
Desktop. You can either start BitRock InstallBuilder by double-clicking on it or by invoking the binary from the
command line:

$/ hone/ user/install buil der-5.1.1/bin/buil der

If you are running Windows, the installer created the appropriate Start Menu entries. Additionally, a shortcut was
placed on your Desktop.

You can also build installers from the command line. Please refer to the section named "Using the Command Line
Interface"” later in the document.

The initial screen will appear (Figure 13). Press the "New Project" button or select that option from the File menu
on the top left corner. A popup Window will appear, asking you for three pieces of information:

® Product Name: The full product name, as it will be displayed in the installer

® Product Filename: Short version of product name, will be used for naming certain directories and
files, and can only contain alphanumeric characters

® Version Number: Product version number, will be used for naming certain directories and files.

The rest of this tutorial assumes you kept the default values: "Sample Project”, "sample" and "1.0".

Figure 13: Main Screen

File Project License

Welcome to BitRock Installer Builder

With Bitrock Installer Builder you can easily create native Linux installers that simplify the installation
process of your software. BitRock installers are optimized in size and speed and provide a great first
impression of your product.

To get started. you can create a new project or open an existing project.

Once you enter the information, the "Basic settings screen” (Figure 14) will be shown. Here you can specify
additional settings:

® |icense File: Path to license file that the user must accept in order to install the software

® Readme File: Path to README file that can be shown to the user after installation is completed

® Save Relative Paths: Whether to convert absolute paths to relative when saving project files.
This is important if the same project file is used by multiple developers. The path will be relative to
the location of the project file.

If you do not want to display a license agreement or a README file during installation, you can leave those fields
blank.

When isit necessary to use the Save Relative Paths option? It is necessary when the same project file
is shared by multiple developers on different machines or when using the same project file on Windows
and Unix. Thisis due to the differences in how paths are specified on each platform.

Figure 14 : Basic Settings

File Project License

D €J E @ Build @ Quick Build Mg TestRun

@ Product Name Sample Project

Product Details

Product Filename sample
ﬁ[ﬂ;ﬂ
]
/
|
-t

Files

Version Number 1.0
//,
D
Customization Readme File LE‘
Packaging License File &

Selecting the Files

The next step is to click on the "Files" icon, which will lead to the screen shown in Figure 15.

The "Program Files" folder represents the target installation directory. You can add files and directories to this
folder by selecting the "Program Files" folder and using the "Add File" and "Add Directory Tree" buttons. You can
add multiple files pressing down the Control key and clicking on them in the File selection dialog. Multiple selection
is not available for directories at this time. The selected files and directories will be copied to the destination the
user chooses during installation. If a folder only supports a particular target platform, such as Linux, OpenBSD,
FreeBSD, IRIX, AlX, Mac OS X, HP-UX, Solaris or Windows, it will only be included in installers for that particular
platform.

Figure 15: Files Screen

Sample Project - Unregistered| evaluation, version

File Project License Help

EER ~ Build @ Quick Build WY TestRun
N H ® e & =
QDesktop

Program Files

@ Add Destination Folder

Customization

o

Packaging

Most applications only need to add files to the main installation directory. The "Advanced Functionality" section
covers how to specify additional installation folders and how to create application shortcuts.

You can now build the installer by pressing the "Build" button. This will take you to the Packaging screen and start
the installer building process, as shown in Figure 16. If the build process succeeds, an installer named sanpl e-
1.0-1inux-install er.binwil be placed at the out put directory (

C.\ Users\user\ Docunent s\ | nst al | Bui | der\ pr oj ect s under Windows Vista, as explained earlier). If you
are building a Windows installer, the file will be named sanpl e- 1. 0- wi ndows- i nst al | er. exe and if you are
building a Mac OS X installer, its name will be sanpl e- 1. 0- osx-i nst al | er. app. If any problem is found, such
as a file not being readable, a message will be displayed in red and the build will stop.

Figure 16 : Building the installer

File Project License

Help

D 6:7 E @ Build @ Quick Build 1!4? TestRun

Installer Name %{product_shortname}-${product_version}-installer.t

Product Details Building Sample Project
Prebuild check
= Copying product files
Ju' Processing component Default Component

Customization

o

Packaging

You can test the generated installer by pressing the "Test Run" button, as seen in Figure 17.

What isthe difference between Full Build and Quick build ? Creating an installer can take along
time if your product is hundreds of megabytesin size. Y ou can use the Quick Build button to avoid
rebuilding an installer from scratch if you are just making changes to installer-specific settings: license
and readme file, default installation path, logo image, installation required by root and product name.
Those settings will be updated without having to pack again every product file. Of course, you will need

to do aregular Build if you make changes to the product files themselves (the ones you added in the
Files screen)

You can customize additional installer functionality as explained in the following section.

Figure 17 : Testing theinstaller

v Sample Project - Unregistered evaluation version = ||B]| *

E]@@ Help
Setup - Sample Project rﬁ

Welcome to the Sample Project Setup Wizard
Created with an evaluation version of BitRock InstallBuilder.

ut/sample-1.0-inst

‘ < Back H P> Forward H # cancel ‘

=z DO COTPTeTe

Product installer did not exist. Full build was required
Build time: 3 seconds
Launching installer...

Customization

o

Packaging

CDROM

It is possible to select a CDROM build target. In this case, a directory is created that includes a folder with common
installer files and a setup file for each one of the architectures. This allows you to provide a single CDROM for all
platforms, avoiding duplication of data.

Advanced Functionality

This section explains how to customize the generated installers in different ways. The first thing you should know
about are installer variables. They can be included in different settings as ${ var i abl enane} and they will be
substituted for their values during installation.

For example, if you write the default installation directory as / opt / ${ shor t Nane} - ${ ver si on} then during
installation time the user will see / opt / sanpl e- 1. 0 If you update the product version to 2.0 later on, the change
will be reflected automatically. So whenever possible, avoid hardcoding references and use installer variables
instead.

Starting with InstallBuilder 5, variables are case-insentitive. This means that you can use any of the following
variants, ${ var i abl enane}, ${ Vari abl eNane} or ${ VARl ABLENAME} , obtaining exactly the same value on
each case.

The current version of InstallBuilder supports the following installer variables.

® ${installdir}: Directory where the product will be installed.
® ${product_fullname}: Product Name. The full product name, as it will be displayed in the installer
® ${product_shortname}: Product Filename. Short version of product name, will be used for
naming certain directories and files, and can only contain alphanumeric characters
® ${product_version}: Version Number.
® ${platform_install_prefix}: Platform-dependent default installation location. In Unix systems,
when running as root it will be / opt and when running as a regular user, the home directory for that
user.
® 3{platform_exec_suffix}: Platform-dependent executable file extension for the generated
installer. In Unix systems it is . bi n, on Windows it is . exe, and on OSXitis . app
® ${platform_name}: Target platform for the installer. Currently it can be | i nux, | i nux- ppc,
I i nux-x64,1inux-ia64,!inux-s390,freebsd,freebsd4, freebsd6, freebsd6-x64,
sol aris-sparc,solaris-intel,irix-n32,0sx,w ndows, ai x or hpux.
® ${linux_distribution}: When the installer is running on Linux, it will contain the specific Linux
flavor name. Currently, one of debi an, suse, mandr ake, r edhat, r hel f edor a, sl ackwar e or
unknown for another distribution.
${installation_langcode}: The ISO code for the language the installer was run with.
${installer_is_root_install}: Whether the installer is being run as root or not.
${installer_ui}: Whether the installer is being run in 'text', 'gui' or 'unattended' mode.
${installer_directory}: Directory where the installer binary is located.
${machine_hostname}: Machine hostname
${machine_ipaddr}: Machine IP address (derived from the hostname)
${required_diskspace}: Required size in KB of the files that will be installed. Only files in
components that are selected for installation will be taken into account when making the
calculation. Notice also that this reports the size in KB of the files, not the actual disk space that will
be taken, which may vary depending on the block size of the target filesystem.
® 3${system_username}: The name of the user who is running the installer.
® ${system_temp_directory}: Path to the system's temporary directory.
® S${user_home_directory}: Path to the home directory of the user who is running the installer.

Additionally, it is possible to access any environment variable using the ${env(varname)} construct, where
varname is the name of an environment variable. For example, on Windows you can refer to the system drive with
${env(SYSTEMDRIVE)} and in Linux, Mac OS X and other Unix systems to the user home directory with
${env(HOME)}

Installer Customization

In the Customization (Figure 18) and the Packaging screens you can change the default installation settings to
match your needs:

User Interface Settings

® | ogo image: 48x48 GIF or PNG logo image that will be placed at the top right corner of the
installer. If no image is specified, the default one will be used

® | eft side image: 163x314 GIF or PNG image that will be placed at the left side of the installer in
the Welcome and Installation Finished pages. If no image is specified, the default one will be used

® Windows Executable Icon: ICO file with an specific format -see below- to set the icon for the
installer executable file on Windows systems. The icon file can contain up to three different icons
that must match one of the following formats: 16x16 pixels and 256 colors, 32x32 pixels and 256
colors, 48x48 pixels and 256 colors.

® Default installation language: Default language for the installer. Use 'auto’ for autodetection of
the current language

® Allow language selection: Allow language selection. If this setting is enabled, the user will be
required to specify the language for the installation

® Wrap License File Text: Wrap license file text displayed to the user

® Splash screen delay: Extra display time of the splash screen

Installer Settings

® Require install by administrator: Whether installation will require super user privileges (root on
Linux, Administrator user on Windows and OS X). In all OSes but OS X this setting will prevent the
installer from running if the user is not root or Administrator. In OS X, the regular authentication
dialog window will be shown, asking the user for the administrator password so the installer can be
run with root privileges

® |nstaller Name: Name of the installer created by the build process. If it contains
${product_shortname}, ${product_version}, ${platform_name} or ${platform_exec_suffix} they will
be replaced by the appropriate values

® CDROM files Directory: Name of the directory that will contain the CDROM files created by the
build process

® Uninstaller directory: Directory where the uninstaller will be created

® |nstallation directory: Default installation directory

® Compression algorithm: Compression algorithm that will be used to pack the files inside the
installer. LZMA compression is available on Linux, Windows and OS-X platforms

® Backup Directory: Path to a directory where old files will be stored prior to overwritting

® |nstallation Scope: Whether to install Start Menu and Desktop links for All Users or for the
current user

Script Settings

® Ppost Install script: Program that will be executed as the final installation step. The program or
script must have execution permissions and you need to include it as part of the installation. Since
you do not know beforehand where the user will decide to install the software, you need to prefix it
with ${installdir}. You can also pass additional arguments to the script. For example :
${installdir}/bin/myscript.sh somevalue ${installdir} will invoke the myscript.sh program with two
arguments, 'somevalue' and the installation directory

® Post Install script arguments: Command line arguments to pass to the Post Installation Script

® Show Post Install result?: Whether to show the output result of the post installation script, even
if it completed successfully

® Pre Uninstallation script: Program that will be executed before uninstallation. The program or
script must have execution permissions and you need to include it as part of the installation. Since
you do not know beforehand where the user will decide to install the software, you need to prefix it
with ${installdir}. You can also pass additional arguments to the script. For example :
${installdir}/bin/myscript.sh somevalue ${installdir} will invoke the myscript.sh program with two
arguments, 'somevalue’ and the installation directory

® Pre Uninst. script arguments: Command line arguments to pass to the Pre Uninstallation Script

Particularly important is the Post Install script setting. It allows you to perform specific actions required to
correctly finish installing your product, such as initializing a database or starting a server in the background.

Permissions

Please note that these options only take effect when creating installers for Unix platforms from Windows.

® Default Unix File Permissions: Default Unix file permissions in octal form
® Default Unix Directory Permissions: Default Unix directory permissions in octal form

Figure 18 : Customization screen

File Project License Help

&] Build @ Quick Build ¥4 TestRun
N & e & =
Logo image &
Postinstallation script
Regquire install by root? r
//,
>
Customization
@ Installation directory Jopy/${product_shortname }-¥{product_version} &
Packaging

Additional Settings

The installer supports a number of features that are not yet available through the GUI. For this, you will need to edit
the XML project file directly.

® readmeFileEncoding: Readme file encoding. Default value: is08859-1, valid values: is08859-1
is08859-2 utf-8 cp1251 cp1252 ascii macRoman unicode.

® |JicenseFileEncoding: License file encoding. Default value: is08859-1, valid values: is08859-1
is08859-2 utf-8 cp1251 cp1252 ascii macRoman unicode

® deleteOnEXxit: Whether to delete the installer binary once the installation has completed

® rebootRequired: Whether to ask the user to reboot after installation is completed (Windows-
specific option).

® installationLogFile: This project property allows you to set an alternative path to store the
installation log file. Please note that the installation log will only be written to the location specified
once the installation has completed. Otherwise, it will still be available at the system's temporary
directory (usually /tmp on Unix systems)

® enableRollback: Enable temporary backup of old files that will be saved in case of overwritting,
and that will be restored if the installation fails. The implementation only handles files overwritten by
the installer during the files installation step (i.e., all files specified under any of the sections). It
does not support rollback for files overwritten as a result of the execution of actions or scripts. This
feature is enabled by default.

® rollbackBackupDirectory: Path to a directory where old files will be stored prior to overwritting.

® removelLogFile: This project property controls automatic deletion of the generated log file after
installation. It is set to 0 by default. If set to 1, the installer will remove the log file.

® defaultinstallationMode: Default installation mode. Available installation modes can be found by
running the installer from command line using the --help option.

® productDisplaylcon: Application Icon (.ico format) that will be shown in Add/Remove Programs
on Windows.

® disableSplashScreen: Disable the initial splash screen.

Additional Installation Folders

Most applications only install files under the installation directory ("Program Files" folder in the Files screen). It is
possible, however, to add additional folders to copy files and directories to, such as/ usr/ bi nor/ etc/ by
pressing the "Add Destination Folder" button in the Files screen. If you need special permissions to write to the
destination folders, you may need to require installation by root (see previous section)

Shortcuts

You can create application, document and URL shortcuts in the Files screen. Program shortcuts are special files
containing information such as a program to execute and an icon to display. If you are distributing a GUI program
that runs on Windows, KDE or Gnome, you can place a shortcut for your executable in the Desktop or in a folder
and the associated icon will be displayed. When the user clicks on the icon, the associated program, document or
URL will be launched. Figure 19 shows the prompt you get when adding an Application shortcut to your product
installer. It has the following fields:

Common

® Shortcut text: Shortcut text
® Tooltip: Tooltip text for the shortcut
® Platforms: Platforms in which this link shortcut will be created

Unix settings

® Unix Icon: GIF or PNG Image to use for the shortcut
® Program to execute: Program to execute, including command line arguments
® Working directory: Working directory for the program being executed

Windows settings

® Windows Icon: File containing .ico image
® Program to execute: Program to execute
® Working directory: Working directory for the program being executed

Notice that the target program to execute must have been installed with your product, so the value for Program to
execute and/or winExec should include a reference to the installation directory and look similar to:
${installdir}/fool bar/programwhere f oo/ bar/ progr amis the path to your program relative to the
installation directory. At installation time, ${i nst al | di r} will be substituted by the appropriate value.

It is also possible to create shortcuts that point to directories, documents or URLs. Select the "Document” or "URL"
option when creating a shortcut

On Windows, Start Menu and Desktop shortcuts are by default created for All Users, or for the current user in case
there are not enough privileges. InstallBuilder allows to modify this behavior via the project property
<installationScope>, which can be set to "auto” (default), "user" or "allusers".

Figure 19 : Adding a shortcut

File Project License Help

g = @ Build @ Quick Build —g %y TestRun
QDesktop
[# Some Shortcut
Program Files

| New Shortcut
|
__JI Shortcut text Shortcut text

Files Tooltip Text thatwill appear on Tooltip

= Add Destination Folder

lcon

’ Program to execute
_,') Working directory
Customization Ok Cancel

o

Packaging

B G5 G

Using the Command Line Interface

You can build projects from a shell script or the command line issuing the following command:

$/ honme/ user/install builder-5.1.1/bin/builder build
/ pat h/ t o/ proj ect.xm

For example

$/ hone/ user/install buil der-5.1.1/bin/builder build
[hore/ user/install builder-5.1.1/projects/project.xm

will compile the Sample Project mentioned earlier in this document.

By default, it will build a Linux installer. You can pass an optional argument to the command line to indicate the

target platform. For example:

$/ honme/ user/install buil der-5.1.1/bin/builder build
/[hone/user/installbuilder-5.1.1/projects/project.xm w ndows

RPM Integration

BitRock InstallBuilder allows you to register the software installed with the RPM package database.

To enable RPM support add <registerWithPackageDatabase>1</registerWithPackageDatabase> to your installer
project file. This will register your installation with the RPM database. From this point on, you will be able to query
data about your application and its installed files using your distribution's rpm-based tools as with any other existing
rpm package. You will also be able to uninstall the application using your distribution's rpm-based tools.

RPM database integration requires installation as root in an RPM-based distribution. Otherwise, the setting will be
ignored.

Additionally, to successfully register an RPM, the following tags must be also present in the XML project file:

<vendor >Your Conpany Name</vendor >

<summar y>Det ai | ed descri pti on of your software</sunmmary>

<rel ease>0</rel ease>

<descri pti on>A one-line description of your software</description>

The name of the RPM package registered will be ${product_shortname}-${product_version}-${release}

The XML Project File

BitRock InstallBuilder stores all the information about the installer project in an XML file, usually located under

/ hore/ user/install builder-5.1.1/projects/ (or

C.\ Users\user\ Docunent s\ I nstal | Buil der\ proj ect s under Windows Vista). The XML format of the file
is designed to be reasonably easy to edit by hand, allow automated manipulation using scripts and track changes
using a source control tool such as CVS. You can find a sample XML project file in the Appendix.

Actions

There are a number of installation tasks that are common to many installers, such as changing file permissions,
substituting a value in a file, and so on. BitRock InstallBuilder includes a number of useful built-in actions.
Currently, the actions can only be accessed by editing the XML project file directly; support for the built-in actions in
the GUI building tool is planned for the near future. Actions are either attached to a particular folder tag in the
project file (<actionList>) and will be executed after the contents of the folder have been installed, or can be part of
specific action lists that are run at specific points during installation . Actions usually take one or more arguments. If
one of those arguments is a file matching expression (<files>), the matching will occur only against the contents of
folder. If the arguments contain references to installer variables, such as the installation directory, they will be
properly expanded before the action is executed.

Additional information can be found in the Reference Guide bundled with the installer in the docs/ directory and in
the online FAQ at http://bitrock.com/support_installbuilder_faqg.html

Change Permissions

This action allows you to change Unix user and group permissions for files and directories. It takes a list of glob file
patterns separated by ;' and the octal value for file permissions, as defined in the Unix manual page for the chnod
command

Supported Platforms: Linux, OpenBSD, FreeBSD, HP-UX, IRIX, AIX, Solaris and Mac OS X.

Example:
<changePer nm ssi ons>
<files>*/*.sh;*/*. bin</files>
<per nm ssi ons>755</ per m ssi ons>
</ changePer m ssi ons>
Exit

This action will exit the installer (or uninstaller). Its syntax is very simple.
Supported Platforms: All Platforms.

Example:

<exit>
</exit>

Generate Random Value

This action allows you to generate a random value, storing it in a variable. You can define the length (in characters)
for the generated value.

http://bitrock.com/support_installbuilder_faq.html

Supported Platforms: All Platforms.

Example:

<gener at eRandonVval ue>
<vari abl e>r andonval ue</ vari abl e>
<l engt h>8</| engt h>

</ gener at eRandonval ue>

Log Message

This action allows you to write a message to the installation log: the path to the installation log file can be retrieved
from the installer variable installer_installation_log. This feature is useful for debugging purposes.

Supported Platforms: All Platforms.

Example:

<l ogMessage>
<t ext >Debug nessage. </t ext >
</ | ogMessage>

MD5

This action allows you to generate a MD5 hash from a given text, storing the result into a variable.
Supported Platforms: All Platforms.

Example:

<nmd5>
<text>text to process</text>
<vari abl e>nd5hash</ vari abl e>
</ md5>

Set Installer Variable From RegEXx

This action allows you to set an installer variable to the result of a substitution. If the name of the variable matches
a parameter name, the value of the parameter will be updated.

Supported Platforms: All Platforms.
Example:
<set | nstall erVari abl eFr omRegEx>

<nane>newVar i abl e</ nane>
<t ext >c:\a\b</text>

<pattern>\</pattern>
<substitution>\\</substitution>
</setlnstall erVari abl eFr onRegEx>

Wait
This action will pause the installer for a given number of milliseconds.
Supported Platforms: All Platforms.
Example:
<l-- wait for 5 seconds -->
<wai t >

<ns>5000</ s>
</ wai t >

DOS To Unix

This action allows you to convert plain text files in DOS/Mac format to Unix format. For more infomation refer to the
Unix manual page for the dos2uni x command

Supported Platforms: All Platforms.
Example:
<dos2uni x>

<files>*/*.sql;*/*.sh;*.ascii</fil es>
</ dos2uni x>

Add Environment Variable

This action allows you to create or change the value of an environment variable. On Linux, OpenBSD, FreeBSD,
AlX, IRIX, HP-UX and Solaris, the variable will be added to any of the shell configuration files, with the specific
syntax for each shell: ~/ . bashrc,~/ . profile,~/.cshrc,~/.tcshrc,~/.zprofile.

On Windows, the optional <scope> field allows you to specify whether the environment variable should be added to
the current user's environment ("user") or globally ("system", which is the default). If adding the environment
variable globally fails, it will try to add it to the current user's environment.

Supported Platforms: All Platforms.

Example:

<addEnvi r onnent Vari abl e>
<nane>MYAPP_HOVE</ nane>
<val ue>${i nstal | di r} </ val ue>
<scope>user </ scope>

</ addEnvi r onnent Var i abl e>

Delete Environment Variable

This action allows you to delete an environment variable, specified by <name>. The optional <scope> field allows
you to specify whether the environment variable should be deleted in the current user's environment ("user") or
globally ("system", which is the default).

Supported Platforms: Windows
Example
<del et eEnvi r onnent Var i abl e>
<name>MYAPP_HOVE</ nane>

<scope>user </ scope>
</ del et eEnvi ronnent Vari abl e>

Add Directory to PATH

This action allows you to add a directory to the system PATH. On Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX
and Solaris, the variable will be added to the PATH definition in the shell configuration files: ~/ . bashr c,
~/ .profile,~/.cshrc,~/.tcshrc,~/.zprofile.

If executed on Windows, you can select to perform the action over the system path or the current user path: if not
specified, the directory will be added to the system path. This feature can be controlled using the scope property.

Supported Platforms: All Platforms.

Example:

<addDi r ect or yToPat h>
<pat h>$MYAPP_HQOVE/ bi n</ pat h>
</ addDi r ect or yToPat h>

<l-- For Wndows, allowed scope values are "user" and "systenl -->
<addDi r ect or yToPat h>

<scope>user </ scope>

<pat h>${i nstal | di r}/ bi n</ pat h>
</ addDi r ect or yToPat h>

Backup File

This action allows you to backup a file or directory. It will create a new file or directory, named after the path
specified, with the suffix . bakO. If a backup file with that name already exists, it will create a new one ending in
. bak1 (or . bak2, etc.)

Supported Platforms: All Platforms.

Example:

<cr eat eBackupFi | e>
<pat h>${i nstal | di r}/ conf/ myapp. conf </ pat h>
</ cr eat eBackupFi | e>

Delete File

This action allows you to delete a file or directory. The path value can take a glob style pattern.

Supported Platforms: All Platforms.

Example:
<del eteFi | e>
<pat h>/t np/ nyt enpfil es*. *</ pat h>
</ del et eFi | e>
Copy File

This action allows you to copy files or directories.

Supported Platforms: All Platforms.

Example:
<copyFi |l e>
<origin>${installdir}/conf/nyfile.tenplate</origin>
<destinati on>${instal I dir}/conf/nyfile.conf</destination>
</ copyFi | e>
Rename File

This action allows you to rename a file or directory.

Supported Platforms: Windows, Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X.

Example:
<renaneFi | e>
<origin>${installdir}/conf/nyfile.tenpl ate</origin>
<destinati on>${installdir}/conf/nyfile.conf</destination>
</ renaneFi | e>
Find File

This action allows you to define a file name or pattern (eg. "*.txt") to be searched inside a given directory and all its

subdirectories. It will save in the specified installer variable the full path to the first file that matches the provided file
name or pattern.

Supported Platforms: Windows, Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X.

Example:

<findFil e>
<pattern>*.txt</pattern>
<baseDi r ect ory>/ pat h/ t o/ base/ di r ect or y</ baseDi r ect ory>
<vari abl e>t ext Fi | e</ vari abl e>

</findFil e>

Get Free Disk Space

This action allows you to get the disk space left for a particular directory. The directory is specified in the 'path’
argument and the value, in Kb, will be stored in the variable specified by 'variable'

Supported Platforms: All Platforms.

Example:

<get Fr eeDi skSpace>
<vari abl e>di skspace</vari abl e>
<pat h>${i nstal | di r} </ pat h>

</ get FreeDi skSpace>

Substitute Value in Text

This action allows you to specify pattern/value pairs that will be substituted in certain files. It takes a list of glob file
patterns separated by ';' and a list of the pattern/value pairs

Supported Platforms: All Platforms.

Example:

<substitute>
<files>*/| aunchMyJavaApp. sh</fil es>
<substitutionList>
<substitution>
<patt er n>@® NSTALLDI R@a/ patt er n>
<val ue>${i nstal | di r} </ val ue>
</ substitution>
<substitution>
<pat t er n>@a) AVADI R@g/ patt er n>
<val ue>${instal ldir}/jre</val ue>
</ substitution>
</substitutionList>
</ substitute>

Append Text to File

This action allows you to add a text at the end of the file specified.
Supported Platforms: All Platforms.

Example:

<addText ToFi | e>
<file>${installdir}/bin/appstart.sh</file>
<t ext >export JAVA HOVE=${installdir}/jre
export PATH=$JAVA HOVE/ bi n: $PATH</ t ext >

</ addText ToFi | e>

Throw Error

Supported Platforms: All Platforms.

This action allows you to throw an error. If used inside a parameter <validationActionList> section an error
message will be displayed and the user will be prompted again for the required information. If used in any other
action list section, such as <prelnstallationActionList>, it will display an error message to the user and the
application will exit.

The following example code, when placed in <prelnstallationActionList> will throw an error if the Apache
configuration file is not writable by the current user:

<t hr owkr r or >
<t ext >The Apache configuration file is not witable by the current
user </ text>
<rul eLi st>
<fil eTest>
<pat h>/ usr /| ocal / apache/ conf/ htt pd. conf </ pat h>
<condi ti on>not_writabl e</conditi on>
</[fil eTest>
</ rul eLi st >
</t hr owEr r or >

Please note that <throwError> will not display an error message or abort execution when run from the uninstaller.
This behavior is intentional and should be interpreted as a feature, the reason being that unlike an installer, an
uninstaller should never fail (for example because the user may have already manually deleted some files), so by
default we disable error throwing during uninstallation. In case you need to display an error message and abort the
uninstaller, one possible workaround is to combine <showWarning> and <exit> actions inside an <actionGroup>,
as shown below:

<preUni nstal | ati onActi onLi st >
<acti onG oup>
<l-- Executing two actions as if they were one -->
<acti onLi st >
<showWar ni ng>
<text>InstallBuilder is running, aborting uninstallation.</tex

t>
</ showWar ni ng>
<exit></exit>
</ acti onLi st >
<rul eLi st>
<I-- processTest rule is currently supported for Linux, Wndows an
d &sXonly -->
<processTest >
<nanme>bui | der </ name>
</ processTest >
</rul eLi st >
</ acti onG oup>
</ preUni nstal | ati onActi onLi st >

Java (tm) Autodetection

Supported Platforms:All Platforms.

This action autodetects an existing Java (tm) installation in the system and creates the corresponding installer
variables.

The action is usually placed at the <prelnstallationActionList> and if no valid JRE is found, the installer will abort
with an error listing the supported JREs.

Each element in the <validVersionList> contain the following fields:

® vendor: "sun" to allow only Sun Microsystems JREs, "ibm" for IBM JREs and empty for any.

® minVersion: Minimum supported version of the JRE. Leave empty to not require a minimum
version

® maxVersion: Maximum supported version of the JRE. Leave empty to not require a maximum
version. If specified only with major and minimum version numbers then it will match any number in
the series. For example, 1.4 will match any 1.4.x version (1.4.1, 1.4.2, ...) but not a 1.5 series JRE.

The following example will select any Sun Microsystems JRE 1.3 or newer (for example, 1.3, 1.4, 1.5) or any IBM
JRE with version number equal or greater than 1.4.2 but inside the 1.4 series (1.5 will not work).

<aut odet ect Java>
<val i dVer si onLi st >
<val i dVer si on>
<vendor >sun</ vendor >
<nmi nVer si on>1. 4. 2</ m nVer si on>
<maxVer si on>1. 4</ maxVer si on>
</val i dVer si on>
<val i dVer si on>
<vendor >i bnx/ vendor >
<m nVer si on>1. 3</ m nVer si on>
<maxVer si on></ maxVer si on>
</ val i dVer si on>
</ val i dVer si onLi st >
</ aut odet ect Java>

Upon successful autodetection, the following installer variables wil be created:

® 3{java_executable}: Path to the java command line binary (java.exe in Windows). For example
/usr/bin/java, C:\Program Files\Java\j2re1.4.2_03\java.exe.

® ${javaw_executable}: Path to javaw.exe binary, if found. Otherwise defaults to the value of
j ava_execut abl e.

® S${java_version}: For example, 1.4.2_03

® 3${java_version_major}: For example, 1.4

® ${java_vendor}: sun or ibm.

The installer will look for valid JREs in the following places and select the first one that meets all the requirements:

® Standard installation paths.
® Windows Registry, default environment PATH.
® Using JAVA_HOME, JAVAHOME or JDK_HOME environment variables, if present.

You can allow the end-user to select the appropriate JVM by adding <promptUser>1</promptUser> inside the
<autodetectJava> tag

Windows Registry

Supported Platforms: Windows

allows you to create a new registry key or modify the value of an existing registry key. The <type> tag is optional,
and specifies the type of registry entry to create. It can be REG Bl NARY, REG_NONE, REG SZ, REG EXPAND Sz,
REG_DWORD, REG Bl G_ENDI AN, REG_LI NK, REG_ MULTI _SZ, REG_RESOURCE_LI ST. The default value is

REG SZ.

<regi strySet >
<key>HKEY_ LOCAL_ MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Cont r ol
Sessi on Manager\ Envi r onnment </ key>
<name>MY_APPDI R</ name>
<val ue>${i nstal | di r} </ val ue>
<t ype>REG SZ</type>
</registrySet >

allows you to store the value of a registry key in an installer variable. If the key or name does not exist, then the
variable will be created empty.

<regi stryCet >
<vari abl e>i nstal | di r</vari abl e>
<key>HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set \ Cont r ol
Sessi on Manager\ Envi r onnment </ key>
<name>MY_APPDI R</ nanme>
</registryGet>

allows you to delete a registry key. If the key to delete does not exist the action will be ignored.

<regi stryDel et e>
<key>HKEY_LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Cont r ol
Sessi on Manager\ Envi r onnment </ key>
<nane>MY_APPDI R</ nanme>

</registryDel et e>

registryGetKey

Store in 'variable' the first registry key that matches the given pattern, or empty otherwise. The search is case-
sensitive for the whole key provided.

Properties:

variable: Variable to store result

key: Registry key

wowMode: Determines whether we want to access a 32-bit or 64-bit view of the Registry - Allowed values: none,
64 (32,)

registryGetMatch

Store the value of the first match of a registry key matching a certain expression in an installer variable. If the key
or name does not exist, then the variable will be created empty. The name can contain a wildcard expresion (using

“)
Properties:

name: Entry name to read value from

variable: Variable name to store registry value to

key: Registry key

wowMode: Determines whether we want to access a 32-bit or 64-bit view of the Registry - Allowed values: none,
64 (32,)

Access Properties Files

Supported Platforms: All Platforms.

This action allows accessing Java-style properties files. You can store the values into an installer variable by
referencing the key.

The following example looks for the serverport key in the property file and store its value in the 'port’ installer

variable.

<propertiesFil eGet>
<file>/path/to/startup.conf</file>
<vari abl e>port </ vari abl e>
<key>server port </ key>

</ propertiesFil eCet >

Configure Properties Files

Supported Platforms: All Platforms.

This action allows you to create and modify Java-style properties files. You can specify one key and its

corresponding value. If the ini file does not exist, it will be created.

The following example adds the 'serverport' key in the property file with the value '80'.

<propertiesFil eSet >
<file>/path/to/startup.conf</file>
<key>server port </ key>
<val ue>80</ val ue>

</ propertiesFil eSet >

The code above will create or modify an existing property file to include the following:

server port =80

Access INI Files

Supported Platforms: All Platforms.
This action allows accessing ini-style files. You can store the value into an installer variable by referencing the key.

The following example looks for the 'port' key under the 'server' section in the ini file and stores its value in the
'portObtained' installer variable.

<iniFileCet>
<file>/path/to/initialization/file.ini</file>
<vari abl e>port Obt ai ned</ vari abl e>
<key>port </ key>
<secti on>server</secti on>

</iniFileCet>

Configure INI Files

Supported Platforms: All Platforms.

This action allows you to create and modify ini-style files. You can specify one key and its corresponding value,
and optionally you can configure them to be placed within a given section. If the ini file does not exist, it will be
created.

The following example adds the 'port' key along with the '80' value, under the 'server' section.

<i ni Fi | eSet >
<file>/path/to/initialization/file.ini</file>
<key>port </ key>
<val ue>80</ val ue>
<section>server</section>

</iniFileSet>

The code above would create a INI file or modify a pre-existing one, so it would include the following:

[server]
port =80

Obtain Disk Usage

Supported Platforms: All Platforms.

This action calculates the space on disk taken by one or multiple files or folders, and stores the result in a variable.
The semicolon character is used to separate the files, and you can include the asterisk and question mark wildcard
characters to match groups of files. You can also specify the size units for the returned value; allowed size units
are: KB (Kilobytes), MB (Megabytes) and GB Gigabytes, with KB being the default.

The following example calculates the total disk space in megabytes taken by text and image files under a given
folder.

<get Di skUsage>
<files>/some/ path/*.txt;/sone/path/*.jpg</fil es>
<vari abl e>t ot al Si ze</ vari abl e>
<uni t s>MB</ uni t s>

</ get Di skUsage>

Change Owner and Group of a File or Directory

Supported Platforms: Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X.

This action allows you to change the owner of a file or directory and its group. Because these changes require
administrative privileges, you will need to require installation by administrator.

<changeOmner AndG oup>
<files>*/sonmefil e.conf;*/var/somefile</files>
<owner >nobody</ owner >
<gr oup>nobody</ gr oup>

</ changeOwner AndG oup>

Create Symbolic Link

This action allows you to create symbolic links to files or directories.

Supported Platforms: Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X.

<cr eat eSyniLi nk>
<l i nkName>${i nstal | di r}/ bi n/ sonel i nknane</| i nkName>
<target>${installdir}/bin/sonmefil e</target>

</ creat eSynlLi nk>

Set Installer Variable

This action allows you to create Installer Variables that can be included in different settings of the installer as
${vari abl enane} and that will be substituted for their values during installation.

Supported Platforms: All Platforms.

<setlnstall erVariabl e>
<nane>BD_SERVER PORT</ nane>
<val ue>3306</ val ue>

</setlnstallerVariabl e>

Set Installer Variable from Script Output

This action allows you to set the value of an installer variable based on the output of a script or program.
Supported Platforms: All Platforms.
<setlnstall erVariabl eFronfscri pt Qut put >
<nanme>nyhost nane</ nane>
<exec>host nane</ exec>

<execAr gs>-f </ execAr gs>
</setlnstallerVariabl eFrontcri pt Qut put >

Run Program

Supported Platforms: All Platforms.
This action allows you to run an external program or script.
<runPr ogr an»
<progrank${installdir}/utils/scripts/mysqgl _dunp_mysqgl . bat </ progr an»
<pr ogr amAr gunent s></ pr ogr amAr gunent s>

</ runPr ogr ane

If the installer is running as the administrator user on Unix platforms, you can use the optional <r unAs> tag to
specify an user to run the command as. If the installer is running on Windows or as a regular user, the tag will be
ignored

Run Console Program

Supported Platforms:Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X.

This action allows you to run an external text-based program or script which requires user input. This only makes
sense if running the installer in text mode, so you may want to check this is the case using a <compareText> rule
and the ${installer_ui} installer variable

<runConsol ePr ogr an»
<progrank${installdir}/utils/scripts/ask_user.sh</progran>
<pr ogr amAr gunent s></ pr ogr amAr gunent s>

</ runConsol ePr ogr an>

Add User

Supported Platforms:Linux, OpenBSD, FreeBSD, AlX, HP-UX, Solaris.

This action allows you to add a user to the system. It can take an optional <homedir> parameter to specify the
home directory of the newly created account.

<addUser >
<user nane>John</ user nane>
</ addUser >

Delete User

Supported Platforms:Linux, OpenBSD, FreeBSD, HP-UX, AlX, Solaris.

This action allows you to delete a user from the system.

<del et eUser >
<user nane>John</ user nane>
</ del et eUser >

Add Group

Supported Platforms:Linux, OpenBSD, FreeBSD, HP-UX, AlX, Solaris.

This action allows you to add a group to the system.

<addG oup>
<gr oupnane>devel oper s</ gr oupnane>
</ addG oup>

Add Group To User

Supported Platforms:Linux, OpenBSD, FreeBSD, HP-UX, AlX, Solaris.

This action allows you to add a supplementary group to a user. This way, the user is also member of that group.
However, make sure that the group already exists. If no username is given, then the current logged in user is
selected.

<addG oupToUser >
<user nanme>John</ user nane>
<gr oupnane>adni n</ gr oupnane>
<addG oupToUser >

Delete Group From User

Supported Platforms:Linux, OpenBSD, FreeBSD, HP-UX, AlX, Solaris.

This actions allows you to delete a supplementary group from a user.

<del et eG oupFr onJser >
<user nanme>John</ user nane>
<gr oupnane>adni n</ gr oupnane>
</ del et eG oupFr omJser >

Action Group

You can use action groups when you want to execute more than one action based on the same set of rules. See
the Conditional Evaluation section for details about rule-based execution of actions.

<acti onG oup>
<actionLi st >
<setlnstallerVariabl e>
<nane>i nst al | apache</ nane>
<val ue>1</val ue>
</setlnstallerVariabl e>
<setlnstallerVariabl e>
<name>i nst al | t ontat </ nane>
<val ue>1</val ue>
</setlnstallerVariabl e>
</ actionLi st >
<rul eLi st >
<conpar eText >
<text >${instal |l t ype} </text>
<l ogi c>equal s</I ogi c>
<val ue>server</val ue>
</ conpar eText >
</ rul eLi st >
</ actionG oup>

HTTP GET

This action allows you to perform an HTTP GET request, storing the retrieved page into a file.
Supported Platforms: All Platforms.

Example:

<htt pGet >
<filename>/tnp/http. htm </fil ename>
<url >http://ww. bitrock. conx/url >
</ httpGet >

HTTP POST

This action allows you to perform an HTTP POST request, storing the retrieved page into a file.
Supported Platforms: All Platforms.

Example:

<ht t pPost >
<url >http://wwm. bitrock. com post. php</url>
<fil ename>/tnp/postresult. htm </fil enane>
<quer yPar anet er Li st >
<quer yPar anmet er name="product nane" val ue="${product full nane}" />
<quer yPar anmet er nanme="vari abl e2" val ue="val ue2" />
<quer yPar anet er nane="vari abl e3" val ue="val ue3" />
</ quer yPar anet er Li st >
</ htt pPost >

Launch Browser

This action allows you to launch a web browser pointing to a specified url.
Supported Platforms: All Platforms.

Example:

<fi nal PageActi onLi st >
<l aunchBr owser >
<url >http://exanpl e. com congrat ul ati ons/ </ url >
<pr ogressText >Vi sit Exanpl e website. </ progressText >
</l aunchBr owser >
</ fi nal PageActi onLi st >

Read File

This action allows you to read a text file and store its contents into a variable.
Supported Platforms: All Platforms.

Example:

<readFi | e>

<nane>r el easenot es</ nane>
<pat h>/ pat h/t o/ r el easenot es. t xt </ pat h>
</ readFil e>

Write File

This action allows you to store the contents of a given variable into a text file.

Supported Platforms: All Platforms.

Example:
<witeFile>
<t ext >${i nportant _i nformati on} </t ext >
<pat h>/ pat h/t o/ i nf or mati on. t xt </ pat h>
</witeFile>
Show Info

This action allows you to display a popup window with a message. It is very useful for debugging purposes.

Supported Platforms: All Platforms.

Example:
<show nf o>
<t ext >Debug nessage. nyvariable = ${nyvari abl e} </t ext>
</ show nf 0>
Show Text

This action allows you to display text in a popup window. It can be useful to display the contents of a long text file.
Supported Platforms: All Platforms.

Example:

<showText >
<t ext >${rel ease_not es} </t ext>
<title>Rel ease notes</title>
</ showText >

Show Question

This action allows you to prompt a yes/no question to the user. The result will be stored as 'yes' or 'no' in the
specified variable.

Supported Platforms: All Platforms.

Example:

<showQuest i on>

<text>Do you want to renove the existing database?</text>

<vari abl e>renove_dat abase</ vari abl e>
</ showQuesti on>

Show Password Question

This action allows you to ask the user to provide a password in a popup window.
Properties:

text: Question message that will be shown.
title: Dialog window title.
variable: Variable name where the password will be stored.

Supported platforms: All Platforms.

<initializationActionList>
<showPasswor dQuest i on>

<text>This installer is password protected. Please

enter the passphrase</text>
<vari abl e>passwor d</ vari abl e>
</ showPasswor dQuest i on>
<t hr owkr r or >
<t ext >l ncorrect Password</text>
<rul eLi st >
<conpar eText >
<t ext >${ passwor d} </ t ext >
<val ue>secret 123</ val ue>
<l ogi c>does_not _equal </ | ogi c>
</ conpar eText >
</rul eLi st >
</t hr owkrr or >
</initializationActionList>

Show Warning

This action allows you to display a message in a warning dialog.
Properties:
text: Warning message that will be shown.

Supported platforms: All Platforms.

<showMar ni ng>
<t ext >${ product _ful |l nane} requires at |east 200MB
of freedi sk space. Currently, there are only
${avail abl e_di sk_space} MB | eft. </ text>
<rul eLi st>
<conpar eVal ues>
<val uel>%${avail abl e_di sk_space} </ val uel>
<l ogi c>l ess</| ogi c>
<val ue2>200</ val ue2>
</ conpar eVal ues>
</rul eLi st >
</ showwar ni ng>

Remove Directory from PATH

This action allows you to remove a directory from the system PATH. For Windows, you can choose to modify the
system path or the user path using the scope property.

Properties:

scope: Select user path or system path. - Allowed values: system, user (System, User)
path: Path to the directory

Supported platforms: All Platforms.

<renoveDi r ect or yFr onPat h>
<pat h>${i nstal | di r}/ bi n</ pat h>
</ renoveDi r ect or yFr onPat h>

Add Fonts

This action allows you to install fonts in Windows systems.
Properties:
files: Files to apply action to.

Supported platforms: Windows.

<addFont s>
<files>${installdir}/Fonts/fontl.ttf</files>
</ addFont s>

Remove Fonts

This action allows you to remove fonts on Windows. The action accepts only file names or patterns (as opposed to
file paths, either relative or absolute), matching them inside the system fonts folder.

Properties:
files: Files to apply action to.

Supported platforms: Windows.

<r enoveFont s>
<files>fontl.ttf;*userfont*.ttf;font2.ttf</files>
</ r enpbveFont s>

Add Files to Uninstaller

This action allows you to add new files to the uninstaller, so they will be removed during the uninstallation process.
Properties:
files: Files to apply action to.

Supported platforms: All Platforms.

<addFi | esToUni nstal | er >
<files>${installdir}/profiles/*;${installdir}/userdata/*</files>
</ addFi | esToUni nst al | er >

Remove Files from Uninstaller

This action allows you to remove files from the uninstaller, so they will not be removed during the uninstallation
process.

Properties:
files: Files to apply action to.

Supported platforms: All Platforms.

<renoveFi | esFronbni nstal |l er >
<files>${installdir}/comonfiles/profiles.inf</files>
</ renoveFi | esFronni nstal | er>

Delete Group

This action allows you to remove a group from the system.
Properties:
groupname: Group name to delete.

Supported platforms: Linux, OpenBSD, FreeBSD, HP-UX, AlX, Solaris.

<del et eG oup>
<gr oupnane>devel oper s</ gr oupnane>
</ del et eG oup>

Add Shared DLL

This action allows you to increment the reference count for a shared DLL.
Properties:
path: Path to the shared DLL
Supported platforms: Windows.
<addShar edDLL>

<path>${installdir}/libraries/nylib.dll</path>
</ addShar edDLL>

Remove Shared DLL

This action allows you to decrement the reference count for a shared DLL. If it reaches zero, the file will be
removed.

Properties:
path: Path to the shared DLL

Supported platforms: Windows.

<r enoveShar edDLL>
<path>${installdir}/libraries/nylib.dll</path>
</ r enoveShar edDLL>

Add Unix Service

This action allows you to create a new service in a GNU/Linux based system. Notice you will need to run the
installer as root to be able to create new services.

Properties:

program: Path to the program
description: Product description
name: Service Name

Supported platforms: Linux (RedHat/Debian based distributions, others may -or may not- work).

<addUni xSer vi ce>

<name>cust onser vi ce</ name>

<descri pti on>cust om servi ce</ descri pti on>

<progrank${i nstal |l di r}/bi n/ myservi ce</ progran>
</ addUni xSer vi ce>

Create Windows Service

This action allows you to create a new Windows service.
Properties:

description: Program description

program: Path to program

startType: Specify how the service should be started - Allowed values: auto, manual, disabled (Auto, Manual,
Disabled)

programArguments: Arguments to pass to the program

dependencies: Comma separated list of services that the created service depends on

serviceName: Internal service name

displayName: Name displayed in Windows services control panel

Supported platforms: Windows.

<cr eat eW ndowsSer vi ce>
<progrant${i nstal l dir}/bin/custonservice. exe</progranp
<servi ceName>nyser vi ce</ servi ceNane>

</ cr eat eW ndowsSer vi ce>

Delete Windows Service

This action allows you to remove a specified Windows service.
Properties:

serviceName: Internal service name
displayName: Name displayed in Windows services control panel

Supported platforms: Windows.

<del et eW ndowsSer vi ce>
<servi ceName>mnyser vi ce</ servi ceNane>
</ del et eW ndowsSer vi ce>

Get Unique Windows Service Name

This action allows you to get a uniqgue Windows service hame.

Properties:

separator: Separator string, it is - by default
selectedServiceNameVariable: Variable to store the Service name
selectedDisplayNameVariable: Variable to store the service display name
serviceName: Initial name for the service

displayName: Initial display name for the service

Supported platforms: Windows.

<get Uni queW ndows Ser vi ceNanme>
<servi ceName>nyser vi ce</ servi ceNane>
<di spl ayNane>My Ser vi ce</di spl ayNanme>
<sel ect edSer vi ceNaneVar i abl e>uni que_servi cenane</ sel ect edSer vi ceNaneVa
ri abl e>
<sel ect edDi spl ayNanmeVar i abl e>uni que_di spl aynanme</ sel ect edDi spl ayNaneVa
ri abl e>
</ get Uni queW ndows Ser vi ceNane>

Restart Windows Service

This action allows you to restart a specified Windows service.
Properties:

delay: Amount of milliseconds to wait for the service to start.
serviceName: Internal service name
displayName: Name displayed in Windows services control panel

Supported platforms: Windows.

<r est art W ndows Ser vi ce>
<servi ceName>nyser vi ce</ servi ceNane>
</restart WndowsServi ce>

Start Windows Service

This action allows you to start a specified Windows service.
Properties:

delay: Amount of milliseconds to wait for the service to start.
serviceName: Internal service name
displayName: Name displayed in Windows services control panel

Supported platforms: Windows.
<start W ndowsSer vi ce>

<servi ceName>mnyser vi ce</ servi ceNane>
</ st art W ndows Ser vi ce>

Stop Windows Service

This action allows you to stop a specified Windows service.
Properties:

serviceName: Internal service name
displayName: Name displayed in Windows services control panel

Supported platforms: Windows.

<st opW ndowsSer vi ce>
<servi ceName>mnyser vi ce</ servi ceNane>
</ st opW ndows Ser vi ce>

Create Windows File Associations

This action allows you to create file associations for Windows, defining commands such as "open" for a given file
extension.

Properties:

extensions: Space-separated list of extensions for which the given commands will be available.

icon: Path to the icon file that contains the icon to display.

proglD: Programmatic Identifier to which the extensions are attached, contains the available commands to be
invoked on each file type.

mimeType: MIME type associated to all the file extensions.

friendlyName: Friendly Name for the progID.

commandList: List of commands that can be invoked on each given file type.

Supported Platforms: Windows.

Example:

<associ at eW ndowsFi | eExt ensi on>
<ext ensi ons>. ext </ ext ensi ons>
<pr ogl D>nyconpany. package</ pr ogl D>
<i con>${instal I di r}\i mages\ nyi con. i co</i con>
<m nmeType>exanpl e/ nyconpany- package- ext </ m neType>
<conmandLi st >
<I-- Defining the "open" conmand -->
<conmand>
<ver b>open</ ver b>
<runProgrant${instal | dir}\yourprogram exe</runProgran>
<r unPr ogr amAr gunent s>%.</ r unPr ogr amAr gunent s>
</ command>
</ conmandLi st >
</ associ at eW ndowsFi | eExt ensi on>

Create Directory

This action allows you to create a new directory.
Properties:
path: Path to the new directory

Supported platforms: All Platforms.

<post | nstal |l ati onActi onLi st >
<createDirectory>
<pat h>${i nstal | di r}/ user dat a</ pat h>
</createDirectory>
</ postlInstall ati onActi onLi st>

Unpack File

This action allows you to unpack a file before files are unpacked during the installation phase. This can be helpful
to extract files to a temporary folder such as ${env(TEMP)} if you need to run a pre-installation check script or
program. If you need to unpack a directory, you may want to try using unpackDirectory action instead.

Properties:

origin: File name you want to extract

folder: Project folder name where where the file you want to extract is located
destination: Path to the location where you want to extract the file
component: Project component where the file you want to extract is located

Supported platforms: All Platforms.

<unpackFi | e>
<conponent >def aul t </ conponent >
<destinati on>${env(TEMP)}/test. exe</destinati on>
<f ol der >pr ogr anfi | eswi ndows</ f ol der >
<ori gi n>t est. exe</ori gi n>
</ unpackFi | e>

Unpack Directory

This action allows you to unpack a directory before files are unpacked during the installation phase. This can be
helpful to extract a full directory to a temporary folder such as ${env(TEMP)}. If you need to unpack single files, you
may want to try using unpackFile action instead.

Properties:

origin: Directory name you want to extract.

folder: Project folder name where the directory you want to extract is located.
destination: Path to the location where you want to extract the directory.
component

: Project component where the directory you want to extract is located.

Supported Platforms: All Platforms.

Example:
<unpackDi r ect ory>
<conponent >def aul t </ conponent >
<desti nati on>${env(TEMP) }/di r ect or yt ounpack</ desti nati on>
<f ol der >pr ogr anfi | eswi ndows</ f ol der >
<ori gi n>di r ect or yt ounpack</ ori gi n>
</ unpackDi r ect or y>
Modify a String

This action allows you to transform a given text using one of the allowed string manipulation methods.
Properties:

text: Text which will be transformed.

logic: Transformation to perform. - Allowed values: toupper, tolower, totitle, trimleft, trimright, trim (Convert to
uppercase, Convert to lowercase, Convert the first character to uppercase, Remove leading whitespace, Remove
trailing whitespace, Remove leading and trailing whitespace)

variable: Variable name which will store the result.

Supported Platforms: All Platforms.
Example:
<stri nghodi fy>
<text>this text will be converted to uppercase</text>
<l ogi c>t oupper </ | ogi c>

<vari abl e>newt ext </ vari abl e>
</ st ringhModi fy>

Show Progress Dialog

Launch a popup dialog window which displays an indeterminate progress bar to process a list of actions. In text
mode frontend, it will display a character-based animation.

Properties:

width: Popup window width

height: Popup window height

title: Title of the progress dialog window
actionList: List of actions to be executed

Supported Platforms: All Platforms.

Example:

<showPr ogressDi al og titl e="Executing Actions" w dth="200" hei ght="100">
<acti onLi st >
<l-- progressText will be displayed in the popup wi ndow -->
<htt pCet progressText="HITP request" url="http://nmy.web.site" filenane
="test.htm "/>
<runPr ogram pr ogressText =" Runni ng a program' progranm="/path/to/prograni/>
</ acti onLi st >
</ showPr ogr essDi al og>

Add Choice Options

This action allows you to add new options inside an existing choiceParameter. By including a ruleList, you can
limit the action so it will be executed only if a particular condition is met. If you are populating a choiceParameter
dynamically, you may want to remove all the options using the removeChoiceOptions action before using
addChoiceOptions: otherwise, if you go back and forth in the installer page, the options will be added over and
over again.

Supported Platforms: All Platforms.

Example:

<addChoi ceOpt i ons>
<name>choi cepar anet er _nanme</ nane>
<opti onLi st >
<option text="Cption 1" val ue="optionl"/>
<option text="Option 2" val ue="option2"/>
</ opti onLi st >
</ addChoi ceOpt i ons>

Remove Choice Options

This action allows you to remove specific options from a given choiceParameter. The options to remove can be
specified as: optionl,option2,...,optionX.

If not specified, all options will be removed. This is useful, for example, if you are populating a choiceParameter
dynamically: In that case, the choiceParameter can leave the options property empty, in order to remove all
options.

Supported Platforms: All Platforms.
Example:
<r emoveChoi ceQpt i ons>
<name>choi cepar anet er _nanme</ nane>

<opt i ons>opti onl, opti on3</opti ons>
</ r enoveChoi ceOpt i ons>

Component Selection

This action allows you to select or deselect components. The syntax is quite straightforward. Remember a ruleList
inside any action can be used to execute the action only if a particular condition is met.

Supported Platforms: All Platforms.

Example:

<l-- To enabl e a conponent -->
<conponent Sel ecti on>

<sel ect >conponent 1, conponent 2</ sel ect >
</ conponent Sel ecti on>

<I-- To disable a conmponent -->
<conponent Sel ecti on>

<desel ect >conponent 1, conponent 2</ desel ect >
</ conponent Sel ecti on>

Create Timestamp

This action allows you to create a timestamp using a custom format, storing the result in an installer variable.
Properties:

format: Format string for the generated timestamp. The string allows a humber of field descriptors.
variable: Variable that will store the resulting timestamp.

The format string will allow a number of field descriptors to generate the timestamp. A list of currently supported
field descriptors follows:

%%: Insert a %.

%a: Abbreviated weekday name (Mon, Tue, etc.).

%A: Full weekday name (Monday, Tuesday, etc.).

%b: Abbreviated month name (Jan, Feb, etc.).

%B: Full month name.

%oc: Locale specific date and time.

%d: Day of month (01 - 31).

%H: Hour in 24-hour format (00 - 23).

%I: Hour in 12-hour format (00 - 12).

%j: Day of year (001 - 366).

%m: Month number (01 - 12).

%M: Minute (00 - 59).

%p: AM/PM indicator.

%S: Seconds (00 - 59).

%U: Week of year (01 - 52), Sunday is the first day of the week.
%w: Weekday number (Sunday = 0).

%W: Week of year (01 - 52), Monday is the first day of the week.
%x: Locale specific date format.

%X: Locale specific time format.
%y: Year without century (00 - 99).
%Y: Year with century (e.g. 1990).
%Z: Time zone name.

Supported Platforms: All Platforms.

Example:

<I-- Timestanp will ook Iike "Mon Feb 11, 15:05:34 2008" -->
<cr eat eTi nest anp>

<vari abl e>ti mest anp</ vari abl e>

<format>%a % %, % %Vt S %r</f or mat >
</ creat eTi nest anp>

Additional Actions

We are continuosly adding new actions based on customer feedback. Let us know your suggestions for custom
actions that could make your installer development easier.

Pre Installation Actions

You can specify a <prelnstallationActionList> section in the project file. It can include a list of actions to execute
before the installation process takes place, such as setting user-defined installer variables that will be used later on
or detecting a Java (tm) Runtime Environment.

Pre Uninstallation Actions

You can specify a <preUninstallationActionList> section in the project file. It can include a list of actions to execute
before the uninstallation process takes place, such as unsetting user-defined installer variables or deleting files
created after installation occured.

Parameter Validation Actions

You can specify a <validationActionList> section inside a parameter section. It can include a list of actions to
execute once the user has specified a value in the user interface page associated with the parameter and has
pressed the Next button (or Enter in a text-based interface). The actions can be used to check that the value is
valid (for example, that it specifies a path to a valid Perl interpreter). If any of the actions result in an error, the error
message will be displayed back to the user and the user will be prompted to enter a valid value.

Pre Show Page Actions

You can specify a <preShowPageActionList> section inside a parameter section. It can include a list of actions to
execute before the corresponding parameter page is displayed. This can be useful for changing the value of the
parameter before it is displayed.

Post Show Page Actions

You can specify a <postShowPageActionList> section inside a parameter section. It can include a list of actions to
execute after the corresponding parameter page has been displayed. This can be useful for performing actions or
setting environment variables based on the value of the parameter.

Final Page Actions

You can specify a <finalPageActionList> section in the project file. It can include a list of actions to execute after
the installation has completed and the final page has been displayed to the user. These actions usually include
launching the program just installed, whether a desktop or server application. The text displayed can be specified
in the <progressText> property.

Pre Build Actions

You can specify a <preBuildActionList> section in the project file. It can include a list of actions to execute before
generating the installer file. These actions usually include setting environment variables, or performing any kind of
processing on the files that will go into the installer before they are packed into it. For multi-platform CDROM
installers, the preBuildActionList is executed once at the beggining of the CDROM build, and then again for every
one of the specific platform installers.

Post Build Actions

You can specify a <postBuildActionList> section in the project file. It can include a list of actions to execute after
generating the installer file. These actions are usually useful to revert any changes made to the files during the
preBuildActionList, or to perform additional actions on the generated installer, like signing it by invoking an external
tool. For multi-platform CDROM installers, the postBuildActionList is executed once for every one of the specific
platform installers and then it is executed once final time for the whole CDROM build.

Custom Pages

BitRock InstallBuilder allows you to create custom installer pages to ask the user for additional information, validate
that information, and use it during the installation process. An example of this would be to pass the information to
post-installation scripts.

You can define such pages by adding parameters to the <parameterList> section in the XML project file. There are
different types of parameters: strings, booleans, option selection, and so on. Each one of them will be displayed to
the user appropriately through the GUI and text interfaces. For example, a file parameter will be displayed with a
graphical file selection button next to it and an option selection parameter will be displayed as a combobox. The
parameters will also be available as command line options and as installer variables.

Parameter example:

<fil ePar anet er >
<nane>apacheconfi g</ nane>
<cl i Opti onNane>apacheconfi g</cl i Opti onNanme>
<ask>yes</ ask>
<defaul t >/ etc/ httpd/ conf/httpd. conf </ defaul t>
<title>Configuring Apache</title>
<expl anati on>Pl ease specify the location of the Apache configuration file</ex
pl anati on>
<descri pti on>Apache Configuration File</description>
<nust BeWi t abl e>yes</ nust BeW it abl e>
<nmust Exi st >1</ nust Exi st >
<val ue></val ue>
</fil eParaneter>

This will create the appropriate GUI screens for the graphical installers and make the parameter available as the
command line option --apacheconfig and as the installer variable ${apacheconfig}.

Common Fields

A number of fields are common across all parameters:

® name: Name of the parameter. This will be used to create the corresponding installer environment
variable and command line option. Because of that, it may only contain alphanumerical characters.
value: Value for the parameter.
default: Default value, in case one is not specified by the user.
explanation: Long description for the parameter.
description: Short description for the parameter.
title: Title that will be displayed for the corresponding installer page. If none is specified, the
description field will be used instead.
® cliOptionName: Text to use for setting the value of the parameter through the command line
interface. If none is used, it will default to the value of the name field.
® ask: Whether to show or not the page to the end user (it can still be set through the command line
interface).
® width: Width in characters of the corresponding field in the GUI page. If not specified, it defaults
to 40.
® |eftimage: When using <style>custom</style> inside the <project> tag in your project file, it
displays a custom PNG or GIF image at the left side of the installer page associated to this

parameter. Its purpose is the same as the <leftimage> property inside the <project> tag, but
allows you set a different image for each parameter page.

Each one of the fields can reference installer variables (${product_fullname}, ${installdir}, and so on) and they will
be substituted at runtime.

String Parameter

The string parameter allows you to request a text string from the user. It accepts all the common options.

Example:

<stri ngPar anet er >
<nanme>host nanme</ nane>
<def aul t >l ocal host </ def aul t >
<val ue></val ue>
<ask>1</ ask>
<descri pti on>Host nane</ descri pti on>
<expl anati on>Pl ease enter the hostnanme for your application server.</explana
tion>
</ stringParanet er >

Label Parameter

The label parameter allows you to display a string of read-only text inside an installer page. Optionally, you can
include an image to the left side of the text.

Example:

<| abel Par anet er >
<name>| abel </ name>
<title>l abel Paraneter test</title>
<description>This is a warning nessage i nside an installer page.</descript
i on>
<i mage>/ pat h/ t o/ i cons/ war ni ng. png</ i nrage>
</ | abel Par anet er >

File and Directory Parameter

File and directory parameters ask the user to enter a file or directory. They support additional fields:

® mustExist: Whether to require or not that the file or directory must already exist.
® mustBeWritable: Whether to require or not that the file or directory must be writable. If the file or
directory does not already exist, whether it can be created.

Example:

<di rect or yPar anet er >

<nane>i nst al | di r </ nane>

<val ue></val ue>

<description>Installation Directory</description>

<expl anati on>Pl ease specify the directory where ${product_ful | name} w
I'l be install ed</expl anati on>

<defaul t >${ pl at form_i nstal | _prefix}/${product _shortnane}-${product _ver
si on} </ defaul t>

<cl i Opti onName>pr ef i x</ cl i Opti onNane>

<ask>yes</ ask>

<nust BeW i t abl e>yes</ nust BeW i t abl e>

</ directoryParaneter>

Boolean Parameter

Boolean parameters are identical to string parameters, only that they take a boolean value.

Example:

<bool eanPar anet er >
<nane>cr eat edb</ nane>
<ask>yes</ ask>
<def aul t >1</ def aul t >
<title>Database Install</title>
<expl anati on>Shoul d initial database structure and data be created?</expl ana
tion>
<val ue>1</val ue>
</ bool eanPar anet er >

Text Display Parameter

This parameter will display a read-only text information page. It does not support the ask or cliOptionName fields

Example:

<i nf oPar anet er >
<nane>ser ver i nf o</ name>
<title>Wb Server</title>
<expl anati on>Web Server Settings</expl anation>
<val ue>l nportant Information! In the followi ng screen you will be asked to p
rovide (...)</val ue>
</i nf oPar anet er >

Choice Parameter

A choice parameter allows the user to select a value among a predefined list. In GUI mode, it will be represented
by a combobox. It takes an extra field, optionList, which contains a list of value/text pairs. The text will be the
description presented to the user for that option and the value will be the value of the associated installer variable if
the user selects that option

Example:

<choi cePar anet er >
<ask>1</ ask>
<def aul t >ht t p</ def aul t >
<descri pti on>Wi ch protocol ?</descri ption>
<expl anati on>Default protocol to access the | ogin page.</expl anati on>
<title>Protocol Selection</title>
<name>pr ot ocol </ name>
<opti onLi st >
<opti on>
<val ue>ht t p</ val ue>
<text >HTTP (i nsecure)</text>
</ opti on>
<opti on>
<val ue>ht t ps</ val ue>
<t ext >HTTPS (secure)</text>
</ opti on>
</ opti onLi st >
</ choi cePar anet er >

Password Parameter

A password parameter allows the user to input a password and confirm it. The password will not be echoed back to
the user in text mode installations and will be substituted by "*' characters in GUI mode installations. The user
needs to retype the password and if the entries do not match, an error will be displayed.

Example:

<passwor dPar anet er >
<ask>yes</ ask>
<nane>nast er passwor d</ name>
<descri pti on>Passwor d</ descri pti on>
<descri pti onRet ype>Ret ype passwor d</descri pti onRet ype>
<expl anati on>Pl ease provide a password for the database user</expl anati on>

<cl i Opti onNane>passwor d</ cl i Opt i onName>
<defaul t/>
<val ue/ >

</ passwor dPar anet er >

Group Parameter

A group parameter allows you to logically group other parameters. They will be presented in the same screen on
GUI and text installers. You need to place the grouped parameters in a parameterList section, as shown in the
example. Please note that parameter groups also need to contain a <name> tag.

Example:

<par anet er G oup>
<nanme>user andpass</ nanme>
<expl anati on>Pl ease enter the username and password for your database. </expla
nati on>
<par anet er Li st >
<stri ngPar anet er >
<nanme>user nanme</ nane>
<def aul t >adni n</ def aul t >
<descri pti on>User nane</ descri pti on>
</ stringPar anet er >
<passwor dPar anet er >
<ask>yes</ ask>
<name>nast er pass</ name>
<descri pti on>Passwor d</ descri pti on>
<descri pti onRet ype>Ret ype passwor d</descri pti onRet ype>
<expl anati on>Pl ease provide a password for the database user</expl anati on>

<cl i Opt i onNane>passwor d</ cl i Opt i onName>
</ passwor dPar anet er >
</ par anet er Li st >
</ par anet er G oup>

Conditional Evaluation

BitRock InstallBuilder allows you to control whether certain actions take place, pages are shown or files are
installed. You can include a <ruleList> section in action, parameter and folder sections. Each <ruleList> contains a
set of rules or conditions that are evaluated, and depending on the result, the action is executed, the page
associated with the parameter shown, or the folder installed. By default, rules are evaluated with 'and' logic; that is,
all rules must be true for the result of the evaluation to be true. You can change that by adding a
<ruleEvaluationLogic>or</ruleEvaluationLogic> section. In that case it will only be necessary that one of the rules
be true for the result of the evaluation to be true.

Each ruleList can contain in turn one or more <compareText>, <fileTest>, <compareValues>,
<compareTextLength>, <fileContentTest> etc. sections.

<compareText> Text comparison rules can contain three fields:

® text: The text to apply the logic comparison to, usually the value of an installer or environment
variable.

® |ogic: One of equal s, cont ai ns, does_not _cont ai n or does_not _equal .

® value: The value that the text will be compared with.

Example:

<conpar eText >
<t ext >${server}</text>
<l ogi c>equal s</I ogi c>
<val ue>Apache</ val ue>
</ conpar eText >

<compareValues> Value comparison rules contain three fields:

® valuel: Left side value of the logic expresion, usually the value of an installer or environment
variable.

® |ogic: One of equal s, greater_or_equal ,greater, | ess,| ess_or_equal or
does_not _equal .

® value2: Right side value of the logic expresion.

Example:

<conpar eVal ues>
<val uel>%${di skspace} </ val uel>
<l ogi c>l ess</| ogi c>
<val ue2>100000</ val ue2>

</ conpar eVal ues>

<compareTextLength> Text length comparison rules contain three fields:

® text: Text to compare, usually the value of an installer or environment variable.
® |ogic: One of equal s, greater_or_equal ,greater, | ess,| ess_or_equal or
does_not _equal .

® |ength: Length to compare to

Example:

<conpar eText Lengt h>
<t ext >${ passwor d} </ t ext >
<l ogi c>great er</1 ogi c>
<l engt h>8</ | engt h>

</ conpar eText Lengt h>

<fileTest> File testing rules contain two fields:

® path: The path to the file to test.

® condition: One of exi sts, not _exi sts,witabl e, not_witable,readabl e,
not readabl e, execut abl e, not _executable,is_directory,is_not_directory,
is file,is not file,is enpty,is_not_enpty.

Example:

<fil eTest>

<pat h>/ usr/ bi n/ per| </ pat h>

<condi ti on>execut abl e</ condi ti on>
</fileTest>

<fileContentTest> File content testing rules contain three fields:

® path: The path to the file to test.

® |ogic: One of cont ai ns, does_not _cont ai n

® text: The text to apply the logic comparison to, usually the value of an installer or environment
variable.

Example:

<fil eCont ent Test >
<pat h>/ et c/ gr oup</ pat h>
<l ogi c>cont ai ns</| ogi ¢c>
<t ext >apache</t ext >
</fil eContent Test >

The following example shows how a particular script will be executed only if the installation type is 'server’, it is
running on Linux and a certain file is not already present in the system. The value for the installation type was set
during the installation process using a user-defined parameter, as explained earlier in this document.

<runPr ogr an»
<rul eEval uat i onLogi c>and</rul eEval uati onLogi c>
<rul eLi st >
<conpar eText >
<text>${i nstal | type} </text>

<l ogi c>equal s</I ogi c>
<val ue>server </ val ue>
</ conpar eText >
<conpar eText >
<t ext >${ pl at f or m nane} </t ext >
<l ogi c>equal s</I ogi c>
<val ue>l i nux</val ue>
</ conpar eText >
<fil eTest>
<path>/etc/init.d/ myservice</path>
<condi ti on>not _exi sts</condition>
</fileTest>
</rul eLi st >
<prograne${instal I dir}/bin/install_service.sh</progranp
</ runPr ogr ane

Running the Installer

BitRock InstallBuilder can generate a self-contained native Windows binary that can run on all supported Windows
platforms, a Solaris Sparc binary and a Solaris Intel binary that can run on all supported Solaris versions, a Mac
OS X binary, a FreeBSD 4.x/5.x binary, an HP-UX 11 binary, an IRIX binary, an AIX binary and a Linux PPC, x64,
x86, Itanium or s390 Linux binary that can run on most Linux platforms. You can run it either by invoking it on the
command line or double-clicking it from your desktop environment. On Linux, OpenBSD, FreeBSD, HP-UX, AlX,
IRIX, Solaris and Mac OS X, the only requirement is that the file has executable permissions, which it has by
default when it is created. Sometimes those permissions can be lost, such as when downloading an installer from a
website. In that case you can restore the executable permissions with:

$
chnod u+w install buil der-professional-5.1.1-1inux-installer.bin

Although the generated OSX installers are regular .app applications, you may need to add them to a zip file or disk
image for distribution over the web.

On Windows, the installer runs graphically with native look and feel or can be invoked in unattended mode (see
below). On Mac OS X, the installer runs with the native Aqua look and feel and can also be run in text and
unattended modes. On Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, and Solaris, there are multiple installation
modes:

® GTK: This is a native installation mode based on the GTK 2.0 toolkit. The GTK libraries must be
present in the system (they are installed by default in most Linux distributions). This is the default
installation mode. If the GTK libraries are not available, the X-Window installation mode will be
automatically used instead. The GTK mode is available on Linux only.

® X-Window: This is a self contained installation mode that has no external dependencies. It will be
started when the GTK mode is not available or can be explicitly requested with the - - node
xwi ndowcommand line switch.

® Command line: Designed for remote installation or installation on servers without X-Window
support. You can find a sample installation log in the Appendix. This installation mode is started by
default when a graphical environment is not available or by passing the - - nbde t ext command
line option to the installer.

® Unattended Installation: It is possible to perform unattended or silent installations using the - -
node unatt ended command line option. This is useful for automating installations or for inclusion
in shell scripts, as part of larger installation processes.

For all modes, you can modify the default installation directory by passing the - - pr ef i x
/path/to/installdir command line option to the installer

On Linux, OpenBSD, FreeBSD, HP-UX, AlX, IRIX, Solaris and Mac OS X, an installation log named
bitrock_i nstall er.| og will be created in t np On Windows, it will be created in the user's local Temp
directory, usually C: \ Docunent s and Setti ngs\usernane\Local Settings\Tenp

Appendix

Uninstalling

Sample XML Project File

<pr oj ect >
<f ul | Name>Deno Proj ect </ f ul | Nane>
<short Nanme>deno</ shor t Name>
<ver si on>1. 0</ ver si on>
<install erFilename>
${ product _short nanme}- ${ product _versi on}-${pl atform nane}-installer.${pl atfor
m exec_suf fi x}
</installerFil ename>
<l i censeFi | e>/ home/ user/install buil der-1.1/deno/docs/|icense.txt</licenseFile>
<l ogol mage></| ogol mage>
<post | nstal |l ati onScri pt >
${installdir}/bin/postinstallation.sh ${installdir}
</ postiInstallationScri pt>
<pr oj ect SchemaVer si on>1. 0</ pr oj ect SchemaVer si on>
<readmeFi | e>/ home/ user/instal |l buil der-1.1/denp/docs/readne. t xt</readneFi | e>
<requi rel nstal | ati onByRoot User >0</ requi rel nstal | ati onByRoot User >
<al | owConponent Sel ecti on>0</ al | onConponent Sel ect i on>
<conponent Li st >
<conponent >
<descri pti on>Default Conponent </ descri ption>
<nane>def aul t </ name>
<sel ect ed>1</ sel ect ed>
<deskt opShort cut Li st >
<short cut >
<coment >Text that will appear on Tool ti p</coment >
<exec>${install dir}/bin/denp. sh</exec>
<i con>${instal Il dir}/bin/logo. png</icon>
<nanme>Deno Pr oj ect </ nane>
<pat h></ pat h>
</ short cut >
</ deskt opShort cut Li st >
<f ol der Li st >
<f ol der >
<descri pti on>Program Fi | es</ descri pti on>
<destinati on>${instal | di r}</destination>
<name>pr ogr anfi | es</ nane>
<acti onLi st/ >
<di stri butionFil eLi st >
<di stributionDi rectory>
<ori gi n>/ hone/ user/install buil der-1. 1/ deno/ bi n</ ori gi n>
</distributionDirectory>
<di stri butionbDirectory>
<ori gi n>/ home/ user/install buil der-1. 1/ deno/ docs</ ori gi n>
</distributionDirectory>
<di stri butionbDirectory>
<ori gi n>/ hone/ user/installbuilder-1.1/deno/lib</origin>
</distributionDirectory>

</distributionFileList>
<shortcutList/>
</ f ol der >
</ f ol der Li st >
</ conponent >
</ conponent Li st >
<fileList/>
<par anet er Li st >
<di rect or yPar anet er >
<ask>yes</ ask>
<cl i Opti onName>prefi x</cl i Opti onName>
<def aul t >/ opt/ ${ pr oduct _short nane}- ${ product versi on} </ def aul t >
<description>Installation directory</description>
<expl anati on>Pl ease specify the directory where ${product_full nane} wll be
i nstal | ed</ expl anati on>
<nust BeW i t abl e>yes</ nust BeW i t abl e>
<nust Exi st >0</ nust Exi st >
<nane>i nst al | di r </ nane>
<val ue>${pl atform.install _prefix}/${product_shortnane}- ${product _version}</v
al ue>
</ di r ect or yPar anet er >
</ par anet er Li st >
</ proj ect >

Sample Text Based Installation

$./denp-1.0-installer.bin --npde text

Wl conme to the Denb Project Setup W zard
Created with an eval uati on version of BitRock I|nstall Buil der

Pl ease read the foll owi ng Li cense Agreenent. You nust accept the terns of
this agreenent before continuing with the installation

Press [Enter] to conti nue:
Sanmpl e |icense
Do you accept this license? [Y/n]: vy

Pl ease specify the directory where Deno Project will be installed

Installation directory [/opt/denp-1.0]:

Setup is now ready to begin installing Deno Project on your conputer

Do you want to continue? [Y/n]: y

Pl ease wait while Setup installs Denp Project on your conputer

Installing Deno Project
0% 50% 100%
HHHHHHHHHHHHHHH

Setup has finished installing Deno Project on your conputer.

View Readne file? [Y/n]: y

You have successfully installed the Denp Application!

