~ubuntu-branches/debian/stretch/adjtimex/stretch

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
/*
#define DEBUG

	adjtimex - display or set the kernel time variables


	AUTHORS
		ssd at nevets.oau.org (Steven S. Dick)
		jrvz at comcast.net (Jim Van Zandt)

		TODO: review code controlled by DEBUG and possibly
		change control to verbose flag.
*/

#define _GNU_SOURCE		/* strptime is a GNU extension */

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <mat.h>
#include <math.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <syscall.h>
#include <time.h>
#include <signal.h>
#include <unistd.h>
#include <utmp.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include "config.h"
#ifdef HAVE_LINUX_RTC_H
#include <linux/rtc.h>
#else
struct rtc_time {
	int tm_sec;
	int tm_min;
	int tm_hour;
	int tm_mday;
	int tm_mon;
	int tm_year;
	int tm_wday;
	int tm_yday;
	int tm_isdst;
};
#define RTC_UIE_ON   _IO('p', 0x03)	/* Update int. enable on	*/
#define RTC_UIE_OFF  _IO('p', 0x04)	/* ... off			*/
#define RTC_PIE_OFF  _IO('p', 0x06)	/* Periodic int. enable off	*/
#define RTC_RD_TIME  _IOR('p', 0x09, struct rtc_time) /* Read RTC time  */
#endif /* HAVE_LINUX_RTC_H */

int F_print = 0;

#ifndef LOG_PATH
#define LOG_PATH "/var/log/clocks.log"
#endif
#ifndef WTMP_PATH
#define WTMP_PATH "/var/log/wtmp"
#endif
 
 /* Here the information for CMOS clock adjustments is kept. */
#define ADJPATH "/etc/adjtime"

 /* used for debugging the code. */
 /* #define DEBUG */

#define RTC_JITTER .000025	/* assumed error in reading CMOS clock (sec) */
#define SECONDSPERDAY 86400
#define BUFLEN 128

#ifndef USE_INLINE_ASM_IO
static int port_fd = -1;	/* used to access the RTC via /dev/port I/O */
#endif
static char *cmos_device;	/* filename of the RTC device */
static int cmos_fd = -1;

struct hack {
  double ref;			/* reference time for time hack */
  double sigma_ref;		/* expected error in above (or zero if
				   no reference time available) */
  time_t log;			/* reference time as time_t */
  double sys;			/* system time */
  int tick;			/* "tick" system parameter */
  int freq;			/* "freq" system parameter */
  char sys_ok;			/* nonzero if system clock undisturbed
				   during previous period */
  double cmos;			/* CMOS time */
  char cmos_ok;			/* nonzero if cmos clock undisturbed
				   during previous period */
  char valid;			/* bit flags (see below) */
  double sys_rate, sys_sigma;
  double cmos_rate, cmos_sigma;
  double relative_rate, relative_sigma;
} prev;

/* constants for `valid' member of struct hack */
#define CMOS_VALID 1
#define SYS_VALID 2
#define REF_VALID 4

struct cmos_adj
{
  double ca_factor;
  long ca_adj_time;
  double ca_remainder;
} ca;

struct timex txc;

/* command line option variables */

static int using_dev_rtc = -1;	/* 0 = not using /dev/rtc
				 1 = using /dev/rtc
				-1 = will use /dev/rtc if available,
				     but have not tried to open it yet */
static int nointerrupt = 0;	/* 0 = try to detect RTC tick via interrupt
				   1 = via another method */

int adjusting = 0;
int force_adjust;
int comparing = 0;
int logging = 0;
int reviewing = 0;
int resetting = 0;		/* nonzero if need to call
				   reset_time_status() */
int interval = 10;
int count = 8;
int marked;
int universal = 0;
int verbose = 0;
int watch;			/* nonzero if time specified on command line */
int undisturbed_sys = 0;
int undisturbed_cmos = 0;
char *log_path = LOG_PATH;

char *timeserver;		/* points to name of timeserver */

enum {HELP=131};

struct option longopt[]=
{
  {"adjust", 2, NULL, 'a'},
  {"force-adjust", 0, &force_adjust, 1},
  {"compare", 2, NULL, 'c'},
  {"log", 2, NULL, 'l'},
  {"esterror", 1, NULL, 'e'},
  {"frequency", 1, NULL, 'f'},
  {"host", 1, NULL, 'h'},
  {"help", 0, NULL, HELP},
  {"interval", 1, NULL, 'i'},
  {"maxerror", 1, NULL, 'm'},
  {"offset", 1, NULL, 'o'},
  {"print", 0, NULL, 'p'},
  {"review", 2, NULL, 'r'},
  {"singleshot", 1, NULL, 's'},
  {"status", 1, NULL, 'S'},
  {"reset", 0, NULL, 'R'},
  {"timeconstant", 1, NULL, 'T'},
  {"tick", 1, NULL, 't'},
  {"utc", 0, NULL, 'u'},
  {"directisa", 0, NULL, 'd'},
  {"nointerrupt", 0, NULL, 'n'},
  {"version", 0, NULL, 'v'},
  {"verbose", 0, NULL, 'V'},
  {"watch", 0, NULL, 'w'},
  {0,0,0,0}
};

static void usage(void);
static inline void outb (short port, char val);
static inline void outb (short port, char val);
static inline unsigned char inb (short port);
static void cmos_init ();
static void cmos_init_directisa ();
static inline int cmos_read_bcd (int addr);
static void cmos_read_time (time_t *cmos_timep, double *sysp);
static void busywait_uip_fall(struct timeval *timestamp);
static void busywait_second_change(struct tm *cmos, struct timeval *timestamp);
static void compare(void);
static void failntpdate();
static void reset_time_status(void);
static struct cmos_adj *get_cmos_adjustment(void);
static void log_times(void);
static int valid_system_rate(double ftime_sys, double ftime_ref, double sigma_ref);
static int valid_cmos_rate(double ftime_cmos, double ftime_ref, double sigma_ref);
static void sethackent(void);
static void endhackent(void);
static struct hack *gethackent(void);
static void puthackent(struct hack *ph);
static time_t mkgmtime(struct tm *tp);
static int compare_tm(struct tm *first, struct tm *second);
static void *xmalloc(int n);
static void *xrealloc(void *pv, int n);
static void review(void);
static void kalman_update(double *x, int xr, double *p, double *h,
			  double *z, int zr, double *r);


void
usage(void)
{
  char msg[]=
"\n"
"Usage: adjtimex  [OPTION]... \n"
"Mandatory or optional arguments to long options are mandatory or optional\n"
"for short options too.\n"
"\n"
"Get/Set Kernel Time Parameters:\n"
"       -p, --print               print values of kernel time variables\n"
"       -t, --tick val            set the kernel tick interval in usec\n"
"       -f, --frequency newfreq   set system clock frequency offset\n"
"       -s, --singleshot adj      slew the system clock by adj usec\n"
"       -S, --status val          set kernel clock status\n"
"       -R, --reset               reset status after setting parameters\n"
"                                 (needed for early kernels)\n"
"       -o, --offset adj          add a time offset of adj usec\n"
"       -m, --maxerror val        set maximum error (usec)\n"
"       -e, --esterror val        set estimated error (usec)\n"
"       -T, --timeconstant val    set phase locked loop time constant\n"
"       -a, --adjust[=count]      set system clock parameters per CMOS \n"
"                                 clock or (with --review) log file\n"
"       --force-adjust            override +-1 percent sanity check\n"
"\n"
"Estimate Systematic Drifts:\n"
"       -c, --compare[=count]     compare system and CMOS clocks\n"
"       -i, --interval tim        set clock comparison interval (sec)\n"
"       -l, --log[=file]          log current times to file\n"
"       -h, --host timeserver     query the timeserver\n"
"       -w, --watch               get current time from user\n"
"       -r, --review[=file]       review clock log file, estimate drifts\n"
"       -u, --utc                 the CMOS clock is set to UTC\n"
"       -d, --directisa           access the CMOS clock directly\n"
"       -n, --nointerrupt         bypass the CMOS clock interrupt access method\n"
"\n"
"Informative Output:\n"
"           --help                print this help, then exit\n"
"       -v, --version             print adjtimex program version, then exit\n"
"       -V, --verbose             increase verbosity\n"
;

  fputs(msg, stdout);
  exit(0);
}

/* return apparent value of USER_HZ in HZ, minimum nominal and maximum
   values for tick in TICK_MIN TICK_MID and TICK_MAX, and maximum
   frequency offset in MAXFREQ */
static 
void probe_time(int *hz, int *tick_min, int *tick_mid, int *tick_max,
		long *maxfreq)
{
  struct timex txc;
  int tick_orig, tick_lo, tick_try, tick_hi, i;

  txc.modes = 0;
  adjtimex(&txc);		/* fetch original value */
  txc.modes = ADJ_TICK;
  if (adjtimex(&txc) == -1) 	/* try setting with no change */
    {
      perror("adjtimex");
      exit(1);
    }

  *maxfreq = txc.tolerance;
  tick_orig = tick_hi = txc.tick;
  tick_lo = tick_hi*2/3;
  for (i = 0; i < 15; i++)
    {			/* conduct binary search for minimum
			   accepted tick value */
//      printf(" %d < minimum accepted tick value <= %d\n", tick_lo, tick_hi);
      txc.tick = tick_try = (tick_lo + tick_hi)/2;
      txc.modes = ADJ_TICK;
      if (adjtimex(&txc) == -1) tick_lo = tick_try;
      else tick_hi = tick_try;
    }
  *tick_min = tick_hi;
  tick_lo = tick_orig;
  tick_hi = tick_lo*4/3;
  for (i = 0; i < 15; i++)
    {			/* conduct binary search for maximum
			   accepted tick value */
//      printf(" %d <= maximum accepted tick value < %d\n", tick_lo, tick_hi);
      txc.tick = tick_try = (tick_lo + tick_hi)/2;
      txc.modes = ADJ_TICK;
      if (adjtimex(&txc) == -1) tick_hi = tick_try;
      else tick_lo = tick_try;
    }
  *tick_max = tick_lo;
  *tick_mid = (*tick_min + *tick_max)/2;
  *hz = (900000/ *tick_min + 1100000/ *tick_max)/2;

  txc.tick = tick_orig;
  txc.modes = ADJ_TICK;
  adjtimex(&txc);		/* reset to original value */
}

int
main(int argc, char *argv[])
{
    int ret, saveerr, changes;
    extern char *optarg;
    int c;

    txc.modes = 0;

    while((c = getopt_long_only(argc, argv, 
				"a::c::l::e:f:h:i:m:o:pr::s:S:RT:t:udvVw", 
				longopt, NULL)) != -1)
      {
	switch(c)
	  {
	  case 0: break;	/* options that just set a variable
				   are handled in longopt */
	  case 'a':
	    adjusting = 1;
	    if (optarg)
	      count = atoi(optarg);
	    break;
	  case 'c':
	    comparing = 1;
	    if (optarg)
	      count = atoi(optarg);
	    break;
	  case 'l':
	    logging = 1;
	    if (optarg)
	      log_path = strdup(optarg);
	    if (!log_path)
	      {
		fprintf (stderr, "insufficient memory\n");
		exit(1);
	      }
	    break;
	  case 'h':
	    timeserver = strdup(optarg);
	    if (!timeserver)
	      {
		fprintf (stderr, "insufficient memory\n");
		exit(1);
	      }
	    logging = 1;
	    break;
	  case 'r':
	    reviewing = 1;
	    if (optarg)
	      log_path = strdup(optarg);
	    if (!log_path)
	      {
		fprintf (stderr, "insufficient memory\n");
		exit(1);
	      }
	    break;
	  case 'i':
	    interval = atoi (optarg);
	    if (interval <= 1 || interval > 1000)
	      {
		fprintf (stderr, "repeat interval out of range\n");
		exit (1);
	      }
	    break;
	  case 'p':
	    F_print = 1;
	    break;
	  case 'o':
	    txc.offset = atol(optarg);
	    txc.modes |= ADJ_OFFSET;
	    break;
	  case 's':
	    txc.offset = atol(optarg);
	    txc.modes |= ADJ_OFFSET_SINGLESHOT;
	    break;
	  case 'S':
	    txc.status = atol(optarg);
	    txc.modes |= ADJ_STATUS;
	    break;
	  case 'R': resetting = 1; break;
	  case 'f':
	    txc.freq = atol(optarg);
	    txc.modes |= ADJ_FREQUENCY;
	    break;
	  case 'm':
	    txc.maxerror = atol(optarg);
	    txc.modes |= ADJ_MAXERROR;
	    break;
	  case 'e':
	    txc.esterror = atol(optarg);
	    txc.modes |= ADJ_ESTERROR;
	    break;
	  case 'T':
	    txc.constant = atol(optarg);
	    txc.modes |= ADJ_TIMECONST;
	    break;
	  case 't':
	    txc.tick = atol(optarg);
	    txc.modes |= ADJ_TICK;
	    break;
	  case 'u':
	    universal = 1;
	    break;
	  case 'd':
	    using_dev_rtc = 0;
	    break;
	  case 'n':
	    nointerrupt = 1;
	    break;
	  case 'v':
	    {
	      printf("adjtimex %s\n", VERSION);
	      exit(0);
	    }
	  case 'V':
	    verbose++;
	    break;
	  case 'w':
	    watch = 1;
	    logging = 1;
	    break;
	  case HELP:
	    usage();
	    break;
	  case '?':
	  default:
	    fprintf(stderr, "Unrecognized option %s\nFor valid "
		    "options, try 'adjtimex --help'\n", argv[optind-1]);
	    exit(1);
	  }
	}

    changes = txc.modes;

    if (count <= 0 ) {
      fprintf(stderr, "loop count out of range\n");
      exit(1);
    }

    if (reviewing)
      {
	review();
	exit(0);
      }

    if (adjusting || comparing)
      {
	if (changes || F_print)
	  {
	    fprintf(stderr, 
"-adjust or -compare cannot be used with any other options that"
" set values\n");
	    exit(1);
	  }
	compare();
      }    

    if (logging)
      {
	/*
	if (geteuid() != 0)
	  {
	    fprintf(stderr, "sorry, only root can record clock comparisons\n");
	    exit(1);
	  }
	  */
	log_times();
	exit(0);
      }

    if ((txc.modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT && 
	txc.modes != ADJ_OFFSET_SINGLESHOT)
      {
	fprintf(stderr, "-singleshot cannot be used with "
		"any other option except -print\n");
	usage();
      }

    errno = 0;
    ret = adjtimex(&txc);
    saveerr = errno;
    if (F_print) {
	printf("         mode: %d\n"
	       "       offset: %ld\n"
	       "    frequency: %ld\n"
	       "     maxerror: %ld\n"
	       "     esterror: %ld\n"
	       "       status: %d\n"
	       "time_constant: %ld\n"
	       "    precision: %ld\n"
	       "    tolerance: %ld\n"
	       "         tick: %ld\n"
	       "     raw time:  %ds %dus = %d.%06d\n",
	       txc.modes,
	       txc.offset,
	       txc.freq,
	       txc.maxerror,
	       txc.esterror,
	       txc.status,
	       txc.constant,
	       txc.precision,
	       txc.tolerance,
	       txc.tick,
	       (int)txc.time.tv_sec, 
	       (int)txc.time.tv_usec,
	       (int)txc.time.tv_sec, 
	       (int)txc.time.tv_usec);
	if (saveerr == 0 && ret != 0)
	    printf(" return value = %d\n", ret);
    }
    if (ret != 0 && saveerr != 0) {
	if (ret != -1)
	    fprintf(stderr, "%d ", ret);
	errno = saveerr;
	perror("adjtimex");
	{
	  int hz, tick_min, tick_mid, tick_max;
	  long maxfreq;
	  probe_time(&hz, &tick_min, &tick_mid, &tick_max, &maxfreq);
	  
	  printf("for this kernel:\n"
		 "   USER_HZ = %d (nominally %d ticks per second)\n"
		 "   %d <= tick <= %d\n"
		 "   %ld <= frequency <= %ld\n",
		 hz, hz, tick_min, tick_max, -maxfreq, maxfreq);
	}
	exit(1);
    }
    if (changes && resetting)
      reset_time_status();

    return 0;
}

static inline void
outb (short port, char val)
{
#ifdef USE_INLINE_ASM_IO
  __asm__ volatile ("out%B0 %0,%1"::"a" (val), "d" (port));

#else
  lseek (port_fd, port, 0);
  write (port_fd, &val, 1);
#endif
}

static inline unsigned char
inb (short port)
{
  unsigned char ret;

#ifdef USE_INLINE_ASM_IO
  __asm__ volatile ("in%B0 %1,%0":"=a" (ret):"d" (port));

#else
  lseek (port_fd, port, 0);
  read (port_fd, &ret, 1);
#endif
  return ret;
}

/*
 * Main initialisation of CMOS clock access methods, for all modes.
 * Set the global variable cmos_device to the first available RTC device
 * driver filename (/dev/rtc, /dev/rtc0, etc.), and set cmos_fd to
 * a file descriptor for it.
 * Failing that, select and initialize direct I/O ports mode.
 */
static
void cmos_init ()
{
/*
 following explanation taken from hwclock sources:
 /dev/rtc is conventionally chardev 10/135
 ia64 uses /dev/efirtc, chardev 10/136
 devfs (obsolete) used /dev/misc/... for miscdev
 new RTC framework + udev uses dynamic major and /dev/rtc0.../dev/rtcN
*/
  char *fls[] = {
#ifdef __ia64__
    "/dev/efirtc",
    "/dev/misc/efirtc",
#endif
    "/dev/rtc",
    "/dev/rtc0",
    "/dev/misc/rtc",
    NULL
  };
  char **p=fls;

  if (using_dev_rtc < 0)
    {
      while ((cmos_device=*p++))
	{
	  cmos_fd = open (cmos_device, O_RDONLY);
	  if (cmos_fd >= 0)
	    {
	      if (verbose)
		fprintf (stdout, "opened %s for reading\n", cmos_device);
	      using_dev_rtc = 1;
	      return;
	    }
	  if (verbose)
	    {
	      int saveerr=errno;
	      fprintf (stdout, "adjtimex: cannot open %s for reading\n", 
		       cmos_device);
	      errno = saveerr;
	      perror("adjtimex");
	    }
	}

      using_dev_rtc = 0;
    }
  else if (using_dev_rtc > 0)
    return;

  /* otherwise do direct I/O */
  cmos_init_directisa();
}

/*
 * Initialise CMOS clock access method, only for direct I/O ports mode.
 * Set the global variable port_fd to a file descriptor for /dev/port.
 * This function can safely be called repeatedly (does nothing the
 * second and following times).
 */
static
void cmos_init_directisa ()
{
#ifdef USE_INLINE_ASM_IO
  if (verbose)
    fprintf (stdout, "using I/O ports\n");

  if (ioperm (0x70, 2, 1))
    {
      fprintf (stderr, "adjtimex: unable to get I/O port access\n");
      exit (1);
    }
#else
  if (port_fd >= 0)	/* already initialised */
    return;

  if (verbose)
    fprintf (stdout, "using /dev/port I/O\n");

  if (port_fd < 0)
    port_fd = open ("/dev/port", O_RDWR);
  if (port_fd < 0)
    {
      perror ("adjtimex: unable to open /dev/port read/write");
      exit (1);
    }
  if (verbose)
    fprintf (stdout, "opened /dev/port for reading\n");

  if (lseek (port_fd, 0x70, 0) < 0 || lseek (port_fd, 0x71, 0) < 0)
    {
      perror ("adjtimex: unable to seek port 0x70 in /dev/port");
      exit (1);
    }
#endif
}

#define CMOS_READ(addr)      ({outb(0x70,(addr)|0x80); inb(0x71);})

static inline int
cmos_read_bcd (int addr)
{
  int b;

  b = CMOS_READ (addr);
  return (b & 15) + (b >> 4) * 10;
}

static int timeout;	/* An alarm signal has occurred */

static void
alarm_handler (int const dummy) {
  timeout = 1;
}

/*
 * starts (or cancels) a 2 second timeout period
 * the global boolean timeout indicates that the timeout has been reached
 */
static void
alarm_timeout (int onoff) {
  static struct sigaction oldaction;

  if (onoff)
    {
      struct sigaction action;

      action.sa_handler = &alarm_handler;
      sigemptyset(&action.sa_mask);
      action.sa_flags = 0;
      sigaction(SIGALRM, &action, &oldaction);	/* Install our signal handler */

      timeout = 0;	/* reset global timeout flag */
      alarm(2);		/* generate SIGALARM 2 seconds from now */
    }
  else
    {
      alarm(0);					/* cancel alarm */
      sigaction(SIGALRM, &oldaction, NULL);	/* remove our signal handler */
    }
}


/* return CMOS time in CMOS_TIMEP and sytem time in SYSP.  cmos_init()
   must have been called before this function. */
static void
cmos_read_time (time_t *cmos_timep, double *sysp)
{
  int rc;
  struct tm tm;
  static int summertime_correction=0;
  static int sanity_checked=0;
  time_t cmos_time;
  struct timeval now;
  int noint_fallback = 1;	/* detect tick by 0 => uip, 1 => time change */
  int got_tick = 0;
  int got_time = 0;
  int saveerr;
  int type_uie, count;
  double update_delay;

  if (using_dev_rtc > 0)	/* access the CMOS clock thru /dev/rtc */
    {
      if (!nointerrupt)		/* get RTC tick via update interrupt */
	{
	  struct timeval before;

	  gettimeofday(&before, NULL);

	  /* Ordinarily, reading /dev/rtc does not wait until the
   beginning of the next second.  It only returns the current timer
   value, so it's only accurate to 1 sec which isn't good enough for
   us.  I see this comment in drivers/char/rtc.c, function
   rtc_get_rtc_time(), in the kernel sources:

	 * read RTC once any update in progress is done. The update
	 * can take just over 2ms. We wait 10 to 20ms. There is no need to
	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
	 * If you need to know *exactly* when a second has started, enable
	 * periodic update complete interrupts, (via ioctl) and then 
	 * immediately read /dev/rtc which will block until you get the IRQ.
	 * Once the read clears, read the RTC time (again via ioctl). Easy. 
   */
	  ioctl (cmos_fd, RTC_PIE_OFF, NULL); /* disable periodic interrupts */
	  rc = ioctl (cmos_fd, RTC_UIE_ON, NULL); /* enable update
						     complete interrupts */
	  if (rc == -1)	/* no interrupts? fallback to busywait */
	    {
	      if (verbose)
		fprintf(stdout, 
			"%s doesn't allow user access to update interrupts\n"
			" - using busy wait instead\n", cmos_device);
	      nointerrupt = 1;
	    }
 	  else		/* wait for update-ended interrupt */
	    {
	      unsigned long interrupt_info;

	      if (verbose)
		fprintf (stdout, "waiting for CMOS update-ended interrupt\n");

	      do {
		{
		  /* avoid blocking even if /dev/rtc never becomes readable */
		  fd_set readfds;
		  struct timeval tv;
		  int retval;
		  
		  FD_ZERO(&readfds);
		  FD_SET(cmos_fd, &readfds);
		  tv.tv_sec=2; tv.tv_usec=0; /* wait up to 2 sec */
		  retval = select(cmos_fd+1, &readfds, NULL, NULL, &tv);
		  if (retval <= 0)
		    {
		      ioctl (cmos_fd, RTC_UIE_OFF, NULL); /* disable update complete
							     interrupts */
		      if (retval == -1)
			perror("select()");
		      if (!retval)
			if (verbose)
			  fprintf(stdout,
				  "timeout waiting for a CMOS update interrupt from %s\n"
				  " - using busy wait instead\n", cmos_device);
		      nointerrupt = 1;
		      goto directisa;
		    }
		}
		rc = read(cmos_fd, &interrupt_info, sizeof(interrupt_info));
		saveerr = errno;
		gettimeofday(&now, NULL);

		if (rc == -1)
		  {
		    /* no timeout, but read(/dev/rtc) failed for another reason */
		    char message[128];
		    snprintf(message, sizeof(message),
			     "adjtimex: "
			     "read() from %s to wait for clock tick failed",
			     cmos_device);
		    perror(message);
		    exit(1);
		  }

		type_uie = (int)(interrupt_info & 0x80);
		count = (int)(interrupt_info >> 8);
	      } while (((type_uie == 0) || (count > 1)) && !nointerrupt);
	      /* The low-order byte holds
		 the interrupt type.  The first read may succeed
		 immediately, but in that case the byte is zero, so we
		 know to try again. If there has been more than one
		 interrupt, then presumably periodic interrupts were
		 enabled.  We need to try again for just the update
		 interrupt.  */
	      
	      update_delay = (now.tv_sec + .000001*now.tv_usec) -  
		(before.tv_sec + .000001*before.tv_usec);

	      if ((type_uie) && (count == 1) && (update_delay > .001))
		got_tick = 1;
	      else
		{
		  if (verbose)
		    fprintf(stdout, "CMOS interrupt with status "
			    "0x%2x came in only %8.6f sec\n"
			    " - using busy wait instead\n",
			    (unsigned int)interrupt_info&0xff, update_delay);
		  nointerrupt = 1;
		}
	    }	    /* end of successful RTC_UIE_ON case */
	}	/* end of interrupt tryouts */


      /* At this stage, we either just detected the clock tick via an
	 update interrupt, or detected nothing yet (interrupts were
	 bypassed, unavailable, or timeouted). Fallback to busywaiting
	 for the tick. */

    directisa:
      if (!got_tick)
	{
	  if (noint_fallback)
	    {
	      busywait_second_change(&tm, &now);
	      got_time = 1;
	    }
	  else
	    busywait_uip_fall(&now);
	  got_tick = 1;
	}


      /* At this stage, we just detected the clock tick, by any method.
	 Now get this just beginning RTC second, unless we already have it */

      if (!got_time)
	{
	  rc = ioctl (cmos_fd, RTC_RD_TIME, &tm);

	  /* RTC_RD_TIME can fail when the device driver detects
	     that the RTC isn't running or contains invalid data.
	     Such failure has been detected earlier, unless: We used
	     noint_fallback=1 to get busywait_uip_fall() as fallback.
	     Or: UIE interrupts do beat, but RTC is invalid. */
	  if (rc == -1)
	    {
	      char message[128];
	      snprintf(message, sizeof(message),
			"adjtimex: "
			"ioctl(%s, RTC_RD_TIME) to read the CMOS clock failed",
			cmos_device);
	      perror(message);
	      exit(1);
	    }
	}


      /* disable update complete interrupts
	 It could seem more natural to do this above, just after we
	 actually got the interrupt. But better do it here at the end,
	 after all time-critical operations including the RTC_RD_TIME. */
      ioctl (cmos_fd, RTC_UIE_OFF, NULL);
    }
  else		/* access the CMOS clock thru I/O ports */
    {
      /* The "do" loop is "low-risk programming" */
      /* In theory it should never run more than once */
      do
	{
	  busywait_uip_fall(&now);
	  tm.tm_sec = cmos_read_bcd (0);
	  tm.tm_min = cmos_read_bcd (2);
	  tm.tm_hour = cmos_read_bcd (4);
	  tm.tm_wday = cmos_read_bcd(6)-1;/* RTC uses 1 - 7 for day of the week, 1=Sunday */
	  tm.tm_mday = cmos_read_bcd (7);
	  tm.tm_mon = cmos_read_bcd(8)-1; /* RTC uses 1 base */
	  /* we assume we're not running on a PS/2, where century is
	     in byte 55 */
	  tm.tm_year = cmos_read_bcd(9)+100*cmos_read_bcd(50)-1900;
	} while (tm.tm_sec != cmos_read_bcd (0));
    }
  tm.tm_isdst = -1;		/* don't know whether it's summer time */

  
  if (universal)
    cmos_time = mkgmtime(&tm);
  else
    cmos_time = mktime(&tm);

  cmos_time += summertime_correction;
  
  if (verbose)
    printf ("CMOS time %s (%s) = %ld\n", asctime (&tm),
	    universal?"assuming UTC":
	    (summertime_correction?"assuming local time with summer time adjustment":
	     "assuming local time without summer time adjustment"),
	    cmos_time);
  
  if (!sanity_checked)
    {
      /* There are clues to whether the CMOS clock is set to
	 summer time, which could be used as suggested by Alain
	 Guibert <alguibert at free.fr>:
	 
	 Since version 2.5, hwclock records CMOS timezone UTC or
	 LOCAL as 1st item of 3rd line of /etc/adjtime. If it's
	 "UTC", take offset 0 as if --utc was used. Otherwise: Since
	 version 2.20, hwclock records CMOS timezone offset in 3rd
	 item of 3rd line of /etc/adjtime. If it's there, take
	 it. Otherwise if last adjustment date (2nd item of 1st line)
	 exists and is not zero, take timezone offset at this last
	 write time. Otherwise take the possibly false current
	 offset.
	 
	 However, /etc/adjtime cannot be relied on.  The user
	 might have booted Windows, which could have adjusted the
	 CMOS clock (including a summer time correction) without
	 updating /etc/adjtime.  Instead, we use a heuristic: if
	 the CMOS and system times differ by more than six
	 minutes, try shifting the CMOS time by some multiple of
	 one hour.
      */
      if (now.tv_sec<cmos_time)
	summertime_correction = -((cmos_time-now.tv_sec+6*60)/(60*60))*(60*60);
      else
	summertime_correction = (((now.tv_sec-cmos_time+6*60)/(60*60))*(60*60));
      if (abs(summertime_correction) > 13*60*60)
	{
	  printf("WARNING: CMOS time %ld differs from system time %ld by %3.2f hours\n",
		 cmos_time, now.tv_sec, (summertime_correction)/3600.);
	  if(logging)
	    {
	      printf("logging suppressed\n");
	      logging=0;
	    }
	}
      if (verbose && summertime_correction)
	printf("adjusting CMOS times by %d hour\n", 
	       summertime_correction/(60*60));
      cmos_time += summertime_correction;	/* assume start/end of
						   summer time or local
						   time/UTC difference */
      if (abs(cmos_time-now.tv_sec)>6*60) /* still different by more than 6 min? */
	{
	  if (cmos_time>now.tv_sec)
	    printf("WARNING: CMOS time is %3.2f min ahead of system clock\n",
		   (cmos_time-now.tv_sec)/60.);
	  else
	    printf("WARNING: CMOS time is %3.2f min behind system clock\n",
		   (now.tv_sec-cmos_time)/60.);
	  if(logging)
	    {
	      printf("logging suppressed\n");
	      logging=0;
	    }
	}
      sanity_checked=1;
    }
  *cmos_timep=cmos_time;
  *sysp = now.tv_sec + .000001*now.tv_usec;
}


/*
 * busywait for UIP fall and timestamp this event
 *
 * Maintainance note: In order to detect its fall, we first have to
 * detect the update-in-progress flag up state. This UIP up state lasts
 * for 2 ms each second. Detecting a 2 ms event, when other processes
 * can steal us one or several 10 ms timeslices, this is something that
 * can very easily fail. We *can* miss a second tick, or even several in
 * a row, under heavy system load. Missing ticks is not a severe problem
 * for adjtimex, as long as we timestamp accurately the tick we'll
 * finally catch. However there is a timeout issue: we can't just arm an
 * alarm_timeout() for 2 seconds, as when waiting for UIE interrupts and
 * in busywait_second_change(), because it would make us hard fail after
 * only one or two missed ticks.
 */
static void
busywait_uip_fall(struct timeval *timestamp)
{
  long i;

  /*
   * Initialise direct I/O access mode.
   * This may have been already done previously by the main
   * initialisation cmos_init(), if the CMOS access mode is direct I/O.
   * We init it here again, to make busywait_uip_fall() usable in any
   * other CMOS access modes (/dev/rtc).
   */
  cmos_init_directisa();

  if (verbose>1)
    fprintf (stdout, "  waiting for CMOS update-in-progress fall\n");

  /* read RTC exactly on falling edge of update-in-progress flag */
  /* Wait for rise.... (may take up to 1 second) */
  
  for (i = 0; i < 10000000; i++)
    if (CMOS_READ (10) & 0x80)
      break;
  
  /* Wait for fall.... (must try at least 2.228 ms) */
  
  for (i = 0; i < 1000000; i++)
    if (!(CMOS_READ (10) & 0x80)) {
      gettimeofday(timestamp, NULL);
      break;
    }
}

/*
 * Busywait for a change in RTC time and timestamp this event.
 * cmos_init() must have been called before, and the selected
 * access method must be using_dev_rtc=1.
 *
 * Important note: an ioctl(RTC_RD_TIME) call that happens while the RTC
 * is updating itself (UIP up, a 2 milliseconds long event) will block.
 * Properly block until UIP release on recent Linux kernels since 2.6.13.
 * However all older Linux kernels had a misfeature: they blocked much
 * longer than necessary, up to 20 ms longer in the worst case.
 * The method used here cannot detect precisely the CMOS clock tick on
 * such older kernels. It would result in a random delay, the timestamp
 * being between 8 and 18 ms late. Hell: that's 3 orders of magnitude
 * worse than the accuracy expected from this function.
 */
static void
busywait_second_change(struct tm *cmos, struct timeval *timestamp)
{
  struct tm begin;
  int rc;

  if (verbose)
    fprintf (stdout, "waiting for CMOS time change\n");

  alarm_timeout(1);	/* arm a 2 seconds timeout */

  /* pick a reference time */
  rc = ioctl (cmos_fd, RTC_RD_TIME, &begin);

  /* RTC_RD_TIME can fail when the device driver detects
     that the RTC isn't running or contains invalid data */
  if (rc == -1)
    {
      char message[128];
      snprintf(message, sizeof(message),
		"adjtimex: "
		"ioctl(%s, RTC_RD_TIME) to read the CMOS clock failed",
		cmos_device);
      perror(message);
      exit(1);
    }

  /* loop until time changes */
  do
    {
      ioctl (cmos_fd, RTC_RD_TIME, cmos);
    }
  while ((cmos->tm_sec == begin.tm_sec) && !timeout);
  gettimeofday(timestamp, NULL);

  alarm_timeout(0);	/* disable timeout */

  /* Sometimes the RTC isn't running, but the device driver didn't
     notice. Then the RTC_RD_TIME call succeeds, but provides us some
     static wrong time. That's why we needed an alarm timeout */

  /* timeout without a change? */
  if (cmos->tm_sec == begin.tm_sec)
    {
      fprintf(stderr,
		"adjtimex: timeout waiting for CMOS time change on %s\n"
		"The CMOS clock appears to be stopped:\n"
		"Please try to set and restart it with hwclock --systohc\n",
		cmos_device);
      exit (1);
    }

}

static inline void 
xusleep(long microseconds)
{
  struct timespec ts;

  ts.tv_sec = microseconds/1000000;
  ts.tv_nsec = (microseconds - ts.tv_sec*1000000) * 1000;

  while (nanosleep (&ts, &ts) < 0)
    continue;
}

/* compare the system and CMOS clocks.  If "adjusting" is nonzero,
   adjust sytem time to match the CMOS clock. */
void
compare()
{
  struct timex txc;
  time_t cmos_time;
  double cmos_sec, system_sec, dif, dif_prev = 0.;
  struct cmos_adj *pca = get_cmos_adjustment();
  double cmos_adjustment;
  int loops = 0;
  extern char *optarg;
  int wrote_to_log = 0;
  int hz, tick_min, tick_mid, tick_max;
  long maxfreq;
  struct timeval tv_dummy;

  /* dummy training call: the next important timestamp will be more accurate */
  gettimeofday(&tv_dummy, NULL);

  probe_time(&hz, &tick_min, &tick_mid, &tick_max, &maxfreq);

#ifdef DEBUG
  /*
cmos clock last adjusted at Tue Aug 26 11:43:57 1997 (= 872610237)
          current cmos time Tue Aug 26 21:27:05 1997 EDT (= 872645225)
*/
  {
    struct tm bdt;
    if (universal)
      {
	bdt = *gmtime(&pca->ca_adj_time);
	(void)mkgmtime(&bdt);	/* set tzname */
      }
    else
      {
	bdt = *localtime(&pca->ca_adj_time);
	(void)mktime(&bdt);	/* set tzname */
      }
    printf ("cmos clock last adjusted %.24s %s "
	    "(= %ld)\n", 
	    ctime(&pca->ca_adj_time), tzname[tm.tm_isdst?1:0], (long) pca->ca_adj_time);
  }
#endif

  cmos_init ();

  while (count != 0)
    {
      if (count > 0) count--;

      cmos_read_time (&cmos_time, &system_sec);
			  

      /* If we're adjusting time parameters, we want to make a log
         entry only for the first two comparisons (before we change
         the parameters).  Otherwise, we want to log the first and last
         comparisons in order to maximize the duration. */
      if (logging && (wrote_to_log ^ (adjusting?(loops==0):(count!=0))))
	{
	  struct hack h;

	  h.ref = 0;
	  h.sigma_ref = 0;
	  h.log = (time_t)system_sec;
	  h.sys = system_sec;
	  txc.modes = 0;
	  adjtimex(&txc);
	  h.tick = txc.tick;
	  h.freq = txc.freq;
	  h.sys_ok = wrote_to_log;
	  h.cmos = cmos_time;
	  h.cmos_ok = wrote_to_log;
	  puthackent(&h);
	  wrote_to_log = 1;
	}

#ifdef DEBUG
      tm=*gmtime(cmos_time);
      printf ("       current cmos time %.24s %s (= %ld)\n", 
	      asctime(&tm), tzname[tm.tm_isdst?1:0], (long) cmos_time);
#endif
      cmos_adjustment = ((double) (cmos_time - pca->ca_adj_time))
	* pca->ca_factor / SECONDSPERDAY
	+ pca->ca_remainder;
      cmos_sec = cmos_time + cmos_adjustment;
#ifdef DEBUG
      printf (
"           time since last adjustment %10.6f days (= %9d sec)\n",
	      (int) (cmos_time - pca->ca_adj_time) / (double)SECONDSPERDAY,
	      (int) (cmos_time - pca->ca_adj_time));
      printf (
"                               factor %10.6f sec/day\n",
	      pca->ca_factor);
      printf (
"                           adjustment %10.6f + %7.6f = %7.6f sec\n",
	       ((double) (cmos_time - pca->ca_adj_time))*pca->ca_factor/SECONDSPERDAY,
	       pca->ca_remainder, cmos_adjustment);
#endif
      dif = system_sec - cmos_sec;

      txc.modes = 0;
      if (adjtimex (&txc) < 0) {perror ("adjtimex"); exit(1);}
/*
                                       --- current ---   -- suggested --
cmos time     system-cmos  error_ppm   tick      freq    tick      freq
1094939320  -14394.974188
1094939330  -14394.971203      298.5  10001   1290819
1094939340  -14394.968203      300.0  10001   1290819    9998   1289097
*/

      if (! marked++ )
	{
	  if (interval)
	    printf (
"                                      --- current ---   -- suggested --\n"
"cmos time     system-cmos  error_ppm   tick      freq    tick      freq\n");
	  else
	    printf (
"cmos time     system-cmos  error_ppm   tick      freq\n");
	}
      printf ("%10ld  %13.6f",
	      (long) cmos_sec,
	      dif);
      if (++loops > 1)
	{			/* print difference in rates */
#define SHIFT (1<<16)
	  double second_diff, error_ppm;
	  second_diff = dif - dif_prev;
	  error_ppm = second_diff/interval*1000000;
	  printf ("%11.1f %6ld %9ld",
		  error_ppm,
		  txc.tick,
		  txc.freq);
	  if (loops > 2)
	    {			/* print suggested values */
	      long tick_delta = 0, freq_delta = 0;
	      
	      tick_delta = ceil((-error_ppm + txc.freq/SHIFT - hz)/hz);
	      freq_delta = -(error_ppm + tick_delta*hz)*SHIFT;
	      printf("  %6ld %9ld\n",
		     txc.tick + tick_delta, txc.freq + freq_delta);
	      if (loops > 4 && adjusting)
		{
		  if (abs(error_ppm)>10000)
		    {
		      if (!force_adjust)
			{
			  printf(
"\nERROR: required correction is greater than plus/minus 1 percent (10000 \n"
"parts per million), quitting (use --force-adjust to override).\n");
			  if (resetting)
			    reset_time_status();
			  exit(1);
			}
		    }

		  txc.modes = ADJ_FREQUENCY | ADJ_TICK;
		  txc.tick += tick_delta;
		  txc.freq += freq_delta;
		  if (adjtimex (&txc) < 0) 
		    {
		      perror ("adjtimex"); 
		      exit(1);
		    }
		  if (resetting)
		    reset_time_status();
		  loops -= 3;
		}
	    }
	  else
	    printf("\n");
	    }
      else
	printf("\n");
      dif_prev = dif;
      if (interval == 0)
	break;
      if (count)		/* if it is not the last round */
	xusleep (interval*1000000L - 500000); /* reading RTC takes 1 sec */
    }
}

void reset_time_status()
{
  /* Using the adjtimex(2) system call to set any time parameter makes
     an early kernel (2.0.40 and 2.4.18 or later are reportedly okay)
     think the clock is synchronized with an external time source, so
     it sets the kernel variable time_status to TIME_OK.  Thereafter,
     it will periodically adjust the CMOS clock to match.  We prevent
     this by setting the clock, because that has the side effect of
     resetting time_status to TIME_BAD.  We try not to actually change
     the clock setting. */
  struct timeval tv1, tv2;
  long carry_sec, overhead_usec;
  if (gettimeofday(&tv1, NULL)) {perror("adjtimex"); exit(1);}
  if (gettimeofday(&tv2, NULL)) {perror("adjtimex"); exit(1);}
  overhead_usec = tv2.tv_usec - tv1.tv_usec + 
    1000000*(tv2.tv_sec - tv1.tv_sec);
  tv2.tv_usec += overhead_usec;
  carry_sec = tv2.tv_usec/1000000;
  tv2.tv_sec += carry_sec;
  tv2.tv_usec -= 1000000*carry_sec;
  if (settimeofday(&tv2, NULL)) {perror("adjtimex"); exit(1);}
}  

static void log_times()
{
#ifdef NET_TIME_CLIENT
  struct protoent proto;
  int sockfd, val, len, c;
  struct sockaddr sa={AF_INET, "127.0.0.1"};
  struct hostent he;
#endif
  double sigma_ref;
  char ch, buf[64], *s;
  int n, ret;
  struct timeval tv_sys;
  struct tm bdt;
  time_t when, tref;
  double ftime_ref, ftime_sys, ftime_cmos;

  /* dummy training call: the next important timestamp will be more accurate */
  gettimeofday(&tv_sys, NULL);

  if (watch)
    {
      while(1) {
	printf("Please press <enter> when you know the time of day: ");
	ch = getchar();
	gettimeofday(&tv_sys, NULL);
	when = tv_sys.tv_sec;
	bdt = *localtime(&when); /* set default values for most fields */
	strftime(buf, sizeof(buf), "%Z", &bdt);
	printf("  system time then was %.24s %s\n", asctime(&bdt), buf);
	ftime_sys = tv_sys.tv_sec + tv_sys.tv_usec*.000001;
	printf("What time was that according to your reference (%s)?\n"
	       "(hh:mm:ss, or `r' to retry, or `q' to quit): ", buf);
	if (fgets(buf, sizeof(buf), stdin) == NULL) exit(1);
	s = buf;
	while(isspace(*s)) s++;
	if (*s == 'q') exit(0);
	if (*s == 'r') continue;
	
	strptime(buf, "%T", &bdt); /* set time fields from user input */
	printf("      reference time is %s", asctime(&bdt));
	tref = ftime_ref = mktime(&bdt); /* construct a time_t
					    corresponding to the user
					    input */
	printf(" mktime returns time of %s", ctime(&tref));

	printf("reference time - system time = %12.3f - %12.3f "
	       "= %4.3f sec\n", 
	       ftime_ref, ftime_sys, ftime_ref - ftime_sys);

	printf("How big could the error be in this, in seconds?\n"
	       "(or `r' to retry, or `q' to quit) [.5] : ");
	if (fgets(buf, sizeof(buf), stdin) == NULL) exit(1);
	s = buf;
	while(isspace(*s)) s++;
	if (*s == 'q') exit(0);
	if (*s == 'r') continue;

	n = sscanf(buf, "%lf", &sigma_ref);
	if (n < 1)
	  sigma_ref = .5;
	else if (sigma_ref < .02)
	  {
	    printf("You get credit for .02 sec.\n");
	    sigma_ref = .02;
	  }
	break;
      }
    }
  else if (timeserver)
    {
      FILE *ifile;
      char command[128];
      char buf[BUFLEN];
      int i, j;
      double d, mean=0, val, var=0, num=0; /* for finding statistics */
      
      struct stat filestat;
      char *paths[]={"/usr/bin/ntpdate","/bin/ntpdate",
		     "/usr/sbin/ntpdate","/sbin/ntpdate"};

      for (i=0; i<sizeof(paths)/sizeof(paths[0]); i++)
	{
	  stat(paths[i], &filestat);
	  if (S_ISREG(filestat.st_mode))
	    goto found_ntpdate;
	}
      failntpdate("cannot find ntpdate");

    found_ntpdate:
      sprintf(command, "%s -q -d %.32s ", paths[i], timeserver);
      ifile = popen(command, "r");
	      
      if (ifile == NULL) 
	failntpdate("call to ntpdate failed");
	      
      /* read and save the significant lines, which should look like this:
filter offset: -0.02800 -0.01354 -0.01026 -0.01385
offset -0.013543
 1 Sep 11:51:23 ntpdate[598]: adjust time server 1.2.3.4 offset -0.013543 sec
 */

      while(fgets(buf, BUFLEN, ifile))
	{
	  if (!strncmp(buf, "filter offset:", strlen("filter offset:")))
	    {
	      /* These lines show the offsets for each of ntpdate's
		 samples.  Find their variance, which we will use to
		 indicate the accuracy of the offset we're using.
		 This is probably conservative, since the offset we're
		 using is probably not close to the mean. */
	      s = strstr(buf, ":")+1;
	      for (j = 0; j < 4; j++)
		if ((val = strtod(s, &s))) /* diregard offset of
			      exactly zero - might be okay, but more
			      likely no conversion was performed */
		  {
		    d = val - mean;
		    num += 1.;
		    var = (num-1)/num*(var + d*d/num);
		    mean = ((num-1.)*mean + val)/num;
		  }
	    }

	  if (num>0 && (strstr(buf,"adjust time server") || strstr(buf,"step time server")))
	    goto ntpdate_okay;
	}
      failntpdate("cannot understand ntpdate output");

    ntpdate_okay:
      gettimeofday(&tv_sys, NULL);
      ftime_sys = tv_sys.tv_sec;
	      /* ntpdate selects the offset from one of its samples
		 (the one with the shortest round-trip delay?) */
      ftime_ref = ftime_sys + atof(strstr(buf, "offset") + 6);
      pclose(ifile);
      sigma_ref = sqrt(var);

      {
	time_t now = (time_t)ftime_ref;
	bdt = *gmtime(&now);
	printf("      reference time is %s", ctime(&now));
	printf("reference time - system time = %12.3f - %12.3f "
	       "= %4.3f sec\n", 
	       ftime_ref, ftime_sys, ftime_ref - ftime_sys);
      }


#ifdef OWN_IMPLEMENTATION
      /* this is not even close to working yet */
      proto = *getprotobyname("UDP");
      sockfd = socket(AF_INET, SOCK_DGRAM, proto.p_proto);
      he = *gethostbyname("localhost");
      len = he.h_length;
      memcpy(sa.sa_data, he.h_addr_list[0], len);

#ifdef SEND
      val = connect(sockfd, &sa, len);
      if (val == -1) {perror("connect"); exit(1);}
      /*
	int  connect(int  sockfd, struct sockaddr *serv_addr, int addrlen );
	int  send(int  s,  const void *msg, int len , unsigned int flags);
	int sendto(int s, const void *msg, int  len  unsigned  int
	flags, const struct sockaddr *to, int tolen);
	*/
#endif /* SEND */
      val = sendto(sockfd, (const void *)" ", 1, 0, &sa, len);
      if (val == -1) {perror("sendto"); exit(1);}
      sigma_ref = .010;
#endif /* OWN_IMPLEMENTATION */

    }
  else				/* no absolute time reference */
    {
      time_t now;
      gettimeofday(&tv_sys, NULL);
      now = (time_t)tv_sys.tv_sec;
      bdt = *gmtime(&now);
      ftime_sys = tv_sys.tv_sec + tv_sys.tv_usec*.000001;
      ftime_ref = 0;
      sigma_ref = 0;
    }

  {
    time_t cmos_time;
    double system_sec;

    cmos_init ();
    cmos_read_time (&cmos_time, &system_sec);
    ftime_cmos = ftime_sys + cmos_time - system_sec;
  }

  /*
                 -reference-time- --------system-time---------- --cmos-time----
1997-06-14 20:22 888888888.888 -3 888888888.888 10000 6666666 n 888888888.888 y
*/

  {
    struct hack h;
    h.ref = ftime_ref;
    h.sigma_ref = sigma_ref;
    h.log = (time_t)ftime_ref;
    h.sys = ftime_sys;
    txc.modes = 0;
    ret = adjtimex(&txc);
    h.tick = txc.tick;
    h.freq = txc.freq;
    h.sys_ok = valid_system_rate(ftime_sys, ftime_ref, sigma_ref);
    h.cmos = ftime_cmos;
    h.cmos_ok = valid_cmos_rate(ftime_cmos, ftime_ref, sigma_ref);
    puthackent(&h);
  }
}

void failntpdate(char *s)
{
  fprintf(stderr, "%s\n", s);
  exit(1);
}

static 
int valid_system_rate(double ftime_sys, double ftime_ref, double sigma_ref)
{
  int n;
  int default_answer;
  int ch;
  char buf[BUFLEN];
  struct hack *ph;
  struct cmos_adj *pca = get_cmos_adjustment();

  sethackent();
  for (n = 0; (ph = gethackent()); n++)
    prev = *ph;			/* fetch last line from logfile */
  endhackent();
  if (n == 0)
    {
      printf("No previous clock comparison in log file\n");
      return 0;
    }
  undisturbed_sys = undisturbed_cmos = 1;

  printf("Last clock comparison was at %.24s\n", ctime(&prev.log));
  
  if (txc.tick == prev.tick && txc.freq == prev.freq)
    printf("Kernel time variables are unchanged - good.\n");
  else
    {
      printf("Kernel time variables have changed - bad.\n");
      undisturbed_sys = 0;
    }
  if (txc.status & 64)
    printf("System clock is currently not disciplined - good.\n");
  else
    {
      printf("System clock is synchronized (by ntpd?) - bad.\n");
      undisturbed_sys = 0;
    }

  {
    time_t lastboot, newtime;
    struct utmp *up;
    
    lastboot = newtime = prev.sys - 1;
    utmpname(WTMP_PATH);
    setutent();
    printf("Checking wtmp file...\n");
    while((up = getutent()))
      {
	if (up->ut_type == BOOT_TIME) 
	  lastboot = up->ut_time;
	if (up->ut_type == NEW_TIME) 
	  newtime = up->ut_time;
      }
    endutent();
    if (lastboot < prev.sys)
      printf("System has not booted since %.24s - good.\n", 
	     ctime(&prev.log));
    else
      {
	printf("System was booted at %.24s - bad.\n", ctime(&lastboot));
	undisturbed_sys = 0;
      }
    if (newtime < prev.sys)
      printf("System time has not been changed since %.24s - good.\n", 
	     ctime(&prev.log));
    else
      {
	printf("System time was reset at %.24s - bad.\n", ctime(&newtime));
	undisturbed_sys = 0;
      }
  }

  if (pca)
    {
      printf("Checking %s...\n", ADJPATH);
      if (pca->ca_adj_time < prev.log)
	printf(
"/sbin/hwclock has not set system time and adjusted the cmos clock \n"
"since %.24s - good.\n", 
ctime(&prev.log));
      else
	{
	  printf("/sbin/hwclock set system time and adjusted the cmos clock \n"
		 "at %.24s - bad.\n", 
		 ctime(&pca->ca_adj_time));
	  undisturbed_sys = undisturbed_cmos = 0;
	}
    }

  do 
    {
      default_answer = undisturbed_sys?'y':'n';
      printf("\nAre you sure that, since %.24s,\n", ctime(&prev.log));
      printf("  the system clock has run continuously,\n");
      printf("  it has not been reset with `date' or `/sbin/hwclock`,\n");
      printf("  the kernel time variables have not been changed, and\n");
      printf("  the computer has not been suspended? (y/n) [%c] ", 
	     default_answer);
      fgets(buf, BUFLEN, stdin);
      ch = buf[0];
      if (ch == '\n') ch = default_answer;
    } while (ch != 'n' && ch != 'y');

  if ((undisturbed_sys = (ch == 'y')))
    {
      double drift_sys_ppm, err_sys_ppm;
      int digits;
      drift_sys_ppm = ((ftime_sys - ftime_ref) - (prev.sys - prev.ref))*
	1.e6/(ftime_ref - prev.ref);
      err_sys_ppm = (prev.sigma_ref + sigma_ref)*1.e6/
	(ftime_ref - prev.ref);
      digits = -(int)floor(log(.5*sigma_ref)/log(10.));
      if (digits < 0) digits = 0;
      
      printf("The estimated error in system time is %.*f +- %.*f ppm\n", 
	     digits, drift_sys_ppm, digits, err_sys_ppm);
    }

  return undisturbed_sys;
}

static 
int valid_cmos_rate(double ftime_cmos, double ftime_ref, double sigma_ref)
{
  int default_answer;
  int ch;
  char buf[BUFLEN];

  default_answer = undisturbed_cmos?'y':'n';
  do
    {
      printf("\nAre you sure that, since %.24s,\n", ctime(&prev.log));
      printf("  the real time clock (cmos clock) has run continuously,\n");
      printf("  it has not been reset with `/sbin/hwclock',\n");
      printf("  no operating system other than Linux has been running, and\n");
      printf("  ntpd has not been running? (y/n) [%c] ", default_answer);
      fgets(buf, BUFLEN, stdin);
      ch = buf[0];
      if (ch == '\n') ch = default_answer;
    } while (ch != 'n' && ch != 'y');
  if ((undisturbed_cmos = (ch == 'y')))
    {
      double drift_cmos_ppm, err_cmos_ppm;
      int digits;
	    
      drift_cmos_ppm = 
	((ftime_cmos - ftime_ref) - (prev.cmos - prev.ref))*
	1.e6/(ftime_ref - prev.ref);
      err_cmos_ppm = (prev.sigma_ref + sigma_ref)*1.e6/
	(ftime_ref - prev.ref);
      digits = -(int)floor(log(.5*err_cmos_ppm)/log(10.));
      if (digits < 0) digits = 0;
      printf("The estimated error in the cmos clock is %.*f +- %.*f ppm\n", 
	     digits, drift_cmos_ppm, digits, err_cmos_ppm);
    }

  return undisturbed_cmos;
}


/*
 * Read informations from /etc/adjtime file.
 * If file doesn't exist, return default zero values.
 */
static struct cmos_adj *get_cmos_adjustment()
{
  FILE *adj;
  static struct cmos_adj ca;

  ca.ca_factor = ca.ca_adj_time = ca.ca_remainder = 0;
  if ((adj = fopen (ADJPATH, "r")) != NULL)
    {
      if (fscanf (adj, "%lf %ld %lf",
		&ca.ca_factor,
		&ca.ca_adj_time,
		&ca.ca_remainder) < 0)
	{
	  perror (ADJPATH);
	  exit (2);
	}
      fclose (adj);
    }
#ifdef DEBUG
  printf ("CMOS clock was last adjusted %s\n", ctime(&ca.ca_adj_time));
#endif
  return &ca;
}


static FILE *lfile;		/* pointer to log file, or NULL if it
				   has not been opened yet */

static 
void sethackent(void)
{
  endhackent();
  lfile = fopen(log_path, "r");
  if (!lfile && logging)
    {
      lfile = fopen(log_path, "a+"); /* create it if it doesn't exist */
      if (!lfile)
	{
	  fprintf(stderr, "%s does not exist, and could not be created\n",
		  log_path);
	  exit(1);
	}
      fseek(lfile, 0L, 0);	/* start at beginning */
    }
}

static 
void endhackent(void)
{
  if (lfile) fclose(lfile);
  lfile = NULL;
}

/* read next entry in clock comparison log, fill a struct hack from
   it, and return a pointer to it.  Ignore lines starting with `#'.
   Return NULL when there are no more lines to read.  */
static 
struct hack *gethackent(void)
{
  char buf[256], sys_flag, cmos_flag, junk[26];
  static struct hack h;

  if (!lfile) sethackent();
  if (!lfile) return NULL;
  while(fgets(buf, sizeof(buf), lfile))
    {
      int tokens;
      if (buf[0] == '#')
	continue;
      tokens = sscanf(buf, "%25s %25s %lf %lf %lf %d %d %c %lf %c",
		      junk, junk, &h.ref, &h.sigma_ref, 
		      &h.sys, &h.tick, &h.freq, &sys_flag,
		      &h.cmos, &cmos_flag);
      if (tokens != 10)
	continue;
      h.sys_ok = (tolower(sys_flag) == 'y');      
      h.cmos_ok = (tolower(cmos_flag) == 'y');
      if (h.ref)
	h.log = (time_t)h.ref;
      else if (h.sys)
	h.log = (time_t)h.sys;
      else
	h.log = (time_t)h.cmos;
      h.valid = 0;
      return &h;
    }
  return NULL;
}

/* append an entry to the clock comparison log.  */
static 
void puthackent(struct hack *ph)
{
  struct tm bdt;
  char timestring[32];
  int digits;

  if (ph->sigma_ref)
    ph->log = (time_t)ph->ref;
  else
    ph->log = (time_t)ph->sys;
  bdt = *gmtime(&ph->log);
  strftime(timestring, sizeof(timestring), "%Y-%m-%d %H:%M", &bdt);
  if (ph->sigma_ref <= 0.) digits = 0;
  else
    {
      digits = -(int)floor(log(.5*ph->sigma_ref)/log(10.));
      if (digits < 0) digits = 0;
    }

  if (verbose)
    {
      fprintf(stdout, "\nlog entry:\n");
      fprintf(stdout, "%s %.*f %.*f %13.3f %5d %7d %s %13.3f %s\n",
	      timestring, 
	      digits, ph->ref, digits, ph->sigma_ref,
	      ph->sys, ph->tick, ph->freq, ph->sys_ok?"y":"n",
	      ph->cmos, ph->cmos_ok?"y":"n");
    }

  if (!logging)
      fprintf(stdout, "logging suppressed\n");

  else
    {
      lfile = fopen(log_path, "a+");
      if (!lfile)
	{
	  fprintf(stderr, "cannot open %s for writing\n", log_path);
	  return;
	}
      fprintf(lfile, "%s %.*f %.*f %13.3f %5d %7d %s %13.3f %s\n",
	      timestring, 
	      digits, ph->ref, digits, ph->sigma_ref,
	      ph->sys, ph->tick, ph->freq, ph->sys_ok?"y":"n",
	      ph->cmos, ph->cmos_ok?"y":"n");
      fclose(lfile);
      lfile = NULL;
      if (verbose)
	fprintf(stdout, "written to %s\n", log_path);
    }
}

/* convert a broken-down time representing UTC to calendar time
    representation (time_t), and return it.  As a side effect, set the
    tm_wday and tm_yday members of the broken-down time. (like mktime) */
static 
time_t mkgmtime(struct tm *tp)
{
  time_t lt;			/* local time */
  long adj;
  struct tm u;
  static char timezone_name[]="UTC";

  lt = mktime(tp);
  if (lt == (time_t)(-1))
    return (time_t)(-1);
  adj = 131072;			/* greater than the number of seconds
				   per day (even when daylight savings
				   time ends) */
  lt -= adj;
  while (adj)
    {
      lt += adj;
      u = *gmtime(&lt);
      if (compare_tm(&u, tp) > 0)
	lt -= adj;
      adj /= 2;
    }
  u = *gmtime(&lt);
  if (compare_tm(&u, tp))
    return (time_t)(-1);
  tzname[0] = tzname[1] = timezone_name;
  return lt;
}

static 
int compare_tm(struct tm *first, struct tm *second)
{
  if (first->tm_year < second->tm_year) return -1;
  if (first->tm_year > second->tm_year) return 1;
  if (first->tm_mon < second->tm_mon) return -1;
  if (first->tm_mon > second->tm_mon) return 1;
  if (first->tm_mday < second->tm_mday) return -1;
  if (first->tm_mday > second->tm_mday) return 1;
  if (first->tm_hour < second->tm_hour) return -1;
  if (first->tm_hour > second->tm_hour) return 1;
  if (first->tm_min < second->tm_min) return -1;
  if (first->tm_min > second->tm_min) return 1;
  if (first->tm_sec < second->tm_sec) return -1;
  if (first->tm_sec > second->tm_sec) return 1;
  return 0;
}

static void *xmalloc(int n)
{	void *p;
	p = xrealloc(NULL, n);
	return p;
}

static void *xrealloc(void *pv, int n)
{
  void *p;
  p = realloc(pv, n);
  if (!p){perror("adjtimex"); exit(1);}
  return p;
}

/*
  review log file and find least-square estimates of drifts.  If
  "adjusting" is nonzero, set sytem time parameters to the
  least-squares estimates. */
static 
void review()
{
  int i, n, nmax = 0, digits;
  struct hack *ph, **hacks = NULL;
  double diff_ppm, sigma_ppm, cmos_time, sys_time, s0, s1, ref_time;
  time_t start, finish;
  char startstring[26], finishstring[26];
  double x[2], p[4], h[4], z[2], r[4], cmos_var, sys_var, ref_var;
  long tick_delta = 0;
  double error_ppm = 0;
  int hz, tick_min, tick_mid, tick_max;
  long maxfreq;

  probe_time(&hz, &tick_min, &tick_mid, &tick_max, &maxfreq);

  /* read all the previous time hacks in */
  sethackent();
  for (n = 0; (ph = gethackent()); n++)
    {
      if (nmax <= n)
	{
	  hacks = xrealloc(hacks, (nmax = 2*nmax + 4)*sizeof(struct hack *));
	}
      hacks[n] = xmalloc(sizeof(struct hack));
      *hacks[n] = *ph;
    }
  endhackent();

  if (n == 0)
    {
      printf("No previous clock comparison in log file\n");
      return;
    }
  /*
    In the following, we assume the reference times are most accurate,
    then the CMOS clock, then the system clock.  Hence, when comparing
    CMOS and reference times, we're calculating the error in PPM of
    the CMOS rate, and when comparing system time to either CMOS or
    reference times, we're calculating error in PPM of the system
    rate.  For system time, we're calculating the error if TICK is set
    to the middle of the rnage, and FREQ is zero.
  */

  /* compare cmos and system rates */
  printf(
"start                     finish                    days    sys - cmos (ppm)\n");
  for (i = 1; i < n; i++)
    {
      if (hacks[i]->sys_ok && 
	  hacks[i]->cmos_ok &&
	  hacks[i]->sys > hacks[i-1]->sys &&
	  hacks[i]->cmos > hacks[i-1]->cmos)
	{
	  sys_time = hacks[i]->sys - hacks[i-1]->sys;
	  cmos_time = hacks[i]->cmos - hacks[i-1]->cmos;
	  hacks[i]->relative_rate =
	    diff_ppm = 1.e6*(sys_time - cmos_time)/sys_time
	    - 100*(hacks[i]->tick - tick_mid) - hacks[i]->freq/SHIFT;
	  if (fabs(diff_ppm) > 10000.) /* agree within 1 percent? */
	    continue;
	  hacks[i]->valid = CMOS_VALID | SYS_VALID;
	  hacks[i]->relative_sigma =
	    sigma_ppm = 1.e6*RTC_JITTER*sqrt(2.)/(sys_time + cmos_time);
	  start = (time_t)hacks[i-1]->sys;
	  strcpy(startstring, ctime(&start));
	  finish = (time_t)hacks[i]->sys;
	  strcpy(finishstring, ctime(&finish));
	  digits = -(int)floor(log(.5*sigma_ppm)/log(10.));
	  if (digits < 0) digits = 0;
	  printf("%.24s  %.24s  %6.4f  %.*f +- %.*f\n",
		 startstring, finishstring, sys_time/SECONDSPERDAY,
		 digits, diff_ppm, digits, sigma_ppm);
	}
    }

  /* compare cmos and reference rates */
  printf(
"start                     finish                    days    cmos_error (ppm)\n");
  for (i = 1; i < n; i++)
    {
      if (hacks[i]->sigma_ref != 0 && 
	  hacks[i-1]->sigma_ref != 0 && 
	  hacks[i]->cmos_ok &&
	  hacks[i]->cmos > hacks[i-1]->cmos &&
	  hacks[i]->ref > hacks[i-1]->ref)
	{
	  ref_time = hacks[i]->ref - hacks[i-1]->ref;
	  cmos_time = hacks[i]->cmos - hacks[i-1]->cmos;
	  hacks[i]->cmos_rate =
	    diff_ppm = 1.e6*(cmos_time - ref_time)/cmos_time;
	  if (fabs(diff_ppm) > 10000.) /* agree within 1 percent? */
	    continue;
	  hacks[i]->valid |= CMOS_VALID | REF_VALID;
	  s0=hacks[i-1]->sigma_ref;
	  s1=hacks[i]->sigma_ref;
	  hacks[i]->cmos_sigma =
	    sigma_ppm = 1.e6*sqrt(s0*s0 + s1*s1)/ref_time;
	  start = (time_t)hacks[i-1]->sys;
	  strcpy(startstring, ctime(&start));
	  finish = (time_t)hacks[i]->sys;
	  strcpy(finishstring, ctime(&finish));
	  digits = -(int)floor(log(.5*sigma_ppm)/log(10.));
	  if (digits < 0) digits = 0;
	  printf("%.24s  %.24s  %6.4f  %1.*f +- %1.*f\n",
		 startstring, finishstring, ref_time/SECONDSPERDAY,
		 digits, diff_ppm, digits, sigma_ppm);
	}
    }

  /* compare sys and reference rates */
  printf(
"start                     finish                    days    sys_error (ppm)\n");
  for (i = 1; i < n; i++)
    {
      if (hacks[i]->sigma_ref != 0 && 
	  hacks[i-1]->sigma_ref != 0 && 
	  hacks[i]->sys_ok &&
	  hacks[i]->sys > hacks[i-1]->sys &&
	  hacks[i]->ref > hacks[i-1]->ref)
	{
	  ref_time = hacks[i]->ref - hacks[i-1]->ref;
	  sys_time = hacks[i]->sys - hacks[i-1]->sys;
	  hacks[i]->sys_rate =
	    diff_ppm = 1.e6*(sys_time - ref_time)/sys_time
	    - 100*(hacks[i]->tick - tick_mid) - hacks[i]->freq/SHIFT;
	  if (fabs(diff_ppm) > 10000.) /* agree within 1 percent? */
	    continue;
	  hacks[i]->valid |= REF_VALID | SYS_VALID;
	  s0=hacks[i-1]->sigma_ref;
	  s1=hacks[i]->sigma_ref;
	  hacks[i]->sys_sigma =
	    sigma_ppm = 1.e6*sqrt(s0*s0 + s1*s1)/ref_time;
	  start = (time_t)hacks[i-1]->sys;
	  strcpy(startstring, ctime(&start));
	  finish = (time_t)hacks[i]->sys;
	  strcpy(finishstring, ctime(&finish));
	  digits = -(int)floor(log(.5*sigma_ppm)/log(10.));
	  if (digits < 0) digits = 0;
	  printf("%.24s  %.24s  %6.4f  %1.*f +- %1.*f\n",
		 startstring, finishstring, ref_time/SECONDSPERDAY,
		 digits, diff_ppm, digits, sigma_ppm);
	}
    }

  /* find least-squares solution incorporating all the data */

  p[0] = 1.e10; p[1] = 0.;
  p[2] = 0.;    p[3] = 1.e10;
  x[0] = 0.; x[1] = 0.;

  for (i = 1; i < n; i++)
    {
      switch(hacks[i]->valid)
	{
	case 0: 
	  break;
	case (CMOS_VALID | REF_VALID):
	  /* update only the first component of the state (cmos rate) */
	  h[0] = 1.; h[1] = 0.;
	  z[0] = hacks[i]->cmos_rate;
	  r[0] = hacks[i]->cmos_sigma; r[0] *= r[0];
	  kalman_update(x, 2, p, h, z, 1, r);
	  break;
	case (SYS_VALID | REF_VALID):
	  /* update only the second component of the state (system rate) */
	  h[0] = 0.; h[1] = 1.;
	  z[0] = hacks[i]->sys_rate;
	  r[0] = hacks[i]->sys_sigma; r[0] *= r[0];
	  kalman_update(x, 2, p, h, z, 1, r);
	  break;
	case (CMOS_VALID | SYS_VALID):
	  /* update the difference between the system and cmos rates */
	  h[0] = -1.; h[1] = 1.;
	  z[0] = hacks[i]->relative_rate;
	  r[0] = hacks[i]->relative_sigma; r[0] *= r[0];
	  kalman_update(x, 2, p, h, z, 1, r);
	  break;
	case (CMOS_VALID | SYS_VALID | REF_VALID):
	  /* This is the interesting case.  We have estimates of the
             cmos and system rates, but they are highly correlated
             because they contain the same errors in the reference
             times.  Thus, we know the *difference* between the cmos
             and system rates much better than we know either of them
             independently.  The r matrix describes the
             correlation. */
	  h[0] = 1.; h[1] = 0.;
	  h[2] = 0.; h[3] = 1.;
	  ref_var = hacks[i]->cmos_sigma*hacks[i]->cmos_sigma;
	  cmos_var = hacks[i]->relative_sigma; cmos_var *= cmos_var;
	  sys_var = cmos_var;
	  r[0] = ref_var + 2.*cmos_var;
	  r[1] = r[2] = ref_var;
	  r[3] = ref_var + 2.*sys_var;
	  z[0] = hacks[i]->cmos_rate;
	  z[1] = hacks[i]->sys_rate;
	  kalman_update(x, 2, p, h, z, 2, r);
	  break;
	}
    }

  sigma_ppm = sqrt(p[0]);
  digits = -(int)floor(log(.5*sigma_ppm)/log(10.));
  if (digits < 0) digits = 0;
  printf("least-squares solution:\n"
	 "   cmos_error = %.*f +- %.*f ppm\n",
	 digits, x[0], digits, sigma_ppm);
  if (sigma_ppm < 100)
    printf("      suggested adjustment = %6.4f sec/day\n",
	   -x[0]*SECONDSPERDAY/1.e6);
  else
    printf("      (no suggestion)\n");
  {
    struct cmos_adj *pca = get_cmos_adjustment();
    printf("        current adjustment = %6.4f sec/day\n",
	   pca->ca_factor);
  }

  sigma_ppm = sqrt(p[3]);
  digits = -(int)floor(log(.5*sigma_ppm)/log(10.));
  if (digits < 0) digits = 0;
  printf("   sys_error = %.*f +- %.*f ppm\n",
	 digits, x[1], digits, sigma_ppm);
  if (sigma_ppm < hz)
    {
      error_ppm = x[1];
      if (error_ppm > hz)
	tick_delta = -(error_ppm + hz/2)/hz;
      else if (error_ppm < -hz)
	tick_delta = (-error_ppm + hz/2)/hz;
      error_ppm += tick_delta*hz;
      printf("      suggested tick = %5ld  freq = %9.0f\n",
	     tick_mid + tick_delta, -error_ppm*SHIFT);
      if (abs(error_ppm)>500)
	printf ("WARNING: required correction is greater "
		"than plus/minus 500 parts per million.\n");
    }
  else
    printf("      (no suggestion)\n");
  {
    txc.modes = 0;
    adjtimex(&txc);
    printf("        current tick = %5ld  freq = %9ld\n",
	   txc.tick, txc.freq );
  }
  printf(
"note: clock variations and unstated data errors may mean that the\n"
"least squares solution has a bigger error than estimated here\n");
  if (sigma_ppm < 100 && adjusting)
    {
      if (abs(error_ppm)>500)
	{
	  if (force_adjust)
	    printf (
"\nWARNING: required correction is greater than plus/minus 500 parts \n"
"per million, but adjusting anyway per your request.\n");
	  else
	    {
	      printf(
"\nERROR: required correction is greater than plus/minus 500 parts \n"
"per million, quitting (use --force-adjust to override).\n");
	      if (resetting)
		reset_time_status();
	      exit(1);
	    }
	}
      txc.modes = ADJ_FREQUENCY | ADJ_TICK;
      txc.tick = tick_mid + tick_delta;
      txc.freq = -error_ppm*SHIFT;
      if (adjtimex (&txc) < 0) 
	{
	  perror ("adjtimex"); 
	  exit(1);
	}
      if (resetting)
	reset_time_status();
      printf("new tick = %5ld  freq = %7ld\n", txc.tick, txc.freq );
    }

  for (i = 0; i < n; i++)
    free(hacks[i]);
  free(hacks);
}

/* Perform one update on a discrete linear Kalman filter.  z is a
   measurement related to the state x by
       z = h x + v
   where v is the measurement error, normally distributed, with
   covariance r.

   Because of the size of the temporary arrays, this particular
   implementation is restricted to 2 states.  There are no provisions
   here for propagating the state or its covariance between updates,
   because it is not required in this case (i.e. the state transition
   matrix is a unit matrix).  See, for example: Blackman, "Multitarget
   Tracking with Radar Applications" */
static 
void kalman_update(double *x,	/* state vector */
		   int xr,	/* rows in x (must be 1 or 2) */
		   double *p,	/* covariance matrix for x (has xr
				   rows and columns) */
		   double *h,	/* transforms from state space to
				   measurement space (has zr rows
				   and xr columns) */
		   double *z,	/* measurement vector */
		   int zr,	/* rows in z (must be 1 or 2) */
		   double *r)	/* covariance matrix for z (has zr
				   rows and columns) */
{
  static double k[4], num[4], denom[4], v[4], w[4];
  int pr=xr, pc=xr, 
    hr=zr, hc=xr, 
    rr=zr, rc=zr,
    kr=xr, kc=zr,
    nr=xr, nc=zr,
    dr=zr, dc=zr,
    vr=xr, vc=1,
    wr=zr, wc=1;

  /* find the Kalman gain k:
     k = p h' /(h p h' + r) */
  mat_mul_nt(p,pr,pc, h,hr,hc, num,nr,nc);
  mat_similarity(h,hr,hc, p,pr,pc, denom,dr,dc);
  mat_add(denom,dr,dc, r,rr,rc, denom,dr,dc);
  if (sym_factor(denom,dr,dc, denom,dr,dc))
    return;			/* failure - singular */
  sym_rdiv(num,nr,nc, denom,dr,dc, k,kr,kc);

  /* update the state x:
     x <- x + k (z - h x) */
  mat_mul(h,hr,hc, x,xr,1, w,wr,wc);
  mat_sub(z,zr,1, w,wr,wc, w,wr,wc);
  mat_mul(k,kr,kc, w,wr,wc, v,vr,vc);
  mat_add(x,xr,1, v,vr,vc, x,xr,1);

  /* update the covariance p:
     p <- (I - k h) p */
  mat_one(v,xr,xr);
  mat_mul(k,kr,kc, h,hr,hc, w,xr,xr);
  mat_sub(v,xr,xr, w,xr,xr, w,xr,xr);
  mat_mul(w,xr,xr, p,xr,xr, v,xr,xr);
  mat_copy(v,xr,xr, p,xr,xr);
}