~ubuntu-branches/ubuntu/dapper/gsl-ref-html/dapper

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.54+ (gsl)
     from /home/bjg/gsl.redhat/doc/gsl-ref.texi on 14 September 2005 -->

<TITLE>GNU Scientific Library -- Reference Manual - Permutations</TITLE>
<link href="gsl-ref_10.html" rel=Next>
<link href="gsl-ref_8.html" rel=Previous>
<link href="gsl-ref_toc.html" rel=ToC>

</HEAD>
<BODY>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_8.html">previous</A>, <A HREF="gsl-ref_10.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC188" HREF="gsl-ref_toc.html#TOC188">Permutations</A></H1>
<P>
<A NAME="IDX949"></A>

</P>
<P>
This chapter describes functions for creating and manipulating
permutations. A permutation p is represented by an array of
n integers in the range 0 to n-1, where each value
p_i occurs once and only once.  The application of a permutation
p to a vector v yields a new vector v' where
v'_i = v_{p_i}. 
For example, the array (0,1,3,2) represents a permutation
which exchanges the last two elements of a four element vector.
The corresponding identity permutation is (0,1,2,3).   

</P>
<P>
Note that the permutations produced by the linear algebra routines
correspond to the exchange of matrix columns, and so should be considered
as applying to row-vectors in the form v' = v P rather than
column-vectors, when permuting the elements of a vector.

</P>
<P>
The functions described in this chapter are defined in the header file
<TT>`gsl_permutation.h'</TT>.

</P>



<H2><A NAME="SEC189" HREF="gsl-ref_toc.html#TOC189">The Permutation struct</A></H2>

<P>
A permutation is defined by a structure containing two components, the size
of the permutation and a pointer to the permutation array.  The elements
of the permutation array are all of type <CODE>size_t</CODE>.  The
<CODE>gsl_permutation</CODE> structure looks like this,

</P>

<PRE>
typedef struct
{
  size_t size;
  size_t * data;
} gsl_permutation;
</PRE>

<P>

</P>


<H2><A NAME="SEC190" HREF="gsl-ref_toc.html#TOC190">Permutation allocation</A></H2>

<P>
<DL>
<DT><U>Function:</U> gsl_permutation * <B>gsl_permutation_alloc</B> <I>(size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX950"></A>
This function allocates memory for a new permutation of size <VAR>n</VAR>.
The permutation is not initialized and its elements are undefined.  Use
the function <CODE>gsl_permutation_calloc</CODE> if you want to create a
permutation which is initialized to the identity. A null pointer is
returned if insufficient memory is available to create the permutation.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> gsl_permutation * <B>gsl_permutation_calloc</B> <I>(size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX951"></A>
This function allocates memory for a new permutation of size <VAR>n</VAR> and
initializes it to the identity. A null pointer is returned if
insufficient memory is available to create the permutation.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_permutation_init</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX952"></A>
<A NAME="IDX953"></A>
This function initializes the permutation <VAR>p</VAR> to the identity, i.e.
(0,1,2,...,n-1).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_permutation_free</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX954"></A>
This function frees all the memory used by the permutation <VAR>p</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_memcpy</B> <I>(gsl_permutation * <VAR>dest</VAR>, const gsl_permutation * <VAR>src</VAR>)</I>
<DD><A NAME="IDX955"></A>
This function copies the elements of the permutation <VAR>src</VAR> into the
permutation <VAR>dest</VAR>.  The two permutations must have the same size.
</DL>

</P>


<H2><A NAME="SEC191" HREF="gsl-ref_toc.html#TOC191">Accessing permutation elements</A></H2>

<P>
The following functions can be used to access and manipulate
permutations.

</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_permutation_get</B> <I>(const gsl_permutation * <VAR>p</VAR>, const size_t <VAR>i</VAR>)</I>
<DD><A NAME="IDX956"></A>
This function returns the value of the <VAR>i</VAR>-th element of the
permutation <VAR>p</VAR>.  If <VAR>i</VAR> lies outside the allowed range of 0 to
<VAR>n</VAR>-1 then the error handler is invoked and 0 is returned.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_swap</B> <I>(gsl_permutation * <VAR>p</VAR>, const size_t <VAR>i</VAR>, const size_t <VAR>j</VAR>)</I>
<DD><A NAME="IDX957"></A>
<A NAME="IDX958"></A>
<A NAME="IDX959"></A>
This function exchanges the <VAR>i</VAR>-th and <VAR>j</VAR>-th elements of the
permutation <VAR>p</VAR>.
</DL>

</P>


<H2><A NAME="SEC192" HREF="gsl-ref_toc.html#TOC192">Permutation properties</A></H2>

<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_permutation_size</B> <I>(const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX960"></A>
This function returns the size of the permutation <VAR>p</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> size_t * <B>gsl_permutation_data</B> <I>(const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX961"></A>
This function returns a pointer to the array of elements in the
permutation <VAR>p</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_valid</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX962"></A>
<A NAME="IDX963"></A>
<A NAME="IDX964"></A>
This function checks that the permutation <VAR>p</VAR> is valid.  The <VAR>n</VAR>
elements should contain each of the numbers 0 to <VAR>n</VAR>-1 once and only
once.
</DL>

</P>


<H2><A NAME="SEC193" HREF="gsl-ref_toc.html#TOC193">Permutation functions</A></H2>

<P>
<DL>
<DT><U>Function:</U> void <B>gsl_permutation_reverse</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX965"></A>
<A NAME="IDX966"></A>
This function reverses the elements of the permutation <VAR>p</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_inverse</B> <I>(gsl_permutation * <VAR>inv</VAR>, const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX967"></A>
<A NAME="IDX968"></A>
This function computes the inverse of the permutation <VAR>p</VAR>, storing
the result in <VAR>inv</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_next</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX969"></A>
<A NAME="IDX970"></A>
This function advances the permutation <VAR>p</VAR> to the next permutation
in lexicographic order and returns <CODE>GSL_SUCCESS</CODE>.  If no further
permutations are available it returns <CODE>GSL_FAILURE</CODE> and leaves
<VAR>p</VAR> unmodified.  Starting with the identity permutation and
repeatedly applying this function will iterate through all possible
permutations of a given order.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_prev</B> <I>(gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX971"></A>
This function steps backwards from the permutation <VAR>p</VAR> to the
previous permutation in lexicographic order, returning
<CODE>GSL_SUCCESS</CODE>.  If no previous permutation is available it returns
<CODE>GSL_FAILURE</CODE> and leaves <VAR>p</VAR> unmodified.
</DL>

</P>


<H2><A NAME="SEC194" HREF="gsl-ref_toc.html#TOC194">Applying Permutations</A></H2>

<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permute</B> <I>(const size_t * <VAR>p</VAR>, double * <VAR>data</VAR>, size_t <VAR>stride</VAR>, size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX972"></A>
This function applies the permutation <VAR>p</VAR> to the array <VAR>data</VAR> of
size <VAR>n</VAR> with stride <VAR>stride</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permute_inverse</B> <I>(const size_t * <VAR>p</VAR>, double * <VAR>data</VAR>, size_t <VAR>stride</VAR>, size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX973"></A>
This function applies the inverse of the permutation <VAR>p</VAR> to the
array <VAR>data</VAR> of size <VAR>n</VAR> with stride <VAR>stride</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permute_vector</B> <I>(const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX974"></A>
This function applies the permutation <VAR>p</VAR> to the elements of the
vector <VAR>v</VAR>, considered as a row-vector acted on by a permutation
matrix from the right, v' = v P.  The j-th column of the
permutation matrix P is given by the p_j-th column of the
identity matrix. The permutation <VAR>p</VAR> and the vector <VAR>v</VAR> must
have the same length.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permute_vector_inverse</B> <I>(const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX975"></A>
This function applies the inverse of the permutation <VAR>p</VAR> to the
elements of the vector <VAR>v</VAR>, considered as a row-vector acted on by
an inverse permutation matrix from the right, v' = v P^T.  Note
that for permutation matrices the inverse is the same as the transpose.
The j-th column of the permutation matrix P is given by
the p_j-th column of the identity matrix. The permutation <VAR>p</VAR>
and the vector <VAR>v</VAR> must have the same length.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_mul</B> <I>(gsl_permutation * <VAR>p</VAR>, const gsl_permutation * <VAR>pa</VAR>, const gsl_permutation * <VAR>pb</VAR>)</I>
<DD><A NAME="IDX976"></A>
This function combines the two permutations <VAR>pa</VAR> and <VAR>pb</VAR> into a
single permutation <VAR>p</VAR>, where p = pa . pb. The permutation
<VAR>p</VAR> is equivalent to applying pb first and then <VAR>pa</VAR>.
</DL>

</P>


<H2><A NAME="SEC195" HREF="gsl-ref_toc.html#TOC195">Reading and writing permutations</A></H2>

<P>
The library provides functions for reading and writing permutations to a
file as binary data or formatted text.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_fwrite</B> <I>(FILE * <VAR>stream</VAR>, const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX977"></A>
This function writes the elements of the permutation <VAR>p</VAR> to the
stream <VAR>stream</VAR> in binary format.  The function returns
<CODE>GSL_EFAILED</CODE> if there was a problem writing to the file.  Since the
data is written in the native binary format it may not be portable
between different architectures.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_fread</B> <I>(FILE * <VAR>stream</VAR>, gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX978"></A>
This function reads into the permutation <VAR>p</VAR> from the open stream
<VAR>stream</VAR> in binary format.  The permutation <VAR>p</VAR> must be
preallocated with the correct length since the function uses the size of
<VAR>p</VAR> to determine how many bytes to read.  The function returns
<CODE>GSL_EFAILED</CODE> if there was a problem reading from the file.  The
data is assumed to have been written in the native binary format on the
same architecture.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_fprintf</B> <I>(FILE * <VAR>stream</VAR>, const gsl_permutation * <VAR>p</VAR>, const char * <VAR>format</VAR>)</I>
<DD><A NAME="IDX979"></A>
This function writes the elements of the permutation <VAR>p</VAR>
line-by-line to the stream <VAR>stream</VAR> using the format specifier
<VAR>format</VAR>, which should be suitable for a type of <VAR>size_t</VAR>.  On a
GNU system the type modifier <CODE>Z</CODE> represents <CODE>size_t</CODE>, so
<CODE>"%Zu\n"</CODE> is a suitable format.  The function returns
<CODE>GSL_EFAILED</CODE> if there was a problem writing to the file.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_fscanf</B> <I>(FILE * <VAR>stream</VAR>, gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX980"></A>
This function reads formatted data from the stream <VAR>stream</VAR> into the
permutation <VAR>p</VAR>.  The permutation <VAR>p</VAR> must be preallocated with
the correct length since the function uses the size of <VAR>p</VAR> to
determine how many numbers to read.  The function returns
<CODE>GSL_EFAILED</CODE> if there was a problem reading from the file.
</DL>

</P>


<H2><A NAME="SEC196" HREF="gsl-ref_toc.html#TOC196">Permutations in cyclic form</A></H2>

<P>
A permutation can be represented in both <I>linear</I> and <I>cyclic</I>
notations.  The functions described in this section convert between the
two forms.  The linear notation is an index mapping, and has already
been described above.  The cyclic notation expresses a permutation as a
series of circular rearrangements of groups of elements, or
<I>cycles</I>.

</P>
<P>
For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced
by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different
sets of elements can be combined independently, for example (1 2 3) (4
5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange
of elements 4 and 5.  A cycle of length one represents an element which
is unchanged by the permutation and is referred to as a <I>singleton</I>.

</P>
<P>
It can be shown that every permutation can be decomposed into
combinations of cycles.  The decomposition is not unique, but can always
be rearranged into a standard <I>canonical form</I> by a reordering of
elements.  The library uses the canonical form defined in Knuth's
<CITE>Art of Computer Programming</CITE> (Vol 1, 3rd Ed, 1997) Section 1.3.3,
p.178.

</P>
<P>
The procedure for obtaining the canonical form given by Knuth is,

</P>

<OL>
<LI>Write all singleton cycles explicitly

<LI>Within each cycle, put the smallest number first

<LI>Order the cycles in decreasing order of the first number in the cycle.

</OL>

<P>
For example, the linear representation (2 4 3 0 1) is represented as (1
4) (0 2 3) in canonical form. The permutation corresponds to an
exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.

</P>
<P>
The important property of the canonical form is that it can be
reconstructed from the contents of each cycle without the brackets. In
addition, by removing the brackets it can be considered as a linear
representation of a different permutation. In the example given above
the permutation (2 4 3 0 1) would become (1 4 0 2 3).  This mapping has
many applications in the theory of permutations.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_linear_to_canonical</B> <I>(gsl_permutation * <VAR>q</VAR>, const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX981"></A>
This function computes the canonical form of the permutation <VAR>p</VAR> and
stores it in the output argument <VAR>q</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_permutation_canonical_to_linear</B> <I>(gsl_permutation * <VAR>p</VAR>, const gsl_permutation * <VAR>q</VAR>)</I>
<DD><A NAME="IDX982"></A>
This function converts a permutation <VAR>q</VAR> in canonical form back into
linear form storing it in the output argument <VAR>p</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_permutation_inversions</B> <I>(const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX983"></A>
This function counts the number of inversions in the permutation
<VAR>p</VAR>.  An inversion is any pair of elements that are not in order.
For example, the permutation 2031 has three inversions, corresponding to
the pairs (2,0) (2,1) and (3,1).  The identity permutation has no
inversions.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_permutation_linear_cycles</B> <I>(const gsl_permutation * <VAR>p</VAR>)</I>
<DD><A NAME="IDX984"></A>
This function counts the number of cycles in the permutation <VAR>p</VAR>, given in linear form.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_permutation_canonical_cycles</B> <I>(const gsl_permutation * <VAR>q</VAR>)</I>
<DD><A NAME="IDX985"></A>
This function counts the number of cycles in the permutation <VAR>q</VAR>, given in canonical form.
</DL>

</P>



<H2><A NAME="SEC197" HREF="gsl-ref_toc.html#TOC197">Examples</A></H2>
<P>
The example program below creates a random permutation (by shuffling the
elements of the identity) and finds its inverse.

</P>

<PRE>
#include &#60;stdio.h&#62;
#include &#60;gsl/gsl_rng.h&#62;
#include &#60;gsl/gsl_randist.h&#62;
#include &#60;gsl/gsl_permutation.h&#62;

int
main (void) 
{
  const size_t N = 10;
  const gsl_rng_type * T;
  gsl_rng * r;

  gsl_permutation * p = gsl_permutation_alloc (N);
  gsl_permutation * q = gsl_permutation_alloc (N);

  gsl_rng_env_setup();
  T = gsl_rng_default;
  r = gsl_rng_alloc (T);

  printf ("initial permutation:");  
  gsl_permutation_init (p);
  gsl_permutation_fprintf (stdout, p, " %u");
  printf ("\n");

  printf (" random permutation:");  
  gsl_ran_shuffle (r, p-&#62;data, N, sizeof(size_t));
  gsl_permutation_fprintf (stdout, p, " %u");
  printf ("\n");

  printf ("inverse permutation:");  
  gsl_permutation_inverse (q, p);
  gsl_permutation_fprintf (stdout, q, " %u");
  printf ("\n");

  return 0;
}
</PRE>

<P>
Here is the output from the program,

</P>

<PRE>
$ ./a.out 
initial permutation: 0 1 2 3 4 5 6 7 8 9
 random permutation: 1 3 5 2 7 6 0 4 9 8
inverse permutation: 6 0 3 1 7 2 5 4 9 8
</PRE>

<P>
The random permutation <CODE>p[i]</CODE> and its inverse <CODE>q[i]</CODE> are
related through the identity <CODE>p[q[i]] = i</CODE>, which can be verified
from the output.

</P>
<P>
The next example program steps forwards through all possible third order
permutations, starting from the identity,

</P>

<PRE>
#include &#60;stdio.h&#62;
#include &#60;gsl/gsl_permutation.h&#62;

int
main (void) 
{
  gsl_permutation * p = gsl_permutation_alloc (3);

  gsl_permutation_init (p);

  do 
   {
      gsl_permutation_fprintf (stdout, p, " %u");
      printf ("\n");
   }
  while (gsl_permutation_next(p) == GSL_SUCCESS);

  return 0;
}
</PRE>

<P>
Here is the output from the program,

</P>

<PRE>
$ ./a.out 
 0 1 2
 0 2 1
 1 0 2
 1 2 0
 2 0 1
 2 1 0
</PRE>

<P>
The permutations are generated in lexicographic order.  To reverse the
sequence, begin with the final permutation (which is the reverse of the
identity) and replace <CODE>gsl_permutation_next</CODE> with
<CODE>gsl_permutation_prev</CODE>.

</P>


<H2><A NAME="SEC198" HREF="gsl-ref_toc.html#TOC198">References and Further Reading</A></H2>

<P>
The subject of permutations is covered extensively in Knuth's
<CITE>Sorting and Searching</CITE>,

</P>

<UL>
<LI>

Donald E. Knuth, <CITE>The Art of Computer Programming: Sorting and
Searching</CITE> (Vol 3, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850.
</UL>

<P>
For the definition of the <I>canonical form</I> see,

</P>

<UL>
<LI>

Donald E. Knuth, <CITE>The Art of Computer Programming: Fundamental
Algorithms</CITE> (Vol 1, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850.
Section 1.3.3, <CITE>An Unusual Correspondence</CITE>, p.178--179.
</UL>

<P><HR><P>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_8.html">previous</A>, <A HREF="gsl-ref_10.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
</BODY>
</HTML>