~ubuntu-branches/ubuntu/hardy/flac/hardy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/* flac - Command-line FLAC encoder/decoder
 * Copyright (C) 2000,2001,2002,2003,2004,2005  Josh Coalson
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "FLAC/all.h"
#include "analyze.h"

typedef struct {
	FLAC__int32 residual;
	unsigned count;
} pair_t;

typedef struct {
	pair_t buckets[FLAC__MAX_BLOCK_SIZE];
	int peak_index;
	unsigned nbuckets;
	unsigned nsamples;
	double sum, sos;
	double variance;
	double mean;
	double stddev;
} subframe_stats_t;

static subframe_stats_t all_;

static void init_stats(subframe_stats_t *stats);
static void update_stats(subframe_stats_t *stats, FLAC__int32 residual, unsigned incr);
static void compute_stats(subframe_stats_t *stats);
static FLAC__bool dump_stats(const subframe_stats_t *stats, const char *filename);

void flac__analyze_init(analysis_options aopts)
{
	if(aopts.do_residual_gnuplot) {
		init_stats(&all_);
	}
}

void flac__analyze_frame(const FLAC__Frame *frame, unsigned frame_number, analysis_options aopts, FILE *fout)
{
	const unsigned channels = frame->header.channels;
	char outfilename[1024];
	subframe_stats_t stats;
	unsigned i, channel;

	/* do the human-readable part first */
	fprintf(fout, "frame=%u\tblocksize=%u\tsample_rate=%u\tchannels=%u\tchannel_assignment=%s\n", frame_number, frame->header.blocksize, frame->header.sample_rate, channels, FLAC__ChannelAssignmentString[frame->header.channel_assignment]);
	for(channel = 0; channel < channels; channel++) {
		const FLAC__Subframe *subframe = frame->subframes+channel;
		fprintf(fout, "\tsubframe=%u\twasted_bits=%u\ttype=%s", channel, subframe->wasted_bits, FLAC__SubframeTypeString[subframe->type]);
		switch(subframe->type) {
			case FLAC__SUBFRAME_TYPE_CONSTANT:
				fprintf(fout, "\tvalue=%d\n", subframe->data.constant.value);
				break;
			case FLAC__SUBFRAME_TYPE_FIXED:
				FLAC__ASSERT(subframe->data.fixed.entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE);
				fprintf(fout, "\torder=%u\tpartition_order=%u\n", subframe->data.fixed.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order);
				for(i = 0; i < subframe->data.fixed.order; i++)
					fprintf(fout, "\t\twarmup[%u]=%d\n", i, subframe->data.fixed.warmup[i]);
				if(aopts.do_residual_text) {
					const unsigned partitions = (1u << subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order);
					for(i = 0; i < partitions; i++) {
						unsigned parameter = subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents->parameters[i];
						if(parameter == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER)
							fprintf(fout, "\t\tparameter[%u]=ESCAPE, raw_bits=%u\n", i, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents->raw_bits[i]);
						else
							fprintf(fout, "\t\tparameter[%u]=%u\n", i, parameter);
					}
					for(i = 0; i < frame->header.blocksize-subframe->data.fixed.order; i++)
						fprintf(fout, "\t\tresidual[%u]=%d\n", i, subframe->data.fixed.residual[i]);
				}
				break;
			case FLAC__SUBFRAME_TYPE_LPC:
				FLAC__ASSERT(subframe->data.lpc.entropy_coding_method.type == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE);
				fprintf(fout, "\torder=%u\tpartition_order=%u\tqlp_coeff_precision=%u\tquantization_level=%d\n", subframe->data.lpc.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.qlp_coeff_precision, subframe->data.lpc.quantization_level);
				for(i = 0; i < subframe->data.lpc.order; i++)
					fprintf(fout, "\t\twarmup[%u]=%d\n", i, subframe->data.lpc.warmup[i]);
				if(aopts.do_residual_text) {
					const unsigned partitions = (1u << subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order);
					for(i = 0; i < partitions; i++) {
						unsigned parameter = subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents->parameters[i];
						if(parameter == FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER)
							fprintf(fout, "\t\tparameter[%u]=ESCAPE, raw_bits=%u\n", i, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents->raw_bits[i]);
						else
							fprintf(fout, "\t\tparameter[%u]=%u\n", i, parameter);
					}
					for(i = 0; i < frame->header.blocksize-subframe->data.lpc.order; i++)
						fprintf(fout, "\t\tresidual[%u]=%d\n", i, subframe->data.lpc.residual[i]);
				}
				break;
			case FLAC__SUBFRAME_TYPE_VERBATIM:
				fprintf(fout, "\n");
				break;
		}
	}

	/* now do the residual distributions if requested */
	if(aopts.do_residual_gnuplot) {
		for(channel = 0; channel < channels; channel++) {
			const FLAC__Subframe *subframe = frame->subframes+channel;
			unsigned residual_samples;

			init_stats(&stats);

			switch(subframe->type) {
				case FLAC__SUBFRAME_TYPE_FIXED:
					residual_samples = frame->header.blocksize - subframe->data.fixed.order;
					for(i = 0; i < residual_samples; i++)
						update_stats(&stats, subframe->data.fixed.residual[i], 1);
					break;
				case FLAC__SUBFRAME_TYPE_LPC:
					residual_samples = frame->header.blocksize - subframe->data.lpc.order;
					for(i = 0; i < residual_samples; i++)
						update_stats(&stats, subframe->data.lpc.residual[i], 1);
					break;
				default:
					break;
			}

			/* update all_ */
			for(i = 0; i < stats.nbuckets; i++) {
				update_stats(&all_, stats.buckets[i].residual, stats.buckets[i].count);
			}

			/* write the subframe */
			sprintf(outfilename, "f%06u.s%u.gp", frame_number, channel);
			compute_stats(&stats);

			(void)dump_stats(&stats, outfilename);
		}
	}
}

void flac__analyze_finish(analysis_options aopts)
{
	if(aopts.do_residual_gnuplot) {
		compute_stats(&all_);
		(void)dump_stats(&all_, "all");
	}
}

void init_stats(subframe_stats_t *stats)
{
	stats->peak_index = -1;
	stats->nbuckets = 0;
	stats->nsamples = 0;
	stats->sum = 0.0;
	stats->sos = 0.0;
}

void update_stats(subframe_stats_t *stats, FLAC__int32 residual, unsigned incr)
{
	unsigned i;
	const double r = (double)residual, a = r*incr;

	stats->nsamples += incr;
	stats->sum += a;
	stats->sos += (a*r);

	for(i = 0; i < stats->nbuckets; i++) {
		if(stats->buckets[i].residual == residual) {
			stats->buckets[i].count += incr;
			goto find_peak;
		}
	}
	/* not found, make a new bucket */
	i = stats->nbuckets;
	stats->buckets[i].residual = residual;
	stats->buckets[i].count = incr;
	stats->nbuckets++;
find_peak:
	if(stats->peak_index < 0 || stats->buckets[i].count > stats->buckets[stats->peak_index].count)
		stats->peak_index = i;
}

void compute_stats(subframe_stats_t *stats)
{
	stats->mean = stats->sum / (double)stats->nsamples;
	stats->variance = (stats->sos - (stats->sum * stats->sum / stats->nsamples)) / stats->nsamples;
	stats->stddev = sqrt(stats->variance);
}

FLAC__bool dump_stats(const subframe_stats_t *stats, const char *filename)
{
	FILE *outfile;
	unsigned i;
	const double m = stats->mean;
	const double s1 = stats->stddev, s2 = s1*2, s3 = s1*3, s4 = s1*4, s5 = s1*5, s6 = s1*6;
	const double p = stats->buckets[stats->peak_index].count;

	outfile = fopen(filename, "w");

	if(0 == outfile) {
		fprintf(stderr, "ERROR opening %s\n", filename);
		return false;
	}

	fprintf(outfile, "plot '-' title 'PDF', '-' title 'mean' with impulses, '-' title '1-stddev' with histeps, '-' title '2-stddev' with histeps, '-' title '3-stddev' with histeps, '-' title '4-stddev' with histeps, '-' title '5-stddev' with histeps, '-' title '6-stddev' with histeps\n");

	for(i = 0; i < stats->nbuckets; i++) {
		fprintf(outfile, "%d %u\n", stats->buckets[i].residual, stats->buckets[i].count);
	}
	fprintf(outfile, "e\n");

	fprintf(outfile, "%f %f\ne\n", stats->mean, p);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s1, p*0.8, m+s1, p*0.8);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s2, p*0.7, m+s2, p*0.7);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s3, p*0.6, m+s3, p*0.6);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s4, p*0.5, m+s4, p*0.5);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s5, p*0.4, m+s5, p*0.4);
	fprintf(outfile, "%f %f\n%f %f\ne\n", m-s6, p*0.3, m+s6, p*0.3);

	fprintf(outfile, "pause -1 'waiting...'\n");

	fclose(outfile);
	return true;
}