~ubuntu-branches/ubuntu/jaunty/sgt-puzzles/jaunty

1 by Ben Hutchings
Import upstream version 6452
1
/*
2
 * solo.c: the number-placing puzzle most popularly known as `Sudoku'.
3
 *
4
 * TODO:
5
 *
6
 *  - reports from users are that `Trivial'-mode puzzles are still
7
 *    rather hard compared to newspapers' easy ones, so some better
8
 *    low-end difficulty grading would be nice
9
 *     + it's possible that really easy puzzles always have
10
 *       _several_ things you can do, so don't make you hunt too
11
 *       hard for the one deduction you can currently make
12
 *     + it's also possible that easy puzzles require fewer
13
 *       cross-eliminations: perhaps there's a higher incidence of
14
 *       things you can deduce by looking only at (say) rows,
15
 *       rather than things you have to check both rows and columns
16
 *       for
17
 *     + but really, what I need to do is find some really easy
18
 *       puzzles and _play_ them, to see what's actually easy about
19
 *       them
20
 *     + while I'm revamping this area, filling in the _last_
21
 *       number in a nearly-full row or column should certainly be
22
 *       permitted even at the lowest difficulty level.
23
 *     + also Owen noticed that `Basic' grids requiring numeric
24
 *       elimination are actually very hard, so I wonder if a
25
 *       difficulty gradation between that and positional-
26
 *       elimination-only might be in order
27
 *     + but it's not good to have _too_ many difficulty levels, or
28
 *       it'll take too long to randomly generate a given level.
29
 * 
30
 *  - it might still be nice to do some prioritisation on the
31
 *    removal of numbers from the grid
32
 *     + one possibility is to try to minimise the maximum number
33
 * 	 of filled squares in any block, which in particular ought
34
 * 	 to enforce never leaving a completely filled block in the
35
 * 	 puzzle as presented.
36
 *
37
 *  - alternative interface modes
38
 *     + sudoku.com's Windows program has a palette of possible
39
 * 	 entries; you select a palette entry first and then click
40
 * 	 on the square you want it to go in, thus enabling
41
 * 	 mouse-only play. Useful for PDAs! I don't think it's
42
 * 	 actually incompatible with the current highlight-then-type
43
 * 	 approach: you _either_ highlight a palette entry and then
44
 * 	 click, _or_ you highlight a square and then type. At most
45
 * 	 one thing is ever highlighted at a time, so there's no way
46
 * 	 to confuse the two.
47
 *     + then again, I don't actually like sudoku.com's interface;
48
 *       it's too much like a paint package whereas I prefer to
49
 *       think of Solo as a text editor.
50
 *     + another PDA-friendly possibility is a drag interface:
51
 *       _drag_ numbers from the palette into the grid squares.
52
 *       Thought experiments suggest I'd prefer that to the
53
 *       sudoku.com approach, but I haven't actually tried it.
54
 */
55
56
/*
57
 * Solo puzzles need to be square overall (since each row and each
58
 * column must contain one of every digit), but they need not be
59
 * subdivided the same way internally. I am going to adopt a
60
 * convention whereby I _always_ refer to `r' as the number of rows
61
 * of _big_ divisions, and `c' as the number of columns of _big_
62
 * divisions. Thus, a 2c by 3r puzzle looks something like this:
63
 *
64
 *   4 5 1 | 2 6 3
65
 *   6 3 2 | 5 4 1
66
 *   ------+------     (Of course, you can't subdivide it the other way
67
 *   1 4 5 | 6 3 2     or you'll get clashes; observe that the 4 in the
68
 *   3 2 6 | 4 1 5     top left would conflict with the 4 in the second
69
 *   ------+------     box down on the left-hand side.)
70
 *   5 1 4 | 3 2 6
71
 *   2 6 3 | 1 5 4
72
 *
73
 * The need for a strong naming convention should now be clear:
74
 * each small box is two rows of digits by three columns, while the
75
 * overall puzzle has three rows of small boxes by two columns. So
76
 * I will (hopefully) consistently use `r' to denote the number of
77
 * rows _of small boxes_ (here 3), which is also the number of
78
 * columns of digits in each small box; and `c' vice versa (here
79
 * 2).
80
 *
81
 * I'm also going to choose arbitrarily to list c first wherever
82
 * possible: the above is a 2x3 puzzle, not a 3x2 one.
83
 */
84
85
#include <stdio.h>
86
#include <stdlib.h>
87
#include <string.h>
88
#include <assert.h>
89
#include <ctype.h>
90
#include <math.h>
91
92
#ifdef STANDALONE_SOLVER
93
#include <stdarg.h>
94
int solver_show_working, solver_recurse_depth;
95
#endif
96
97
#include "puzzles.h"
98
99
/*
100
 * To save space, I store digits internally as unsigned char. This
101
 * imposes a hard limit of 255 on the order of the puzzle. Since
102
 * even a 5x5 takes unacceptably long to generate, I don't see this
103
 * as a serious limitation unless something _really_ impressive
104
 * happens in computing technology; but here's a typedef anyway for
105
 * general good practice.
106
 */
107
typedef unsigned char digit;
108
#define ORDER_MAX 255
109
110
#define PREFERRED_TILE_SIZE 32
111
#define TILE_SIZE (ds->tilesize)
112
#define BORDER (TILE_SIZE / 2)
1.2.2 by Ben Hutchings
Import upstream version 7983
113
#define GRIDEXTRA (TILE_SIZE / 32)
1 by Ben Hutchings
Import upstream version 6452
114
115
#define FLASH_TIME 0.4F
116
117
enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
118
       SYMM_REF4D, SYMM_REF8 };
119
120
enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME,
121
       DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
122
123
enum {
124
    COL_BACKGROUND,
1.2.2 by Ben Hutchings
Import upstream version 7983
125
    COL_XDIAGONALS,
1 by Ben Hutchings
Import upstream version 6452
126
    COL_GRID,
127
    COL_CLUE,
128
    COL_USER,
129
    COL_HIGHLIGHT,
130
    COL_ERROR,
131
    COL_PENCIL,
132
    NCOLOURS
133
};
134
135
struct game_params {
1.2.2 by Ben Hutchings
Import upstream version 7983
136
    /*
137
     * For a square puzzle, `c' and `r' indicate the puzzle
138
     * parameters as described above.
139
     * 
140
     * A jigsaw-style puzzle is indicated by r==1, in which case c
141
     * can be whatever it likes (there is no constraint on
142
     * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
143
     */
1 by Ben Hutchings
Import upstream version 6452
144
    int c, r, symm, diff;
1.2.2 by Ben Hutchings
Import upstream version 7983
145
    int xtype;			       /* require all digits in X-diagonals */
146
};
147
148
struct block_structure {
149
    int refcount;
150
151
    /*
152
     * For text formatting, we do need c and r here.
153
     */
154
    int c, r;
155
156
    /*
157
     * For any square index, whichblock[i] gives its block index.
158
     * 
159
     * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
160
     * square in block b.
161
     * 
162
     * whichblock and blocks are each dynamically allocated in
163
     * their own right, but the subarrays in blocks are appended
164
     * to the whichblock array, so shouldn't be freed
165
     * individually.
166
     */
167
    int *whichblock, **blocks;
168
169
#ifdef STANDALONE_SOLVER
170
    /*
171
     * Textual descriptions of each block. For normal Sudoku these
172
     * are of the form "(1,3)"; for jigsaw they are "starting at
173
     * (5,7)". So the sensible usage in both cases is to say
174
     * "elimination within block %s" with one of these strings.
175
     * 
176
     * Only blocknames itself needs individually freeing; it's all
177
     * one block.
178
     */
179
    char **blocknames;
180
#endif
1 by Ben Hutchings
Import upstream version 6452
181
};
182
183
struct game_state {
1.2.2 by Ben Hutchings
Import upstream version 7983
184
    /*
185
     * For historical reasons, I use `cr' to denote the overall
186
     * width/height of the puzzle. It was a natural notation when
187
     * all puzzles were divided into blocks in a grid, but doesn't
188
     * really make much sense given jigsaw puzzles. However, the
189
     * obvious `n' is heavily used in the solver to describe the
190
     * index of a number being placed, so `cr' will have to stay.
191
     */
192
    int cr;
193
    struct block_structure *blocks;
194
    int xtype;
1 by Ben Hutchings
Import upstream version 6452
195
    digit *grid;
196
    unsigned char *pencil;             /* c*r*c*r elements */
197
    unsigned char *immutable;	       /* marks which digits are clues */
198
    int completed, cheated;
199
};
200
201
static game_params *default_params(void)
202
{
203
    game_params *ret = snew(game_params);
204
205
    ret->c = ret->r = 3;
1.2.2 by Ben Hutchings
Import upstream version 7983
206
    ret->xtype = FALSE;
1 by Ben Hutchings
Import upstream version 6452
207
    ret->symm = SYMM_ROT2;	       /* a plausible default */
208
    ret->diff = DIFF_BLOCK;	       /* so is this */
209
210
    return ret;
211
}
212
213
static void free_params(game_params *params)
214
{
215
    sfree(params);
216
}
217
218
static game_params *dup_params(game_params *params)
219
{
220
    game_params *ret = snew(game_params);
221
    *ret = *params;		       /* structure copy */
222
    return ret;
223
}
224
225
static int game_fetch_preset(int i, char **name, game_params **params)
226
{
227
    static struct {
228
        char *title;
229
        game_params params;
230
    } presets[] = {
1.2.2 by Ben Hutchings
Import upstream version 7983
231
        { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, FALSE } },
232
        { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
233
        { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, FALSE } },
234
        { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
235
        { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, TRUE } },
236
        { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, FALSE } },
237
        { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, FALSE } },
238
        { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, TRUE } },
239
        { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, FALSE } },
240
        { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, FALSE } },
241
        { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
242
        { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, TRUE } },
243
        { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, FALSE } },
1 by Ben Hutchings
Import upstream version 6452
244
#ifndef SLOW_SYSTEM
1.2.2 by Ben Hutchings
Import upstream version 7983
245
        { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
246
        { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
1 by Ben Hutchings
Import upstream version 6452
247
#endif
248
    };
249
250
    if (i < 0 || i >= lenof(presets))
251
        return FALSE;
252
253
    *name = dupstr(presets[i].title);
254
    *params = dup_params(&presets[i].params);
255
256
    return TRUE;
257
}
258
259
static void decode_params(game_params *ret, char const *string)
260
{
1.2.2 by Ben Hutchings
Import upstream version 7983
261
    int seen_r = FALSE;
262
1 by Ben Hutchings
Import upstream version 6452
263
    ret->c = ret->r = atoi(string);
1.2.2 by Ben Hutchings
Import upstream version 7983
264
    ret->xtype = FALSE;
1 by Ben Hutchings
Import upstream version 6452
265
    while (*string && isdigit((unsigned char)*string)) string++;
266
    if (*string == 'x') {
267
        string++;
268
        ret->r = atoi(string);
1.2.2 by Ben Hutchings
Import upstream version 7983
269
	seen_r = TRUE;
1 by Ben Hutchings
Import upstream version 6452
270
	while (*string && isdigit((unsigned char)*string)) string++;
271
    }
272
    while (*string) {
1.2.2 by Ben Hutchings
Import upstream version 7983
273
        if (*string == 'j') {
274
	    string++;
275
	    if (seen_r)
276
		ret->c *= ret->r;
277
	    ret->r = 1;
278
	} else if (*string == 'x') {
279
	    string++;
280
	    ret->xtype = TRUE;
281
	} else if (*string == 'r' || *string == 'm' || *string == 'a') {
1 by Ben Hutchings
Import upstream version 6452
282
            int sn, sc, sd;
283
            sc = *string++;
1.1.4 by Ben Hutchings
Import upstream version 7446
284
            if (sc == 'm' && *string == 'd') {
1 by Ben Hutchings
Import upstream version 6452
285
                sd = TRUE;
286
                string++;
287
            } else {
288
                sd = FALSE;
289
            }
290
            sn = atoi(string);
291
            while (*string && isdigit((unsigned char)*string)) string++;
292
            if (sc == 'm' && sn == 8)
293
                ret->symm = SYMM_REF8;
294
            if (sc == 'm' && sn == 4)
295
                ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
296
            if (sc == 'm' && sn == 2)
297
                ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
298
            if (sc == 'r' && sn == 4)
299
                ret->symm = SYMM_ROT4;
300
            if (sc == 'r' && sn == 2)
301
                ret->symm = SYMM_ROT2;
302
            if (sc == 'a')
303
                ret->symm = SYMM_NONE;
304
        } else if (*string == 'd') {
305
            string++;
306
            if (*string == 't')        /* trivial */
307
                string++, ret->diff = DIFF_BLOCK;
308
            else if (*string == 'b')   /* basic */
309
                string++, ret->diff = DIFF_SIMPLE;
310
            else if (*string == 'i')   /* intermediate */
311
                string++, ret->diff = DIFF_INTERSECT;
312
            else if (*string == 'a')   /* advanced */
313
                string++, ret->diff = DIFF_SET;
314
            else if (*string == 'e')   /* extreme */
315
                string++, ret->diff = DIFF_EXTREME;
316
            else if (*string == 'u')   /* unreasonable */
317
                string++, ret->diff = DIFF_RECURSIVE;
318
        } else
319
            string++;                  /* eat unknown character */
320
    }
321
}
322
323
static char *encode_params(game_params *params, int full)
324
{
325
    char str[80];
326
1.2.2 by Ben Hutchings
Import upstream version 7983
327
    if (params->r > 1)
328
	sprintf(str, "%dx%d", params->c, params->r);
329
    else
330
	sprintf(str, "%dj", params->c);
331
    if (params->xtype)
332
	strcat(str, "x");
333
1 by Ben Hutchings
Import upstream version 6452
334
    if (full) {
335
        switch (params->symm) {
336
          case SYMM_REF8: strcat(str, "m8"); break;
337
          case SYMM_REF4: strcat(str, "m4"); break;
338
          case SYMM_REF4D: strcat(str, "md4"); break;
339
          case SYMM_REF2: strcat(str, "m2"); break;
340
          case SYMM_REF2D: strcat(str, "md2"); break;
341
          case SYMM_ROT4: strcat(str, "r4"); break;
342
          /* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
343
          case SYMM_NONE: strcat(str, "a"); break;
344
        }
345
        switch (params->diff) {
346
          /* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
347
          case DIFF_SIMPLE: strcat(str, "db"); break;
348
          case DIFF_INTERSECT: strcat(str, "di"); break;
349
          case DIFF_SET: strcat(str, "da"); break;
350
          case DIFF_EXTREME: strcat(str, "de"); break;
351
          case DIFF_RECURSIVE: strcat(str, "du"); break;
352
        }
353
    }
354
    return dupstr(str);
355
}
356
357
static config_item *game_configure(game_params *params)
358
{
359
    config_item *ret;
360
    char buf[80];
361
1.2.2 by Ben Hutchings
Import upstream version 7983
362
    ret = snewn(7, config_item);
1 by Ben Hutchings
Import upstream version 6452
363
364
    ret[0].name = "Columns of sub-blocks";
365
    ret[0].type = C_STRING;
366
    sprintf(buf, "%d", params->c);
367
    ret[0].sval = dupstr(buf);
368
    ret[0].ival = 0;
369
370
    ret[1].name = "Rows of sub-blocks";
371
    ret[1].type = C_STRING;
372
    sprintf(buf, "%d", params->r);
373
    ret[1].sval = dupstr(buf);
374
    ret[1].ival = 0;
375
1.2.2 by Ben Hutchings
Import upstream version 7983
376
    ret[2].name = "\"X\" (require every number in each main diagonal)";
377
    ret[2].type = C_BOOLEAN;
378
    ret[2].sval = NULL;
379
    ret[2].ival = params->xtype;
380
381
    ret[3].name = "Jigsaw (irregularly shaped sub-blocks)";
382
    ret[3].type = C_BOOLEAN;
383
    ret[3].sval = NULL;
384
    ret[3].ival = (params->r == 1);
385
386
    ret[4].name = "Symmetry";
387
    ret[4].type = C_CHOICES;
388
    ret[4].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
1 by Ben Hutchings
Import upstream version 6452
389
        "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
390
        "8-way mirror";
1.2.2 by Ben Hutchings
Import upstream version 7983
391
    ret[4].ival = params->symm;
392
393
    ret[5].name = "Difficulty";
394
    ret[5].type = C_CHOICES;
395
    ret[5].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
396
    ret[5].ival = params->diff;
397
398
    ret[6].name = NULL;
399
    ret[6].type = C_END;
400
    ret[6].sval = NULL;
401
    ret[6].ival = 0;
1 by Ben Hutchings
Import upstream version 6452
402
403
    return ret;
404
}
405
406
static game_params *custom_params(config_item *cfg)
407
{
408
    game_params *ret = snew(game_params);
409
410
    ret->c = atoi(cfg[0].sval);
411
    ret->r = atoi(cfg[1].sval);
1.2.2 by Ben Hutchings
Import upstream version 7983
412
    ret->xtype = cfg[2].ival;
413
    if (cfg[3].ival) {
414
	ret->c *= ret->r;
415
	ret->r = 1;
416
    }
417
    ret->symm = cfg[4].ival;
418
    ret->diff = cfg[5].ival;
1 by Ben Hutchings
Import upstream version 6452
419
420
    return ret;
421
}
422
423
static char *validate_params(game_params *params, int full)
424
{
1.2.2 by Ben Hutchings
Import upstream version 7983
425
    if (params->c < 2)
1 by Ben Hutchings
Import upstream version 6452
426
	return "Both dimensions must be at least 2";
427
    if (params->c > ORDER_MAX || params->r > ORDER_MAX)
428
	return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
1.1.4 by Ben Hutchings
Import upstream version 7446
429
    if ((params->c * params->r) > 35)
430
        return "Unable to support more than 35 distinct symbols in a puzzle";
1 by Ben Hutchings
Import upstream version 6452
431
    return NULL;
432
}
433
434
/* ----------------------------------------------------------------------
435
 * Solver.
436
 * 
437
 * This solver is used for two purposes:
438
 *  + to check solubility of a grid as we gradually remove numbers
439
 *    from it
440
 *  + to solve an externally generated puzzle when the user selects
441
 *    `Solve'.
442
 * 
443
 * It supports a variety of specific modes of reasoning. By
444
 * enabling or disabling subsets of these modes we can arrange a
445
 * range of difficulty levels.
446
 */
447
448
/*
449
 * Modes of reasoning currently supported:
450
 *
451
 *  - Positional elimination: a number must go in a particular
452
 *    square because all the other empty squares in a given
453
 *    row/col/blk are ruled out.
454
 *
455
 *  - Numeric elimination: a square must have a particular number
456
 *    in because all the other numbers that could go in it are
457
 *    ruled out.
458
 *
459
 *  - Intersectional analysis: given two domains which overlap
460
 *    (hence one must be a block, and the other can be a row or
461
 *    col), if the possible locations for a particular number in
462
 *    one of the domains can be narrowed down to the overlap, then
463
 *    that number can be ruled out everywhere but the overlap in
464
 *    the other domain too.
465
 *
466
 *  - Set elimination: if there is a subset of the empty squares
467
 *    within a domain such that the union of the possible numbers
468
 *    in that subset has the same size as the subset itself, then
469
 *    those numbers can be ruled out everywhere else in the domain.
470
 *    (For example, if there are five empty squares and the
471
 *    possible numbers in each are 12, 23, 13, 134 and 1345, then
472
 *    the first three empty squares form such a subset: the numbers
473
 *    1, 2 and 3 _must_ be in those three squares in some
474
 *    permutation, and hence we can deduce none of them can be in
475
 *    the fourth or fifth squares.)
476
 *     + You can also see this the other way round, concentrating
477
 *       on numbers rather than squares: if there is a subset of
478
 *       the unplaced numbers within a domain such that the union
479
 *       of all their possible positions has the same size as the
480
 *       subset itself, then all other numbers can be ruled out for
481
 *       those positions. However, it turns out that this is
482
 *       exactly equivalent to the first formulation at all times:
483
 *       there is a 1-1 correspondence between suitable subsets of
484
 *       the unplaced numbers and suitable subsets of the unfilled
485
 *       places, found by taking the _complement_ of the union of
486
 *       the numbers' possible positions (or the spaces' possible
487
 *       contents).
488
 * 
1.2.2 by Ben Hutchings
Import upstream version 7983
489
 *  - Forcing chains (see comment for solver_forcing().)
1 by Ben Hutchings
Import upstream version 6452
490
 * 
491
 *  - Recursion. If all else fails, we pick one of the currently
492
 *    most constrained empty squares and take a random guess at its
493
 *    contents, then continue solving on that basis and see if we
494
 *    get any further.
495
 */
496
497
struct solver_usage {
1.2.2 by Ben Hutchings
Import upstream version 7983
498
    int cr;
499
    struct block_structure *blocks;
1 by Ben Hutchings
Import upstream version 6452
500
    /*
501
     * We set up a cubic array, indexed by x, y and digit; each
502
     * element of this array is TRUE or FALSE according to whether
503
     * or not that digit _could_ in principle go in that position.
504
     *
1.2.2 by Ben Hutchings
Import upstream version 7983
505
     * The way to index this array is cube[(y*cr+x)*cr+n-1]; there
506
     * are macros below to help with this.
1 by Ben Hutchings
Import upstream version 6452
507
     */
508
    unsigned char *cube;
509
    /*
510
     * This is the grid in which we write down our final
511
     * deductions. y-coordinates in here are _not_ transformed.
512
     */
513
    digit *grid;
514
    /*
515
     * Now we keep track, at a slightly higher level, of what we
516
     * have yet to work out, to prevent doing the same deduction
517
     * many times.
518
     */
519
    /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
520
    unsigned char *row;
521
    /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
522
    unsigned char *col;
1.2.2 by Ben Hutchings
Import upstream version 7983
523
    /* blk[i*cr+n-1] TRUE if digit n has been placed in block i */
1 by Ben Hutchings
Import upstream version 6452
524
    unsigned char *blk;
1.2.2 by Ben Hutchings
Import upstream version 7983
525
    /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
526
    unsigned char *diag;	       /* diag 0 is \, 1 is / */
1 by Ben Hutchings
Import upstream version 6452
527
};
1.2.2 by Ben Hutchings
Import upstream version 7983
528
#define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
529
#define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
1 by Ben Hutchings
Import upstream version 6452
530
#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
1.2.2 by Ben Hutchings
Import upstream version 7983
531
#define cube2(xy,n) (usage->cube[cubepos2(xy,n)])
532
533
#define ondiag0(xy) ((xy) % (cr+1) == 0)
534
#define ondiag1(xy) ((xy) % (cr-1) == 0 && (xy) > 0 && (xy) < cr*cr-1)
535
#define diag0(i) ((i) * (cr+1))
536
#define diag1(i) ((i+1) * (cr-1))
1 by Ben Hutchings
Import upstream version 6452
537
538
/*
539
 * Function called when we are certain that a particular square has
540
 * a particular number in it. The y-coordinate passed in here is
541
 * transformed.
542
 */
543
static void solver_place(struct solver_usage *usage, int x, int y, int n)
544
{
1.2.2 by Ben Hutchings
Import upstream version 7983
545
    int cr = usage->cr;
546
    int sqindex = y*cr+x;
547
    int i, bi;
1 by Ben Hutchings
Import upstream version 6452
548
549
    assert(cube(x,y,n));
550
551
    /*
552
     * Rule out all other numbers in this square.
553
     */
554
    for (i = 1; i <= cr; i++)
555
	if (i != n)
556
	    cube(x,y,i) = FALSE;
557
558
    /*
559
     * Rule out this number in all other positions in the row.
560
     */
561
    for (i = 0; i < cr; i++)
562
	if (i != y)
563
	    cube(x,i,n) = FALSE;
564
565
    /*
566
     * Rule out this number in all other positions in the column.
567
     */
568
    for (i = 0; i < cr; i++)
569
	if (i != x)
570
	    cube(i,y,n) = FALSE;
571
572
    /*
573
     * Rule out this number in all other positions in the block.
574
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
575
    bi = usage->blocks->whichblock[sqindex];
576
    for (i = 0; i < cr; i++) {
577
	int bp = usage->blocks->blocks[bi][i];
578
	if (bp != sqindex)
579
	    cube2(bp,n) = FALSE;
580
    }
1 by Ben Hutchings
Import upstream version 6452
581
582
    /*
583
     * Enter the number in the result grid.
584
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
585
    usage->grid[sqindex] = n;
1 by Ben Hutchings
Import upstream version 6452
586
587
    /*
588
     * Cross out this number from the list of numbers left to place
589
     * in its row, its column and its block.
590
     */
591
    usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
1.2.2 by Ben Hutchings
Import upstream version 7983
592
	usage->blk[bi*cr+n-1] = TRUE;
593
594
    if (usage->diag) {
595
	if (ondiag0(sqindex)) {
596
	    for (i = 0; i < cr; i++)
597
		if (diag0(i) != sqindex)
598
		    cube2(diag0(i),n) = FALSE;
599
	    usage->diag[n-1] = TRUE;
600
	}
601
	if (ondiag1(sqindex)) {
602
	    for (i = 0; i < cr; i++)
603
		if (diag1(i) != sqindex)
604
		    cube2(diag1(i),n) = FALSE;
605
	    usage->diag[cr+n-1] = TRUE;
606
	}
607
    }
1 by Ben Hutchings
Import upstream version 6452
608
}
609
1.2.2 by Ben Hutchings
Import upstream version 7983
610
static int solver_elim(struct solver_usage *usage, int *indices
1 by Ben Hutchings
Import upstream version 6452
611
#ifdef STANDALONE_SOLVER
612
                       , char *fmt, ...
613
#endif
614
                       )
615
{
1.2.2 by Ben Hutchings
Import upstream version 7983
616
    int cr = usage->cr;
1 by Ben Hutchings
Import upstream version 6452
617
    int fpos, m, i;
618
619
    /*
620
     * Count the number of set bits within this section of the
621
     * cube.
622
     */
623
    m = 0;
624
    fpos = -1;
625
    for (i = 0; i < cr; i++)
1.2.2 by Ben Hutchings
Import upstream version 7983
626
	if (usage->cube[indices[i]]) {
627
	    fpos = indices[i];
1 by Ben Hutchings
Import upstream version 6452
628
	    m++;
629
	}
630
631
    if (m == 1) {
632
	int x, y, n;
633
	assert(fpos >= 0);
634
635
	n = 1 + fpos % cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
636
	x = fpos / cr;
637
	y = x / cr;
638
	x %= cr;
1 by Ben Hutchings
Import upstream version 6452
639
1.2.2 by Ben Hutchings
Import upstream version 7983
640
        if (!usage->grid[y*cr+x]) {
1 by Ben Hutchings
Import upstream version 6452
641
#ifdef STANDALONE_SOLVER
642
            if (solver_show_working) {
643
                va_list ap;
644
		printf("%*s", solver_recurse_depth*4, "");
645
                va_start(ap, fmt);
646
                vprintf(fmt, ap);
647
                va_end(ap);
648
                printf(":\n%*s  placing %d at (%d,%d)\n",
1.2.2 by Ben Hutchings
Import upstream version 7983
649
                       solver_recurse_depth*4, "", n, 1+x, 1+y);
1 by Ben Hutchings
Import upstream version 6452
650
            }
651
#endif
652
            solver_place(usage, x, y, n);
653
            return +1;
654
        }
655
    } else if (m == 0) {
656
#ifdef STANDALONE_SOLVER
657
	if (solver_show_working) {
658
	    va_list ap;
659
	    printf("%*s", solver_recurse_depth*4, "");
660
	    va_start(ap, fmt);
661
	    vprintf(fmt, ap);
662
	    va_end(ap);
663
	    printf(":\n%*s  no possibilities available\n",
664
		   solver_recurse_depth*4, "");
665
	}
666
#endif
667
        return -1;
668
    }
669
670
    return 0;
671
}
672
673
static int solver_intersect(struct solver_usage *usage,
1.2.2 by Ben Hutchings
Import upstream version 7983
674
                            int *indices1, int *indices2
1 by Ben Hutchings
Import upstream version 6452
675
#ifdef STANDALONE_SOLVER
676
                            , char *fmt, ...
677
#endif
678
                            )
679
{
1.2.2 by Ben Hutchings
Import upstream version 7983
680
    int cr = usage->cr;
681
    int ret, i, j;
1 by Ben Hutchings
Import upstream version 6452
682
683
    /*
684
     * Loop over the first domain and see if there's any set bit
685
     * not also in the second.
686
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
687
    for (i = j = 0; i < cr; i++) {
688
        int p = indices1[i];
689
	while (j < cr && indices2[j] < p)
690
	    j++;
691
        if (usage->cube[p]) {
692
	    if (j < cr && indices2[j] == p)
693
		continue;	       /* both domains contain this index */
694
	    else
695
		return 0;	       /* there is, so we can't deduce */
696
	}
1 by Ben Hutchings
Import upstream version 6452
697
    }
698
699
    /*
700
     * We have determined that all set bits in the first domain are
701
     * within its overlap with the second. So loop over the second
702
     * domain and remove all set bits that aren't also in that
703
     * overlap; return +1 iff we actually _did_ anything.
704
     */
705
    ret = 0;
1.2.2 by Ben Hutchings
Import upstream version 7983
706
    for (i = j = 0; i < cr; i++) {
707
        int p = indices2[i];
708
	while (j < cr && indices1[j] < p)
709
	    j++;
710
        if (usage->cube[p] && (j >= cr || indices1[j] != p)) {
1 by Ben Hutchings
Import upstream version 6452
711
#ifdef STANDALONE_SOLVER
712
            if (solver_show_working) {
713
                int px, py, pn;
714
715
                if (!ret) {
716
                    va_list ap;
717
		    printf("%*s", solver_recurse_depth*4, "");
718
                    va_start(ap, fmt);
719
                    vprintf(fmt, ap);
720
                    va_end(ap);
721
                    printf(":\n");
722
                }
723
724
                pn = 1 + p % cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
725
                px = p / cr;
726
                py = px / cr;
727
                px %= cr;
1 by Ben Hutchings
Import upstream version 6452
728
729
                printf("%*s  ruling out %d at (%d,%d)\n",
1.2.2 by Ben Hutchings
Import upstream version 7983
730
                       solver_recurse_depth*4, "", pn, 1+px, 1+py);
1 by Ben Hutchings
Import upstream version 6452
731
            }
732
#endif
733
            ret = +1;		       /* we did something */
734
            usage->cube[p] = 0;
735
        }
736
    }
737
738
    return ret;
739
}
740
741
struct solver_scratch {
742
    unsigned char *grid, *rowidx, *colidx, *set;
743
    int *neighbours, *bfsqueue;
1.2.2 by Ben Hutchings
Import upstream version 7983
744
    int *indexlist, *indexlist2;
1 by Ben Hutchings
Import upstream version 6452
745
#ifdef STANDALONE_SOLVER
746
    int *bfsprev;
747
#endif
748
};
749
750
static int solver_set(struct solver_usage *usage,
751
                      struct solver_scratch *scratch,
1.2.2 by Ben Hutchings
Import upstream version 7983
752
                      int *indices
1 by Ben Hutchings
Import upstream version 6452
753
#ifdef STANDALONE_SOLVER
754
                      , char *fmt, ...
755
#endif
756
                      )
757
{
1.2.2 by Ben Hutchings
Import upstream version 7983
758
    int cr = usage->cr;
1 by Ben Hutchings
Import upstream version 6452
759
    int i, j, n, count;
760
    unsigned char *grid = scratch->grid;
761
    unsigned char *rowidx = scratch->rowidx;
762
    unsigned char *colidx = scratch->colidx;
763
    unsigned char *set = scratch->set;
764
765
    /*
766
     * We are passed a cr-by-cr matrix of booleans. Our first job
767
     * is to winnow it by finding any definite placements - i.e.
768
     * any row with a solitary 1 - and discarding that row and the
769
     * column containing the 1.
770
     */
771
    memset(rowidx, TRUE, cr);
772
    memset(colidx, TRUE, cr);
773
    for (i = 0; i < cr; i++) {
774
        int count = 0, first = -1;
775
        for (j = 0; j < cr; j++)
1.2.2 by Ben Hutchings
Import upstream version 7983
776
            if (usage->cube[indices[i*cr+j]])
1 by Ben Hutchings
Import upstream version 6452
777
                first = j, count++;
778
779
	/*
780
	 * If count == 0, then there's a row with no 1s at all and
781
	 * the puzzle is internally inconsistent. However, we ought
782
	 * to have caught this already during the simpler reasoning
783
	 * methods, so we can safely fail an assertion if we reach
784
	 * this point here.
785
	 */
786
	assert(count > 0);
787
        if (count == 1)
788
            rowidx[i] = colidx[first] = FALSE;
789
    }
790
791
    /*
792
     * Convert each of rowidx/colidx from a list of 0s and 1s to a
793
     * list of the indices of the 1s.
794
     */
795
    for (i = j = 0; i < cr; i++)
796
        if (rowidx[i])
797
            rowidx[j++] = i;
798
    n = j;
799
    for (i = j = 0; i < cr; i++)
800
        if (colidx[i])
801
            colidx[j++] = i;
802
    assert(n == j);
803
804
    /*
805
     * And create the smaller matrix.
806
     */
807
    for (i = 0; i < n; i++)
808
        for (j = 0; j < n; j++)
1.2.2 by Ben Hutchings
Import upstream version 7983
809
            grid[i*cr+j] = usage->cube[indices[rowidx[i]*cr+colidx[j]]];
1 by Ben Hutchings
Import upstream version 6452
810
811
    /*
812
     * Having done that, we now have a matrix in which every row
813
     * has at least two 1s in. Now we search to see if we can find
814
     * a rectangle of zeroes (in the set-theoretic sense of
815
     * `rectangle', i.e. a subset of rows crossed with a subset of
816
     * columns) whose width and height add up to n.
817
     */
818
819
    memset(set, 0, n);
820
    count = 0;
821
    while (1) {
822
        /*
823
         * We have a candidate set. If its size is <=1 or >=n-1
824
         * then we move on immediately.
825
         */
826
        if (count > 1 && count < n-1) {
827
            /*
828
             * The number of rows we need is n-count. See if we can
829
             * find that many rows which each have a zero in all
830
             * the positions listed in `set'.
831
             */
832
            int rows = 0;
833
            for (i = 0; i < n; i++) {
834
                int ok = TRUE;
835
                for (j = 0; j < n; j++)
836
                    if (set[j] && grid[i*cr+j]) {
837
                        ok = FALSE;
838
                        break;
839
                    }
840
                if (ok)
841
                    rows++;
842
            }
843
844
            /*
845
             * We expect never to be able to get _more_ than
846
             * n-count suitable rows: this would imply that (for
847
             * example) there are four numbers which between them
848
             * have at most three possible positions, and hence it
849
             * indicates a faulty deduction before this point or
850
             * even a bogus clue.
851
             */
852
            if (rows > n - count) {
853
#ifdef STANDALONE_SOLVER
854
		if (solver_show_working) {
855
		    va_list ap;
856
		    printf("%*s", solver_recurse_depth*4,
857
			   "");
858
		    va_start(ap, fmt);
859
		    vprintf(fmt, ap);
860
		    va_end(ap);
861
		    printf(":\n%*s  contradiction reached\n",
862
			   solver_recurse_depth*4, "");
863
		}
864
#endif
865
		return -1;
866
	    }
867
868
            if (rows >= n - count) {
869
                int progress = FALSE;
870
871
                /*
872
                 * We've got one! Now, for each row which _doesn't_
873
                 * satisfy the criterion, eliminate all its set
874
                 * bits in the positions _not_ listed in `set'.
875
                 * Return +1 (meaning progress has been made) if we
876
                 * successfully eliminated anything at all.
877
                 * 
878
                 * This involves referring back through
879
                 * rowidx/colidx in order to work out which actual
880
                 * positions in the cube to meddle with.
881
                 */
882
                for (i = 0; i < n; i++) {
883
                    int ok = TRUE;
884
                    for (j = 0; j < n; j++)
885
                        if (set[j] && grid[i*cr+j]) {
886
                            ok = FALSE;
887
                            break;
888
                        }
889
                    if (!ok) {
890
                        for (j = 0; j < n; j++)
891
                            if (!set[j] && grid[i*cr+j]) {
1.2.2 by Ben Hutchings
Import upstream version 7983
892
                                int fpos = indices[rowidx[i]*cr+colidx[j]];
1 by Ben Hutchings
Import upstream version 6452
893
#ifdef STANDALONE_SOLVER
894
                                if (solver_show_working) {
895
                                    int px, py, pn;
896
897
                                    if (!progress) {
898
                                        va_list ap;
899
					printf("%*s", solver_recurse_depth*4,
900
					       "");
901
                                        va_start(ap, fmt);
902
                                        vprintf(fmt, ap);
903
                                        va_end(ap);
904
                                        printf(":\n");
905
                                    }
906
907
                                    pn = 1 + fpos % cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
908
                                    px = fpos / cr;
909
                                    py = px / cr;
910
                                    px %= cr;
1 by Ben Hutchings
Import upstream version 6452
911
912
                                    printf("%*s  ruling out %d at (%d,%d)\n",
913
					   solver_recurse_depth*4, "",
1.2.2 by Ben Hutchings
Import upstream version 7983
914
                                           pn, 1+px, 1+py);
1 by Ben Hutchings
Import upstream version 6452
915
                                }
916
#endif
917
                                progress = TRUE;
918
                                usage->cube[fpos] = FALSE;
919
                            }
920
                    }
921
                }
922
923
                if (progress) {
924
                    return +1;
925
                }
926
            }
927
        }
928
929
        /*
930
         * Binary increment: change the rightmost 0 to a 1, and
931
         * change all 1s to the right of it to 0s.
932
         */
933
        i = n;
934
        while (i > 0 && set[i-1])
935
            set[--i] = 0, count--;
936
        if (i > 0)
937
            set[--i] = 1, count++;
938
        else
939
            break;                     /* done */
940
    }
941
942
    return 0;
943
}
944
945
/*
946
 * Look for forcing chains. A forcing chain is a path of
947
 * pairwise-exclusive squares (i.e. each pair of adjacent squares
948
 * in the path are in the same row, column or block) with the
949
 * following properties:
950
 *
951
 *  (a) Each square on the path has precisely two possible numbers.
952
 *
953
 *  (b) Each pair of squares which are adjacent on the path share
1.2.2 by Ben Hutchings
Import upstream version 7983
954
 * 	at least one possible number in common.
1 by Ben Hutchings
Import upstream version 6452
955
 *
956
 *  (c) Each square in the middle of the path shares _both_ of its
1.2.2 by Ben Hutchings
Import upstream version 7983
957
 * 	numbers with at least one of its neighbours (not the same
958
 * 	one with both neighbours).
1 by Ben Hutchings
Import upstream version 6452
959
 *
960
 * These together imply that at least one of the possible number
961
 * choices at one end of the path forces _all_ the rest of the
962
 * numbers along the path. In order to make real use of this, we
963
 * need further properties:
964
 *
1.2.2 by Ben Hutchings
Import upstream version 7983
965
 *  (c) Ruling out some number N from the square at one end of the
966
 * 	path forces the square at the other end to take the same
967
 * 	number N.
1 by Ben Hutchings
Import upstream version 6452
968
 *
969
 *  (d) The two end squares are both in line with some third
1.2.2 by Ben Hutchings
Import upstream version 7983
970
 * 	square.
1 by Ben Hutchings
Import upstream version 6452
971
 *
972
 *  (e) That third square currently has N as a possibility.
973
 *
974
 * If we can find all of that lot, we can deduce that at least one
975
 * of the two ends of the forcing chain has number N, and that
976
 * therefore the mutually adjacent third square does not.
977
 *
978
 * To find forcing chains, we're going to start a bfs at each
979
 * suitable square, once for each of its two possible numbers.
980
 */
981
static int solver_forcing(struct solver_usage *usage,
982
                          struct solver_scratch *scratch)
983
{
1.2.2 by Ben Hutchings
Import upstream version 7983
984
    int cr = usage->cr;
1 by Ben Hutchings
Import upstream version 6452
985
    int *bfsqueue = scratch->bfsqueue;
986
#ifdef STANDALONE_SOLVER
987
    int *bfsprev = scratch->bfsprev;
988
#endif
989
    unsigned char *number = scratch->grid;
990
    int *neighbours = scratch->neighbours;
991
    int x, y;
992
993
    for (y = 0; y < cr; y++)
994
        for (x = 0; x < cr; x++) {
995
            int count, t, n;
996
997
            /*
998
             * If this square doesn't have exactly two candidate
999
             * numbers, don't try it.
1000
             * 
1001
             * In this loop we also sum the candidate numbers,
1002
             * which is a nasty hack to allow us to quickly find
1003
             * `the other one' (since we will shortly know there
1004
             * are exactly two).
1005
             */
1006
            for (count = t = 0, n = 1; n <= cr; n++)
1007
                if (cube(x, y, n))
1008
                    count++, t += n;
1009
            if (count != 2)
1010
                continue;
1011
1012
            /*
1013
             * Now attempt a bfs for each candidate.
1014
             */
1015
            for (n = 1; n <= cr; n++)
1016
                if (cube(x, y, n)) {
1017
                    int orign, currn, head, tail;
1018
1019
                    /*
1020
                     * Begin a bfs.
1021
                     */
1022
                    orign = n;
1023
1024
                    memset(number, cr+1, cr*cr);
1025
                    head = tail = 0;
1026
                    bfsqueue[tail++] = y*cr+x;
1027
#ifdef STANDALONE_SOLVER
1028
                    bfsprev[y*cr+x] = -1;
1029
#endif
1030
                    number[y*cr+x] = t - n;
1031
1032
                    while (head < tail) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1033
                        int xx, yy, nneighbours, xt, yt, i;
1 by Ben Hutchings
Import upstream version 6452
1034
1035
                        xx = bfsqueue[head++];
1036
                        yy = xx / cr;
1037
                        xx %= cr;
1038
1039
                        currn = number[yy*cr+xx];
1040
1041
                        /*
1042
                         * Find neighbours of yy,xx.
1043
                         */
1044
                        nneighbours = 0;
1045
                        for (yt = 0; yt < cr; yt++)
1046
                            neighbours[nneighbours++] = yt*cr+xx;
1047
                        for (xt = 0; xt < cr; xt++)
1048
                            neighbours[nneighbours++] = yy*cr+xt;
1.2.2 by Ben Hutchings
Import upstream version 7983
1049
                        xt = usage->blocks->whichblock[yy*cr+xx];
1050
                        for (yt = 0; yt < cr; yt++)
1051
			    neighbours[nneighbours++] = usage->blocks->blocks[xt][yt];
1052
			if (usage->diag) {
1053
			    int sqindex = yy*cr+xx;
1054
			    if (ondiag0(sqindex)) {
1055
				for (i = 0; i < cr; i++)
1056
				    neighbours[nneighbours++] = diag0(i);
1057
			    }
1058
			    if (ondiag1(sqindex)) {
1059
				for (i = 0; i < cr; i++)
1060
				    neighbours[nneighbours++] = diag1(i);
1061
			    }
1062
			}
1 by Ben Hutchings
Import upstream version 6452
1063
1064
                        /*
1065
                         * Try visiting each of those neighbours.
1066
                         */
1067
                        for (i = 0; i < nneighbours; i++) {
1068
                            int cc, tt, nn;
1069
1070
                            xt = neighbours[i] % cr;
1071
                            yt = neighbours[i] / cr;
1072
1073
                            /*
1074
                             * We need this square to not be
1075
                             * already visited, and to include
1076
                             * currn as a possible number.
1077
                             */
1078
                            if (number[yt*cr+xt] <= cr)
1079
                                continue;
1080
                            if (!cube(xt, yt, currn))
1081
                                continue;
1082
1083
                            /*
1084
                             * Don't visit _this_ square a second
1085
                             * time!
1086
                             */
1087
                            if (xt == xx && yt == yy)
1088
                                continue;
1089
1090
                            /*
1091
                             * To continue with the bfs, we need
1092
                             * this square to have exactly two
1093
                             * possible numbers.
1094
                             */
1095
                            for (cc = tt = 0, nn = 1; nn <= cr; nn++)
1096
                                if (cube(xt, yt, nn))
1097
                                    cc++, tt += nn;
1098
                            if (cc == 2) {
1099
                                bfsqueue[tail++] = yt*cr+xt;
1100
#ifdef STANDALONE_SOLVER
1101
                                bfsprev[yt*cr+xt] = yy*cr+xx;
1102
#endif
1103
                                number[yt*cr+xt] = tt - currn;
1104
                            }
1105
1106
                            /*
1107
                             * One other possibility is that this
1108
                             * might be the square in which we can
1109
                             * make a real deduction: if it's
1110
                             * adjacent to x,y, and currn is equal
1111
                             * to the original number we ruled out.
1112
                             */
1113
                            if (currn == orign &&
1114
                                (xt == x || yt == y ||
1.2.2 by Ben Hutchings
Import upstream version 7983
1115
                                 (usage->blocks->whichblock[yt*cr+xt] == usage->blocks->whichblock[y*cr+x]) ||
1116
				 (usage->diag && ((ondiag0(yt*cr+xt) && ondiag0(y*cr+x)) ||
1117
						  (ondiag1(yt*cr+xt) && ondiag1(y*cr+x)))))) {
1 by Ben Hutchings
Import upstream version 6452
1118
#ifdef STANDALONE_SOLVER
1119
                                if (solver_show_working) {
1120
                                    char *sep = "";
1121
                                    int xl, yl;
1122
                                    printf("%*sforcing chain, %d at ends of ",
1123
                                           solver_recurse_depth*4, "", orign);
1124
                                    xl = xx;
1125
                                    yl = yy;
1126
                                    while (1) {
1127
                                        printf("%s(%d,%d)", sep, 1+xl,
1.2.2 by Ben Hutchings
Import upstream version 7983
1128
                                               1+yl);
1 by Ben Hutchings
Import upstream version 6452
1129
                                        xl = bfsprev[yl*cr+xl];
1130
                                        if (xl < 0)
1131
                                            break;
1132
                                        yl = xl / cr;
1133
                                        xl %= cr;
1134
                                        sep = "-";
1135
                                    }
1136
                                    printf("\n%*s  ruling out %d at (%d,%d)\n",
1137
                                           solver_recurse_depth*4, "",
1.2.2 by Ben Hutchings
Import upstream version 7983
1138
                                           orign, 1+xt, 1+yt);
1 by Ben Hutchings
Import upstream version 6452
1139
                                }
1140
#endif
1141
                                cube(xt, yt, orign) = FALSE;
1142
                                return 1;
1143
                            }
1144
                        }
1145
                    }
1146
                }
1147
        }
1148
1149
    return 0;
1150
}
1151
1152
static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
1153
{
1154
    struct solver_scratch *scratch = snew(struct solver_scratch);
1155
    int cr = usage->cr;
1156
    scratch->grid = snewn(cr*cr, unsigned char);
1157
    scratch->rowidx = snewn(cr, unsigned char);
1158
    scratch->colidx = snewn(cr, unsigned char);
1159
    scratch->set = snewn(cr, unsigned char);
1.2.2 by Ben Hutchings
Import upstream version 7983
1160
    scratch->neighbours = snewn(5*cr, int);
1 by Ben Hutchings
Import upstream version 6452
1161
    scratch->bfsqueue = snewn(cr*cr, int);
1162
#ifdef STANDALONE_SOLVER
1163
    scratch->bfsprev = snewn(cr*cr, int);
1164
#endif
1.2.2 by Ben Hutchings
Import upstream version 7983
1165
    scratch->indexlist = snewn(cr*cr, int);   /* used for set elimination */
1166
    scratch->indexlist2 = snewn(cr, int);   /* only used for intersect() */
1 by Ben Hutchings
Import upstream version 6452
1167
    return scratch;
1168
}
1169
1170
static void solver_free_scratch(struct solver_scratch *scratch)
1171
{
1172
#ifdef STANDALONE_SOLVER
1173
    sfree(scratch->bfsprev);
1174
#endif
1175
    sfree(scratch->bfsqueue);
1176
    sfree(scratch->neighbours);
1177
    sfree(scratch->set);
1178
    sfree(scratch->colidx);
1179
    sfree(scratch->rowidx);
1180
    sfree(scratch->grid);
1.2.2 by Ben Hutchings
Import upstream version 7983
1181
    sfree(scratch->indexlist);
1182
    sfree(scratch->indexlist2);
1 by Ben Hutchings
Import upstream version 6452
1183
    sfree(scratch);
1184
}
1185
1.2.2 by Ben Hutchings
Import upstream version 7983
1186
static int solver(int cr, struct block_structure *blocks, int xtype,
1187
		  digit *grid, int maxdiff)
1 by Ben Hutchings
Import upstream version 6452
1188
{
1189
    struct solver_usage *usage;
1190
    struct solver_scratch *scratch;
1.2.2 by Ben Hutchings
Import upstream version 7983
1191
    int x, y, b, i, n, ret;
1 by Ben Hutchings
Import upstream version 6452
1192
    int diff = DIFF_BLOCK;
1193
1194
    /*
1195
     * Set up a usage structure as a clean slate (everything
1196
     * possible).
1197
     */
1198
    usage = snew(struct solver_usage);
1199
    usage->cr = cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
1200
    usage->blocks = blocks;
1 by Ben Hutchings
Import upstream version 6452
1201
    usage->cube = snewn(cr*cr*cr, unsigned char);
1202
    usage->grid = grid;		       /* write straight back to the input */
1203
    memset(usage->cube, TRUE, cr*cr*cr);
1204
1205
    usage->row = snewn(cr * cr, unsigned char);
1206
    usage->col = snewn(cr * cr, unsigned char);
1207
    usage->blk = snewn(cr * cr, unsigned char);
1208
    memset(usage->row, FALSE, cr * cr);
1209
    memset(usage->col, FALSE, cr * cr);
1210
    memset(usage->blk, FALSE, cr * cr);
1211
1.2.2 by Ben Hutchings
Import upstream version 7983
1212
    if (xtype) {
1213
	usage->diag = snewn(cr * 2, unsigned char);
1214
	memset(usage->diag, FALSE, cr * 2);
1215
    } else
1216
	usage->diag = NULL; 
1217
1 by Ben Hutchings
Import upstream version 6452
1218
    scratch = solver_new_scratch(usage);
1219
1220
    /*
1221
     * Place all the clue numbers we are given.
1222
     */
1223
    for (x = 0; x < cr; x++)
1224
	for (y = 0; y < cr; y++)
1225
	    if (grid[y*cr+x])
1.2.2 by Ben Hutchings
Import upstream version 7983
1226
		solver_place(usage, x, y, grid[y*cr+x]);
1 by Ben Hutchings
Import upstream version 6452
1227
1228
    /*
1229
     * Now loop over the grid repeatedly trying all permitted modes
1230
     * of reasoning. The loop terminates if we complete an
1231
     * iteration without making any progress; we then return
1232
     * failure or success depending on whether the grid is full or
1233
     * not.
1234
     */
1235
    while (1) {
1236
        /*
1237
         * I'd like to write `continue;' inside each of the
1238
         * following loops, so that the solver returns here after
1239
         * making some progress. However, I can't specify that I
1240
         * want to continue an outer loop rather than the innermost
1241
         * one, so I'm apologetically resorting to a goto.
1242
         */
1243
        cont:
1244
1245
	/*
1246
	 * Blockwise positional elimination.
1247
	 */
1.2.2 by Ben Hutchings
Import upstream version 7983
1248
	for (b = 0; b < cr; b++)
1249
	    for (n = 1; n <= cr; n++)
1250
		if (!usage->blk[b*cr+n-1]) {
1251
		    for (i = 0; i < cr; i++)
1252
			scratch->indexlist[i] = cubepos2(usage->blocks->blocks[b][i],n);
1253
		    ret = solver_elim(usage, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1254
#ifdef STANDALONE_SOLVER
1.2.2 by Ben Hutchings
Import upstream version 7983
1255
				      , "positional elimination,"
1256
				      " %d in block %s", n,
1257
				      usage->blocks->blocknames[b]
1 by Ben Hutchings
Import upstream version 6452
1258
#endif
1.2.2 by Ben Hutchings
Import upstream version 7983
1259
				      );
1260
		    if (ret < 0) {
1261
			diff = DIFF_IMPOSSIBLE;
1262
			goto got_result;
1263
		    } else if (ret > 0) {
1264
			diff = max(diff, DIFF_BLOCK);
1265
			goto cont;
1266
		    }
1267
		}
1 by Ben Hutchings
Import upstream version 6452
1268
1269
	if (maxdiff <= DIFF_BLOCK)
1270
	    break;
1271
1272
	/*
1273
	 * Row-wise positional elimination.
1274
	 */
1275
	for (y = 0; y < cr; y++)
1276
	    for (n = 1; n <= cr; n++)
1277
		if (!usage->row[y*cr+n-1]) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1278
		    for (x = 0; x < cr; x++)
1279
			scratch->indexlist[x] = cubepos(x, y, n);
1280
		    ret = solver_elim(usage, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1281
#ifdef STANDALONE_SOLVER
1282
				      , "positional elimination,"
1.2.2 by Ben Hutchings
Import upstream version 7983
1283
				      " %d in row %d", n, 1+y
1 by Ben Hutchings
Import upstream version 6452
1284
#endif
1285
				      );
1286
		    if (ret < 0) {
1287
			diff = DIFF_IMPOSSIBLE;
1288
			goto got_result;
1289
		    } else if (ret > 0) {
1290
			diff = max(diff, DIFF_SIMPLE);
1291
			goto cont;
1292
		    }
1293
                }
1294
	/*
1295
	 * Column-wise positional elimination.
1296
	 */
1297
	for (x = 0; x < cr; x++)
1298
	    for (n = 1; n <= cr; n++)
1299
		if (!usage->col[x*cr+n-1]) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1300
		    for (y = 0; y < cr; y++)
1301
			scratch->indexlist[y] = cubepos(x, y, n);
1302
		    ret = solver_elim(usage, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1303
#ifdef STANDALONE_SOLVER
1304
				      , "positional elimination,"
1305
				      " %d in column %d", n, 1+x
1306
#endif
1307
				      );
1308
		    if (ret < 0) {
1309
			diff = DIFF_IMPOSSIBLE;
1310
			goto got_result;
1311
		    } else if (ret > 0) {
1312
			diff = max(diff, DIFF_SIMPLE);
1313
			goto cont;
1314
		    }
1315
                }
1316
1317
	/*
1.2.2 by Ben Hutchings
Import upstream version 7983
1318
	 * X-diagonal positional elimination.
1319
	 */
1320
	if (usage->diag) {
1321
	    for (n = 1; n <= cr; n++)
1322
		if (!usage->diag[n-1]) {
1323
		    for (i = 0; i < cr; i++)
1324
			scratch->indexlist[i] = cubepos2(diag0(i), n);
1325
		    ret = solver_elim(usage, scratch->indexlist
1326
#ifdef STANDALONE_SOLVER
1327
				      , "positional elimination,"
1328
				      " %d in \\-diagonal", n
1329
#endif
1330
				      );
1331
		    if (ret < 0) {
1332
			diff = DIFF_IMPOSSIBLE;
1333
			goto got_result;
1334
		    } else if (ret > 0) {
1335
			diff = max(diff, DIFF_SIMPLE);
1336
			goto cont;
1337
		    }
1338
                }
1339
	    for (n = 1; n <= cr; n++)
1340
		if (!usage->diag[cr+n-1]) {
1341
		    for (i = 0; i < cr; i++)
1342
			scratch->indexlist[i] = cubepos2(diag1(i), n);
1343
		    ret = solver_elim(usage, scratch->indexlist
1344
#ifdef STANDALONE_SOLVER
1345
				      , "positional elimination,"
1346
				      " %d in /-diagonal", n
1347
#endif
1348
				      );
1349
		    if (ret < 0) {
1350
			diff = DIFF_IMPOSSIBLE;
1351
			goto got_result;
1352
		    } else if (ret > 0) {
1353
			diff = max(diff, DIFF_SIMPLE);
1354
			goto cont;
1355
		    }
1356
                }
1357
	}
1358
1359
	/*
1 by Ben Hutchings
Import upstream version 6452
1360
	 * Numeric elimination.
1361
	 */
1362
	for (x = 0; x < cr; x++)
1363
	    for (y = 0; y < cr; y++)
1.2.2 by Ben Hutchings
Import upstream version 7983
1364
		if (!usage->grid[y*cr+x]) {
1365
		    for (n = 1; n <= cr; n++)
1366
			scratch->indexlist[n-1] = cubepos(x, y, n);
1367
		    ret = solver_elim(usage, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1368
#ifdef STANDALONE_SOLVER
1.2.2 by Ben Hutchings
Import upstream version 7983
1369
				      , "numeric elimination at (%d,%d)",
1370
				      1+x, 1+y
1 by Ben Hutchings
Import upstream version 6452
1371
#endif
1372
				      );
1373
		    if (ret < 0) {
1374
			diff = DIFF_IMPOSSIBLE;
1375
			goto got_result;
1376
		    } else if (ret > 0) {
1377
			diff = max(diff, DIFF_SIMPLE);
1378
			goto cont;
1379
		    }
1380
                }
1381
1382
	if (maxdiff <= DIFF_SIMPLE)
1383
	    break;
1384
1385
        /*
1386
         * Intersectional analysis, rows vs blocks.
1387
         */
1388
        for (y = 0; y < cr; y++)
1.2.2 by Ben Hutchings
Import upstream version 7983
1389
            for (b = 0; b < cr; b++)
1390
                for (n = 1; n <= cr; n++) {
1391
                    if (usage->row[y*cr+n-1] ||
1392
                        usage->blk[b*cr+n-1])
1393
			continue;
1394
		    for (i = 0; i < cr; i++) {
1395
			scratch->indexlist[i] = cubepos(i, y, n);
1396
			scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
1397
		    }
1 by Ben Hutchings
Import upstream version 6452
1398
		    /*
1399
		     * solver_intersect() never returns -1.
1400
		     */
1.2.2 by Ben Hutchings
Import upstream version 7983
1401
		    if (solver_intersect(usage, scratch->indexlist,
1402
					 scratch->indexlist2
1 by Ben Hutchings
Import upstream version 6452
1403
#ifdef STANDALONE_SOLVER
1404
                                          , "intersectional analysis,"
1.2.2 by Ben Hutchings
Import upstream version 7983
1405
                                          " %d in row %d vs block %s",
1406
                                          n, 1+y, usage->blocks->blocknames[b]
1 by Ben Hutchings
Import upstream version 6452
1407
#endif
1408
                                          ) ||
1.2.2 by Ben Hutchings
Import upstream version 7983
1409
                         solver_intersect(usage, scratch->indexlist2,
1410
					 scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1411
#ifdef STANDALONE_SOLVER
1412
                                          , "intersectional analysis,"
1.2.2 by Ben Hutchings
Import upstream version 7983
1413
                                          " %d in block %s vs row %d",
1414
                                          n, usage->blocks->blocknames[b], 1+y
1 by Ben Hutchings
Import upstream version 6452
1415
#endif
1.2.2 by Ben Hutchings
Import upstream version 7983
1416
                                          )) {
1 by Ben Hutchings
Import upstream version 6452
1417
                        diff = max(diff, DIFF_INTERSECT);
1418
                        goto cont;
1419
                    }
1.2.2 by Ben Hutchings
Import upstream version 7983
1420
		}
1 by Ben Hutchings
Import upstream version 6452
1421
1422
        /*
1423
         * Intersectional analysis, columns vs blocks.
1424
         */
1425
        for (x = 0; x < cr; x++)
1.2.2 by Ben Hutchings
Import upstream version 7983
1426
            for (b = 0; b < cr; b++)
1427
                for (n = 1; n <= cr; n++) {
1428
                    if (usage->col[x*cr+n-1] ||
1429
                        usage->blk[b*cr+n-1])
1430
			continue;
1431
		    for (i = 0; i < cr; i++) {
1432
			scratch->indexlist[i] = cubepos(x, i, n);
1433
			scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
1434
		    }
1435
		    if (solver_intersect(usage, scratch->indexlist,
1436
					 scratch->indexlist2
1437
#ifdef STANDALONE_SOLVER
1438
                                          , "intersectional analysis,"
1439
                                          " %d in column %d vs block %s",
1440
                                          n, 1+x, usage->blocks->blocknames[b]
1441
#endif
1442
                                          ) ||
1443
                         solver_intersect(usage, scratch->indexlist2,
1444
					 scratch->indexlist
1445
#ifdef STANDALONE_SOLVER
1446
                                          , "intersectional analysis,"
1447
                                          " %d in block %s vs column %d",
1448
                                          n, usage->blocks->blocknames[b], 1+x
1449
#endif
1450
                                          )) {
1451
                        diff = max(diff, DIFF_INTERSECT);
1452
                        goto cont;
1453
                    }
1454
		}
1455
1456
	if (usage->diag) {
1457
	    /*
1458
	     * Intersectional analysis, \-diagonal vs blocks.
1459
	     */
1460
            for (b = 0; b < cr; b++)
1461
                for (n = 1; n <= cr; n++) {
1462
                    if (usage->diag[n-1] ||
1463
                        usage->blk[b*cr+n-1])
1464
			continue;
1465
		    for (i = 0; i < cr; i++) {
1466
			scratch->indexlist[i] = cubepos2(diag0(i), n);
1467
			scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
1468
		    }
1469
		    if (solver_intersect(usage, scratch->indexlist,
1470
					 scratch->indexlist2
1471
#ifdef STANDALONE_SOLVER
1472
                                          , "intersectional analysis,"
1473
                                          " %d in \\-diagonal vs block %s",
1474
                                          n, 1+x, usage->blocks->blocknames[b]
1475
#endif
1476
                                          ) ||
1477
                         solver_intersect(usage, scratch->indexlist2,
1478
					 scratch->indexlist
1479
#ifdef STANDALONE_SOLVER
1480
                                          , "intersectional analysis,"
1481
                                          " %d in block %s vs \\-diagonal",
1482
                                          n, usage->blocks->blocknames[b], 1+x
1483
#endif
1484
                                          )) {
1485
                        diff = max(diff, DIFF_INTERSECT);
1486
                        goto cont;
1487
                    }
1488
		}
1489
1490
	    /*
1491
	     * Intersectional analysis, /-diagonal vs blocks.
1492
	     */
1493
            for (b = 0; b < cr; b++)
1494
                for (n = 1; n <= cr; n++) {
1495
                    if (usage->diag[cr+n-1] ||
1496
                        usage->blk[b*cr+n-1])
1497
			continue;
1498
		    for (i = 0; i < cr; i++) {
1499
			scratch->indexlist[i] = cubepos2(diag1(i), n);
1500
			scratch->indexlist2[i] = cubepos2(usage->blocks->blocks[b][i], n);
1501
		    }
1502
		    if (solver_intersect(usage, scratch->indexlist,
1503
					 scratch->indexlist2
1504
#ifdef STANDALONE_SOLVER
1505
                                          , "intersectional analysis,"
1506
                                          " %d in /-diagonal vs block %s",
1507
                                          n, 1+x, usage->blocks->blocknames[b]
1508
#endif
1509
                                          ) ||
1510
                         solver_intersect(usage, scratch->indexlist2,
1511
					 scratch->indexlist
1512
#ifdef STANDALONE_SOLVER
1513
                                          , "intersectional analysis,"
1514
                                          " %d in block %s vs /-diagonal",
1515
                                          n, usage->blocks->blocknames[b], 1+x
1516
#endif
1517
                                          )) {
1518
                        diff = max(diff, DIFF_INTERSECT);
1519
                        goto cont;
1520
                    }
1521
		}
1522
	}
1 by Ben Hutchings
Import upstream version 6452
1523
1524
	if (maxdiff <= DIFF_INTERSECT)
1525
	    break;
1526
1527
	/*
1528
	 * Blockwise set elimination.
1529
	 */
1.2.2 by Ben Hutchings
Import upstream version 7983
1530
	for (b = 0; b < cr; b++) {
1531
	    for (i = 0; i < cr; i++)
1532
		for (n = 1; n <= cr; n++)
1533
		    scratch->indexlist[i*cr+n-1] = cubepos2(usage->blocks->blocks[b][i], n);
1534
	    ret = solver_set(usage, scratch, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1535
#ifdef STANDALONE_SOLVER
1.2.2 by Ben Hutchings
Import upstream version 7983
1536
			     , "set elimination, block %s",
1537
			     usage->blocks->blocknames[b]
1 by Ben Hutchings
Import upstream version 6452
1538
#endif
1539
				 );
1.2.2 by Ben Hutchings
Import upstream version 7983
1540
	    if (ret < 0) {
1541
		diff = DIFF_IMPOSSIBLE;
1542
		goto got_result;
1543
	    } else if (ret > 0) {
1544
		diff = max(diff, DIFF_SET);
1545
		goto cont;
1 by Ben Hutchings
Import upstream version 6452
1546
	    }
1.2.2 by Ben Hutchings
Import upstream version 7983
1547
	}
1 by Ben Hutchings
Import upstream version 6452
1548
1549
	/*
1550
	 * Row-wise set elimination.
1551
	 */
1552
	for (y = 0; y < cr; y++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1553
	    for (x = 0; x < cr; x++)
1554
		for (n = 1; n <= cr; n++)
1555
		    scratch->indexlist[x*cr+n-1] = cubepos(x, y, n);
1556
	    ret = solver_set(usage, scratch, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1557
#ifdef STANDALONE_SOLVER
1.2.2 by Ben Hutchings
Import upstream version 7983
1558
			     , "set elimination, row %d", 1+y
1 by Ben Hutchings
Import upstream version 6452
1559
#endif
1560
			     );
1561
	    if (ret < 0) {
1562
		diff = DIFF_IMPOSSIBLE;
1563
		goto got_result;
1564
	    } else if (ret > 0) {
1565
		diff = max(diff, DIFF_SET);
1566
		goto cont;
1567
	    }
1568
	}
1569
1570
	/*
1571
	 * Column-wise set elimination.
1572
	 */
1573
	for (x = 0; x < cr; x++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1574
	    for (y = 0; y < cr; y++)
1575
		for (n = 1; n <= cr; n++)
1576
		    scratch->indexlist[y*cr+n-1] = cubepos(x, y, n);
1577
            ret = solver_set(usage, scratch, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1578
#ifdef STANDALONE_SOLVER
1579
			     , "set elimination, column %d", 1+x
1580
#endif
1581
			     );
1582
	    if (ret < 0) {
1583
		diff = DIFF_IMPOSSIBLE;
1584
		goto got_result;
1585
	    } else if (ret > 0) {
1586
		diff = max(diff, DIFF_SET);
1587
		goto cont;
1588
	    }
1589
	}
1590
1.2.2 by Ben Hutchings
Import upstream version 7983
1591
	if (usage->diag) {
1592
	    /*
1593
	     * \-diagonal set elimination.
1594
	     */
1595
	    for (i = 0; i < cr; i++)
1596
		for (n = 1; n <= cr; n++)
1597
		    scratch->indexlist[i*cr+n-1] = cubepos2(diag0(i), n);
1598
            ret = solver_set(usage, scratch, scratch->indexlist
1599
#ifdef STANDALONE_SOLVER
1600
			     , "set elimination, \\-diagonal"
1601
#endif
1602
			     );
1603
	    if (ret < 0) {
1604
		diff = DIFF_IMPOSSIBLE;
1605
		goto got_result;
1606
	    } else if (ret > 0) {
1607
		diff = max(diff, DIFF_SET);
1608
		goto cont;
1609
	    }
1610
1611
	    /*
1612
	     * /-diagonal set elimination.
1613
	     */
1614
	    for (i = 0; i < cr; i++)
1615
		for (n = 1; n <= cr; n++)
1616
		    scratch->indexlist[i*cr+n-1] = cubepos2(diag1(i), n);
1617
            ret = solver_set(usage, scratch, scratch->indexlist
1618
#ifdef STANDALONE_SOLVER
1619
			     , "set elimination, \\-diagonal"
1620
#endif
1621
			     );
1622
	    if (ret < 0) {
1623
		diff = DIFF_IMPOSSIBLE;
1624
		goto got_result;
1625
	    } else if (ret > 0) {
1626
		diff = max(diff, DIFF_SET);
1627
		goto cont;
1628
	    }
1629
	}
1630
1631
	if (maxdiff <= DIFF_SET)
1632
	    break;
1633
1 by Ben Hutchings
Import upstream version 6452
1634
	/*
1635
	 * Row-vs-column set elimination on a single number.
1636
	 */
1637
	for (n = 1; n <= cr; n++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
1638
	    for (y = 0; y < cr; y++)
1639
		for (x = 0; x < cr; x++)
1640
		    scratch->indexlist[y*cr+x] = cubepos(x, y, n);
1641
            ret = solver_set(usage, scratch, scratch->indexlist
1 by Ben Hutchings
Import upstream version 6452
1642
#ifdef STANDALONE_SOLVER
1643
			     , "positional set elimination, number %d", n
1644
#endif
1645
			     );
1646
	    if (ret < 0) {
1647
		diff = DIFF_IMPOSSIBLE;
1648
		goto got_result;
1649
	    } else if (ret > 0) {
1650
		diff = max(diff, DIFF_EXTREME);
1651
		goto cont;
1652
	    }
1653
	}
1654
1655
        /*
1656
         * Forcing chains.
1657
         */
1658
        if (solver_forcing(usage, scratch)) {
1659
            diff = max(diff, DIFF_EXTREME);
1660
            goto cont;
1661
        }
1662
1663
	/*
1664
	 * If we reach here, we have made no deductions in this
1665
	 * iteration, so the algorithm terminates.
1666
	 */
1667
	break;
1668
    }
1669
1670
    /*
1671
     * Last chance: if we haven't fully solved the puzzle yet, try
1672
     * recursing based on guesses for a particular square. We pick
1673
     * one of the most constrained empty squares we can find, which
1674
     * has the effect of pruning the search tree as much as
1675
     * possible.
1676
     */
1677
    if (maxdiff >= DIFF_RECURSIVE) {
1678
	int best, bestcount;
1679
1680
	best = -1;
1681
	bestcount = cr+1;
1682
1683
	for (y = 0; y < cr; y++)
1684
	    for (x = 0; x < cr; x++)
1685
		if (!grid[y*cr+x]) {
1686
		    int count;
1687
1688
		    /*
1689
		     * An unfilled square. Count the number of
1690
		     * possible digits in it.
1691
		     */
1692
		    count = 0;
1693
		    for (n = 1; n <= cr; n++)
1.2.2 by Ben Hutchings
Import upstream version 7983
1694
			if (cube(x,y,n))
1 by Ben Hutchings
Import upstream version 6452
1695
			    count++;
1696
1697
		    /*
1698
		     * We should have found any impossibilities
1699
		     * already, so this can safely be an assert.
1700
		     */
1701
		    assert(count > 1);
1702
1703
		    if (count < bestcount) {
1704
			bestcount = count;
1705
			best = y*cr+x;
1706
		    }
1707
		}
1708
1709
	if (best != -1) {
1710
	    int i, j;
1711
	    digit *list, *ingrid, *outgrid;
1712
1713
	    diff = DIFF_IMPOSSIBLE;    /* no solution found yet */
1714
1715
	    /*
1716
	     * Attempt recursion.
1717
	     */
1718
	    y = best / cr;
1719
	    x = best % cr;
1720
1721
	    list = snewn(cr, digit);
1722
	    ingrid = snewn(cr * cr, digit);
1723
	    outgrid = snewn(cr * cr, digit);
1724
	    memcpy(ingrid, grid, cr * cr);
1725
1726
	    /* Make a list of the possible digits. */
1727
	    for (j = 0, n = 1; n <= cr; n++)
1.2.2 by Ben Hutchings
Import upstream version 7983
1728
		if (cube(x,y,n))
1 by Ben Hutchings
Import upstream version 6452
1729
		    list[j++] = n;
1730
1731
#ifdef STANDALONE_SOLVER
1732
	    if (solver_show_working) {
1733
		char *sep = "";
1734
		printf("%*srecursing on (%d,%d) [",
1.1.4 by Ben Hutchings
Import upstream version 7446
1735
		       solver_recurse_depth*4, "", x + 1, y + 1);
1 by Ben Hutchings
Import upstream version 6452
1736
		for (i = 0; i < j; i++) {
1737
		    printf("%s%d", sep, list[i]);
1738
		    sep = " or ";
1739
		}
1740
		printf("]\n");
1741
	    }
1742
#endif
1743
1744
	    /*
1745
	     * And step along the list, recursing back into the
1746
	     * main solver at every stage.
1747
	     */
1748
	    for (i = 0; i < j; i++) {
1749
		int ret;
1750
1751
		memcpy(outgrid, ingrid, cr * cr);
1752
		outgrid[y*cr+x] = list[i];
1753
1754
#ifdef STANDALONE_SOLVER
1755
		if (solver_show_working)
1756
		    printf("%*sguessing %d at (%d,%d)\n",
1.1.4 by Ben Hutchings
Import upstream version 7446
1757
			   solver_recurse_depth*4, "", list[i], x + 1, y + 1);
1 by Ben Hutchings
Import upstream version 6452
1758
		solver_recurse_depth++;
1759
#endif
1760
1.2.2 by Ben Hutchings
Import upstream version 7983
1761
		ret = solver(cr, blocks, xtype, outgrid, maxdiff);
1 by Ben Hutchings
Import upstream version 6452
1762
1763
#ifdef STANDALONE_SOLVER
1764
		solver_recurse_depth--;
1765
		if (solver_show_working) {
1766
		    printf("%*sretracting %d at (%d,%d)\n",
1.1.4 by Ben Hutchings
Import upstream version 7446
1767
			   solver_recurse_depth*4, "", list[i], x + 1, y + 1);
1 by Ben Hutchings
Import upstream version 6452
1768
		}
1769
#endif
1770
1771
		/*
1772
		 * If we have our first solution, copy it into the
1773
		 * grid we will return.
1774
		 */
1775
		if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE)
1776
		    memcpy(grid, outgrid, cr*cr);
1777
1778
		if (ret == DIFF_AMBIGUOUS)
1779
		    diff = DIFF_AMBIGUOUS;
1780
		else if (ret == DIFF_IMPOSSIBLE)
1781
		    /* do not change our return value */;
1782
		else {
1783
		    /* the recursion turned up exactly one solution */
1784
		    if (diff == DIFF_IMPOSSIBLE)
1785
			diff = DIFF_RECURSIVE;
1786
		    else
1787
			diff = DIFF_AMBIGUOUS;
1788
		}
1789
1790
		/*
1791
		 * As soon as we've found more than one solution,
1792
		 * give up immediately.
1793
		 */
1794
		if (diff == DIFF_AMBIGUOUS)
1795
		    break;
1796
	    }
1797
1798
	    sfree(outgrid);
1799
	    sfree(ingrid);
1800
	    sfree(list);
1801
	}
1802
1803
    } else {
1804
        /*
1805
         * We're forbidden to use recursion, so we just see whether
1806
         * our grid is fully solved, and return DIFF_IMPOSSIBLE
1807
         * otherwise.
1808
         */
1809
	for (y = 0; y < cr; y++)
1810
	    for (x = 0; x < cr; x++)
1811
		if (!grid[y*cr+x])
1812
                    diff = DIFF_IMPOSSIBLE;
1813
    }
1814
1815
    got_result:;
1816
1817
#ifdef STANDALONE_SOLVER
1818
    if (solver_show_working)
1819
	printf("%*s%s found\n",
1820
	       solver_recurse_depth*4, "",
1821
	       diff == DIFF_IMPOSSIBLE ? "no solution" :
1822
	       diff == DIFF_AMBIGUOUS ? "multiple solutions" :
1823
	       "one solution");
1824
#endif
1825
1826
    sfree(usage->cube);
1827
    sfree(usage->row);
1828
    sfree(usage->col);
1829
    sfree(usage->blk);
1830
    sfree(usage);
1831
1832
    solver_free_scratch(scratch);
1833
1834
    return diff;
1835
}
1836
1837
/* ----------------------------------------------------------------------
1838
 * End of solver code.
1839
 */
1840
1841
/* ----------------------------------------------------------------------
1842
 * Solo filled-grid generator.
1843
 *
1844
 * This grid generator works by essentially trying to solve a grid
1845
 * starting from no clues, and not worrying that there's more than
1846
 * one possible solution. Unfortunately, it isn't computationally
1847
 * feasible to do this by calling the above solver with an empty
1848
 * grid, because that one needs to allocate a lot of scratch space
1849
 * at every recursion level. Instead, I have a much simpler
1850
 * algorithm which I shamelessly copied from a Python solver
1851
 * written by Andrew Wilkinson (which is GPLed, but I've reused
1852
 * only ideas and no code). It mostly just does the obvious
1853
 * recursive thing: pick an empty square, put one of the possible
1854
 * digits in it, recurse until all squares are filled, backtrack
1855
 * and change some choices if necessary.
1856
 *
1857
 * The clever bit is that every time it chooses which square to
1858
 * fill in next, it does so by counting the number of _possible_
1859
 * numbers that can go in each square, and it prioritises so that
1860
 * it picks a square with the _lowest_ number of possibilities. The
1861
 * idea is that filling in lots of the obvious bits (particularly
1862
 * any squares with only one possibility) will cut down on the list
1863
 * of possibilities for other squares and hence reduce the enormous
1864
 * search space as much as possible as early as possible.
1865
 */
1866
1867
/*
1868
 * Internal data structure used in gridgen to keep track of
1869
 * progress.
1870
 */
1871
struct gridgen_coord { int x, y, r; };
1872
struct gridgen_usage {
1.2.2 by Ben Hutchings
Import upstream version 7983
1873
    int cr;
1874
    struct block_structure *blocks;
1 by Ben Hutchings
Import upstream version 6452
1875
    /* grid is a copy of the input grid, modified as we go along */
1876
    digit *grid;
1877
    /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
1878
    unsigned char *row;
1879
    /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
1880
    unsigned char *col;
1881
    /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
1882
    unsigned char *blk;
1.2.2 by Ben Hutchings
Import upstream version 7983
1883
    /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
1884
    unsigned char *diag;
1 by Ben Hutchings
Import upstream version 6452
1885
    /* This lists all the empty spaces remaining in the grid. */
1886
    struct gridgen_coord *spaces;
1887
    int nspaces;
1888
    /* If we need randomisation in the solve, this is our random state. */
1889
    random_state *rs;
1890
};
1891
1.2.2 by Ben Hutchings
Import upstream version 7983
1892
static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n,
1893
			  int placing)
1894
{
1895
    int cr = usage->cr;
1896
    usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
1897
	usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n-1] = placing;
1898
    if (usage->diag) {
1899
	if (ondiag0(y*cr+x))
1900
	    usage->diag[n-1] = placing;
1901
	if (ondiag1(y*cr+x))
1902
	    usage->diag[cr+n-1] = placing;
1903
    }
1904
    usage->grid[y*cr+x] = placing ? n : 0;
1905
}
1906
1 by Ben Hutchings
Import upstream version 6452
1907
/*
1908
 * The real recursive step in the generating function.
1.2.2 by Ben Hutchings
Import upstream version 7983
1909
 *
1910
 * Return values: 1 means solution found, 0 means no solution
1911
 * found on this branch.
1 by Ben Hutchings
Import upstream version 6452
1912
 */
1.2.2 by Ben Hutchings
Import upstream version 7983
1913
static int gridgen_real(struct gridgen_usage *usage, digit *grid, int *steps)
1 by Ben Hutchings
Import upstream version 6452
1914
{
1.2.2 by Ben Hutchings
Import upstream version 7983
1915
    int cr = usage->cr;
1 by Ben Hutchings
Import upstream version 6452
1916
    int i, j, n, sx, sy, bestm, bestr, ret;
1917
    int *digits;
1918
1919
    /*
1920
     * Firstly, check for completion! If there are no spaces left
1921
     * in the grid, we have a solution.
1922
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
1923
    if (usage->nspaces == 0)
1 by Ben Hutchings
Import upstream version 6452
1924
	return TRUE;
1.2.2 by Ben Hutchings
Import upstream version 7983
1925
1926
    /*
1927
     * Next, abandon generation if we went over our steps limit.
1928
     */
1929
    if (*steps <= 0)
1930
	return FALSE;
1931
    (*steps)--;
1 by Ben Hutchings
Import upstream version 6452
1932
1933
    /*
1934
     * Otherwise, there must be at least one space. Find the most
1935
     * constrained space, using the `r' field as a tie-breaker.
1936
     */
1937
    bestm = cr+1;		       /* so that any space will beat it */
1938
    bestr = 0;
1939
    i = sx = sy = -1;
1940
    for (j = 0; j < usage->nspaces; j++) {
1941
	int x = usage->spaces[j].x, y = usage->spaces[j].y;
1942
	int m;
1943
1944
	/*
1945
	 * Find the number of digits that could go in this space.
1946
	 */
1947
	m = 0;
1948
	for (n = 0; n < cr; n++)
1949
	    if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
1.2.2 by Ben Hutchings
Import upstream version 7983
1950
		!usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n] &&
1951
		(!usage->diag || ((!ondiag0(y*cr+x) || !usage->diag[n]) &&
1952
				  (!ondiag1(y*cr+x) || !usage->diag[cr+n]))))
1 by Ben Hutchings
Import upstream version 6452
1953
		m++;
1954
1955
	if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
1956
	    bestm = m;
1957
	    bestr = usage->spaces[j].r;
1958
	    sx = x;
1959
	    sy = y;
1960
	    i = j;
1961
	}
1962
    }
1963
1964
    /*
1965
     * Swap that square into the final place in the spaces array,
1966
     * so that decrementing nspaces will remove it from the list.
1967
     */
1968
    if (i != usage->nspaces-1) {
1969
	struct gridgen_coord t;
1970
	t = usage->spaces[usage->nspaces-1];
1971
	usage->spaces[usage->nspaces-1] = usage->spaces[i];
1972
	usage->spaces[i] = t;
1973
    }
1974
1975
    /*
1976
     * Now we've decided which square to start our recursion at,
1977
     * simply go through all possible values, shuffling them
1978
     * randomly first if necessary.
1979
     */
1980
    digits = snewn(bestm, int);
1981
    j = 0;
1982
    for (n = 0; n < cr; n++)
1983
	if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
1.2.2 by Ben Hutchings
Import upstream version 7983
1984
	    !usage->blk[usage->blocks->whichblock[sy*cr+sx]*cr+n] &&
1985
	    (!usage->diag || ((!ondiag0(sy*cr+sx) || !usage->diag[n]) &&
1986
			      (!ondiag1(sy*cr+sx) || !usage->diag[cr+n])))) {
1 by Ben Hutchings
Import upstream version 6452
1987
	    digits[j++] = n+1;
1988
	}
1989
1990
    if (usage->rs)
1991
	shuffle(digits, j, sizeof(*digits), usage->rs);
1992
1993
    /* And finally, go through the digit list and actually recurse. */
1994
    ret = FALSE;
1995
    for (i = 0; i < j; i++) {
1996
	n = digits[i];
1997
1998
	/* Update the usage structure to reflect the placing of this digit. */
1.2.2 by Ben Hutchings
Import upstream version 7983
1999
	gridgen_place(usage, sx, sy, n, TRUE);
1 by Ben Hutchings
Import upstream version 6452
2000
	usage->nspaces--;
2001
2002
	/* Call the solver recursively. Stop when we find a solution. */
1.2.2 by Ben Hutchings
Import upstream version 7983
2003
	if (gridgen_real(usage, grid, steps)) {
1 by Ben Hutchings
Import upstream version 6452
2004
            ret = TRUE;
1.2.2 by Ben Hutchings
Import upstream version 7983
2005
	    break;
2006
	}
1 by Ben Hutchings
Import upstream version 6452
2007
2008
	/* Revert the usage structure. */
1.2.2 by Ben Hutchings
Import upstream version 7983
2009
	gridgen_place(usage, sx, sy, n, FALSE);
1 by Ben Hutchings
Import upstream version 6452
2010
	usage->nspaces++;
2011
    }
2012
2013
    sfree(digits);
2014
    return ret;
2015
}
2016
2017
/*
1.2.2 by Ben Hutchings
Import upstream version 7983
2018
 * Entry point to generator. You give it parameters and a starting
1 by Ben Hutchings
Import upstream version 6452
2019
 * grid, which is simply an array of cr*cr digits.
2020
 */
1.2.2 by Ben Hutchings
Import upstream version 7983
2021
static int gridgen(int cr, struct block_structure *blocks, int xtype,
2022
		   digit *grid, random_state *rs, int maxsteps)
1 by Ben Hutchings
Import upstream version 6452
2023
{
2024
    struct gridgen_usage *usage;
1.2.2 by Ben Hutchings
Import upstream version 7983
2025
    int x, y, ret;
1 by Ben Hutchings
Import upstream version 6452
2026
2027
    /*
2028
     * Clear the grid to start with.
2029
     */
2030
    memset(grid, 0, cr*cr);
2031
2032
    /*
2033
     * Create a gridgen_usage structure.
2034
     */
2035
    usage = snew(struct gridgen_usage);
2036
2037
    usage->cr = cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
2038
    usage->blocks = blocks;
1 by Ben Hutchings
Import upstream version 6452
2039
1.2.2 by Ben Hutchings
Import upstream version 7983
2040
    usage->grid = grid;
1 by Ben Hutchings
Import upstream version 6452
2041
2042
    usage->row = snewn(cr * cr, unsigned char);
2043
    usage->col = snewn(cr * cr, unsigned char);
2044
    usage->blk = snewn(cr * cr, unsigned char);
2045
    memset(usage->row, FALSE, cr * cr);
2046
    memset(usage->col, FALSE, cr * cr);
2047
    memset(usage->blk, FALSE, cr * cr);
2048
1.2.2 by Ben Hutchings
Import upstream version 7983
2049
    if (xtype) {
2050
	usage->diag = snewn(2 * cr, unsigned char);
2051
	memset(usage->diag, FALSE, 2 * cr);
2052
    } else {
2053
	usage->diag = NULL;
2054
    }
2055
2056
    /*
2057
     * Begin by filling in the whole top row with randomly chosen
2058
     * numbers. This cannot introduce any bias or restriction on
2059
     * the available grids, since we already know those numbers
2060
     * are all distinct so all we're doing is choosing their
2061
     * labels.
2062
     */
2063
    for (x = 0; x < cr; x++)
2064
	grid[x] = x+1;
2065
    shuffle(grid, cr, sizeof(*grid), rs);
2066
    for (x = 0; x < cr; x++)
2067
	gridgen_place(usage, x, 0, grid[x], TRUE);
2068
1 by Ben Hutchings
Import upstream version 6452
2069
    usage->spaces = snewn(cr * cr, struct gridgen_coord);
2070
    usage->nspaces = 0;
2071
2072
    usage->rs = rs;
2073
2074
    /*
1.2.2 by Ben Hutchings
Import upstream version 7983
2075
     * Initialise the list of grid spaces, taking care to leave
2076
     * out the row I've already filled in above.
1 by Ben Hutchings
Import upstream version 6452
2077
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
2078
    for (y = 1; y < cr; y++) {
1 by Ben Hutchings
Import upstream version 6452
2079
	for (x = 0; x < cr; x++) {
2080
            usage->spaces[usage->nspaces].x = x;
2081
            usage->spaces[usage->nspaces].y = y;
2082
            usage->spaces[usage->nspaces].r = random_bits(rs, 31);
2083
            usage->nspaces++;
2084
	}
2085
    }
2086
2087
    /*
2088
     * Run the real generator function.
2089
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
2090
    ret = gridgen_real(usage, grid, &maxsteps);
1 by Ben Hutchings
Import upstream version 6452
2091
2092
    /*
2093
     * Clean up the usage structure now we have our answer.
2094
     */
2095
    sfree(usage->spaces);
2096
    sfree(usage->blk);
2097
    sfree(usage->col);
2098
    sfree(usage->row);
2099
    sfree(usage);
1.2.2 by Ben Hutchings
Import upstream version 7983
2100
2101
    return ret;
1 by Ben Hutchings
Import upstream version 6452
2102
}
2103
2104
/* ----------------------------------------------------------------------
2105
 * End of grid generator code.
2106
 */
2107
2108
/*
2109
 * Check whether a grid contains a valid complete puzzle.
2110
 */
1.2.2 by Ben Hutchings
Import upstream version 7983
2111
static int check_valid(int cr, struct block_structure *blocks, int xtype,
2112
		       digit *grid)
1 by Ben Hutchings
Import upstream version 6452
2113
{
2114
    unsigned char *used;
1.2.2 by Ben Hutchings
Import upstream version 7983
2115
    int x, y, i, j, n;
1 by Ben Hutchings
Import upstream version 6452
2116
2117
    used = snewn(cr, unsigned char);
2118
2119
    /*
2120
     * Check that each row contains precisely one of everything.
2121
     */
2122
    for (y = 0; y < cr; y++) {
2123
	memset(used, FALSE, cr);
2124
	for (x = 0; x < cr; x++)
2125
	    if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
2126
		used[grid[y*cr+x]-1] = TRUE;
2127
	for (n = 0; n < cr; n++)
2128
	    if (!used[n]) {
2129
		sfree(used);
2130
		return FALSE;
2131
	    }
2132
    }
2133
2134
    /*
2135
     * Check that each column contains precisely one of everything.
2136
     */
2137
    for (x = 0; x < cr; x++) {
2138
	memset(used, FALSE, cr);
2139
	for (y = 0; y < cr; y++)
2140
	    if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
2141
		used[grid[y*cr+x]-1] = TRUE;
2142
	for (n = 0; n < cr; n++)
2143
	    if (!used[n]) {
2144
		sfree(used);
2145
		return FALSE;
2146
	    }
2147
    }
2148
2149
    /*
2150
     * Check that each block contains precisely one of everything.
2151
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
2152
    for (i = 0; i < cr; i++) {
2153
	memset(used, FALSE, cr);
2154
	for (j = 0; j < cr; j++)
2155
	    if (grid[blocks->blocks[i][j]] > 0 &&
2156
		grid[blocks->blocks[i][j]] <= cr)
2157
		used[grid[blocks->blocks[i][j]]-1] = TRUE;
2158
	for (n = 0; n < cr; n++)
2159
	    if (!used[n]) {
2160
		sfree(used);
2161
		return FALSE;
2162
	    }
2163
    }
2164
2165
    /*
2166
     * Check that each diagonal contains precisely one of everything.
2167
     */
2168
    if (xtype) {
2169
	memset(used, FALSE, cr);
2170
	for (i = 0; i < cr; i++)
2171
	    if (grid[diag0(i)] > 0 && grid[diag0(i)] <= cr)
2172
		used[grid[diag0(i)]-1] = TRUE;
2173
	for (n = 0; n < cr; n++)
2174
	    if (!used[n]) {
2175
		sfree(used);
2176
		return FALSE;
2177
	    }
2178
	for (i = 0; i < cr; i++)
2179
	    if (grid[diag1(i)] > 0 && grid[diag1(i)] <= cr)
2180
		used[grid[diag1(i)]-1] = TRUE;
2181
	for (n = 0; n < cr; n++)
2182
	    if (!used[n]) {
2183
		sfree(used);
2184
		return FALSE;
2185
	    }
1 by Ben Hutchings
Import upstream version 6452
2186
    }
2187
2188
    sfree(used);
2189
    return TRUE;
2190
}
2191
2192
static int symmetries(game_params *params, int x, int y, int *output, int s)
2193
{
2194
    int c = params->c, r = params->r, cr = c*r;
2195
    int i = 0;
2196
2197
#define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
2198
2199
    ADD(x, y);
2200
2201
    switch (s) {
2202
      case SYMM_NONE:
2203
	break;			       /* just x,y is all we need */
2204
      case SYMM_ROT2:
2205
        ADD(cr - 1 - x, cr - 1 - y);
2206
        break;
2207
      case SYMM_ROT4:
2208
        ADD(cr - 1 - y, x);
2209
        ADD(y, cr - 1 - x);
2210
        ADD(cr - 1 - x, cr - 1 - y);
2211
        break;
2212
      case SYMM_REF2:
2213
        ADD(cr - 1 - x, y);
2214
        break;
2215
      case SYMM_REF2D:
2216
        ADD(y, x);
2217
        break;
2218
      case SYMM_REF4:
2219
        ADD(cr - 1 - x, y);
2220
        ADD(x, cr - 1 - y);
2221
        ADD(cr - 1 - x, cr - 1 - y);
2222
        break;
2223
      case SYMM_REF4D:
2224
        ADD(y, x);
2225
        ADD(cr - 1 - x, cr - 1 - y);
2226
        ADD(cr - 1 - y, cr - 1 - x);
2227
        break;
2228
      case SYMM_REF8:
2229
        ADD(cr - 1 - x, y);
2230
        ADD(x, cr - 1 - y);
2231
        ADD(cr - 1 - x, cr - 1 - y);
2232
        ADD(y, x);
2233
        ADD(y, cr - 1 - x);
2234
        ADD(cr - 1 - y, x);
2235
        ADD(cr - 1 - y, cr - 1 - x);
2236
        break;
2237
    }
2238
2239
#undef ADD
2240
2241
    return i;
2242
}
2243
2244
static char *encode_solve_move(int cr, digit *grid)
2245
{
2246
    int i, len;
2247
    char *ret, *p, *sep;
2248
2249
    /*
2250
     * It's surprisingly easy to work out _exactly_ how long this
2251
     * string needs to be. To decimal-encode all the numbers from 1
2252
     * to n:
2253
     * 
2254
     *  - every number has a units digit; total is n.
2255
     *  - all numbers above 9 have a tens digit; total is max(n-9,0).
2256
     *  - all numbers above 99 have a hundreds digit; total is max(n-99,0).
2257
     *  - and so on.
2258
     */
2259
    len = 0;
2260
    for (i = 1; i <= cr; i *= 10)
2261
	len += max(cr - i + 1, 0);
2262
    len += cr;		       /* don't forget the commas */
2263
    len *= cr;		       /* there are cr rows of these */
2264
2265
    /*
2266
     * Now len is one bigger than the total size of the
2267
     * comma-separated numbers (because we counted an
2268
     * additional leading comma). We need to have a leading S
2269
     * and a trailing NUL, so we're off by one in total.
2270
     */
2271
    len++;
2272
2273
    ret = snewn(len, char);
2274
    p = ret;
2275
    *p++ = 'S';
2276
    sep = "";
2277
    for (i = 0; i < cr*cr; i++) {
2278
	p += sprintf(p, "%s%d", sep, grid[i]);
2279
	sep = ",";
2280
    }
2281
    *p++ = '\0';
2282
    assert(p - ret == len);
2283
2284
    return ret;
2285
}
2286
2287
static char *new_game_desc(game_params *params, random_state *rs,
2288
			   char **aux, int interactive)
2289
{
2290
    int c = params->c, r = params->r, cr = c*r;
2291
    int area = cr*cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
2292
    struct block_structure *blocks;
1 by Ben Hutchings
Import upstream version 6452
2293
    digit *grid, *grid2;
2294
    struct xy { int x, y; } *locs;
2295
    int nlocs;
2296
    char *desc;
2297
    int coords[16], ncoords;
2298
    int maxdiff;
2299
    int x, y, i, j;
2300
2301
    /*
2302
     * Adjust the maximum difficulty level to be consistent with
2303
     * the puzzle size: all 2x2 puzzles appear to be Trivial
2304
     * (DIFF_BLOCK) so we cannot hold out for even a Basic
2305
     * (DIFF_SIMPLE) one.
2306
     */
2307
    maxdiff = params->diff;
2308
    if (c == 2 && r == 2)
2309
        maxdiff = DIFF_BLOCK;
2310
2311
    grid = snewn(area, digit);
2312
    locs = snewn(area, struct xy);
2313
    grid2 = snewn(area, digit);
2314
1.2.2 by Ben Hutchings
Import upstream version 7983
2315
    blocks = snew(struct block_structure);
2316
    blocks->c = params->c; blocks->r = params->r;
2317
    blocks->whichblock = snewn(area*2, int);
2318
    blocks->blocks = snewn(cr, int *);
2319
    for (i = 0; i < cr; i++)
2320
	blocks->blocks[i] = blocks->whichblock + area + i*cr;
2321
#ifdef STANDALONE_SOLVER
2322
    assert(!"This should never happen, so we don't need to create blocknames");
2323
#endif
2324
1 by Ben Hutchings
Import upstream version 6452
2325
    /*
2326
     * Loop until we get a grid of the required difficulty. This is
2327
     * nasty, but it seems to be unpleasantly hard to generate
2328
     * difficult grids otherwise.
2329
     */
1.2.2 by Ben Hutchings
Import upstream version 7983
2330
    while (1) {
1 by Ben Hutchings
Import upstream version 6452
2331
        /*
1.2.2 by Ben Hutchings
Import upstream version 7983
2332
         * Generate a random solved state, starting by
2333
         * constructing the block structure.
1 by Ben Hutchings
Import upstream version 6452
2334
         */
1.2.2 by Ben Hutchings
Import upstream version 7983
2335
	if (r == 1) {		       /* jigsaw mode */
2336
	    int *dsf = divvy_rectangle(cr, cr, cr, rs);
2337
	    int nb = 0;
2338
2339
	    for (i = 0; i < area; i++)
2340
		blocks->whichblock[i] = -1;
2341
	    for (i = 0; i < area; i++) {
2342
		int j = dsf_canonify(dsf, i);
2343
		if (blocks->whichblock[j] < 0)
2344
		    blocks->whichblock[j] = nb++;
2345
		blocks->whichblock[i] = blocks->whichblock[j];
2346
	    }
2347
	    assert(nb == cr);
2348
2349
	    sfree(dsf);
2350
	} else {		       /* basic Sudoku mode */
2351
	    for (y = 0; y < cr; y++)
2352
		for (x = 0; x < cr; x++)
2353
		    blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
2354
	}
2355
	for (i = 0; i < cr; i++)
2356
	    blocks->blocks[i][cr-1] = 0;
2357
	for (i = 0; i < area; i++) {
2358
	    int b = blocks->whichblock[i];
2359
	    j = blocks->blocks[b][cr-1]++;
2360
	    assert(j < cr);
2361
	    blocks->blocks[b][j] = i;
2362
	}
2363
2364
        if (!gridgen(cr, blocks, params->xtype, grid, rs, area*area))
2365
	    continue;
2366
        assert(check_valid(cr, blocks, params->xtype, grid));
1 by Ben Hutchings
Import upstream version 6452
2367
2368
	/*
2369
	 * Save the solved grid in aux.
2370
	 */
2371
	{
2372
	    /*
2373
	     * We might already have written *aux the last time we
2374
	     * went round this loop, in which case we should free
2375
	     * the old aux before overwriting it with the new one.
2376
	     */
2377
            if (*aux) {
2378
		sfree(*aux);
2379
            }
2380
2381
            *aux = encode_solve_move(cr, grid);
2382
	}
2383
2384
        /*
2385
         * Now we have a solved grid, start removing things from it
2386
         * while preserving solubility.
2387
         */
2388
2389
        /*
2390
         * Find the set of equivalence classes of squares permitted
2391
         * by the selected symmetry. We do this by enumerating all
2392
         * the grid squares which have no symmetric companion
2393
         * sorting lower than themselves.
2394
         */
2395
        nlocs = 0;
2396
        for (y = 0; y < cr; y++)
2397
            for (x = 0; x < cr; x++) {
2398
                int i = y*cr+x;
2399
                int j;
2400
2401
                ncoords = symmetries(params, x, y, coords, params->symm);
2402
                for (j = 0; j < ncoords; j++)
2403
                    if (coords[2*j+1]*cr+coords[2*j] < i)
2404
                        break;
2405
                if (j == ncoords) {
2406
                    locs[nlocs].x = x;
2407
                    locs[nlocs].y = y;
2408
                    nlocs++;
2409
                }
2410
            }
2411
2412
        /*
2413
         * Now shuffle that list.
2414
         */
2415
        shuffle(locs, nlocs, sizeof(*locs), rs);
2416
2417
        /*
2418
         * Now loop over the shuffled list and, for each element,
2419
         * see whether removing that element (and its reflections)
2420
         * from the grid will still leave the grid soluble.
2421
         */
2422
        for (i = 0; i < nlocs; i++) {
2423
            int ret;
2424
2425
            x = locs[i].x;
2426
            y = locs[i].y;
2427
2428
            memcpy(grid2, grid, area);
2429
            ncoords = symmetries(params, x, y, coords, params->symm);
2430
            for (j = 0; j < ncoords; j++)
2431
                grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
2432
1.2.2 by Ben Hutchings
Import upstream version 7983
2433
            ret = solver(cr, blocks, params->xtype, grid2, maxdiff);
1 by Ben Hutchings
Import upstream version 6452
2434
            if (ret <= maxdiff) {
2435
                for (j = 0; j < ncoords; j++)
2436
                    grid[coords[2*j+1]*cr+coords[2*j]] = 0;
2437
            }
2438
        }
2439
2440
        memcpy(grid2, grid, area);
1.2.2 by Ben Hutchings
Import upstream version 7983
2441
	
2442
	if (solver(cr, blocks, params->xtype, grid2, maxdiff) == maxdiff)
2443
	    break;		       /* found one! */
2444
    }
1 by Ben Hutchings
Import upstream version 6452
2445
2446
    sfree(grid2);
2447
    sfree(locs);
2448
2449
    /*
2450
     * Now we have the grid as it will be presented to the user.
2451
     * Encode it in a game desc.
2452
     */
2453
    {
2454
	char *p;
2455
	int run, i;
2456
1.2.2 by Ben Hutchings
Import upstream version 7983
2457
	desc = snewn(7 * area, char);
1 by Ben Hutchings
Import upstream version 6452
2458
	p = desc;
2459
	run = 0;
2460
	for (i = 0; i <= area; i++) {
2461
	    int n = (i < area ? grid[i] : -1);
2462
2463
	    if (!n)
2464
		run++;
2465
	    else {
2466
		if (run) {
2467
		    while (run > 0) {
2468
			int c = 'a' - 1 + run;
2469
			if (run > 26)
2470
			    c = 'z';
2471
			*p++ = c;
2472
			run -= c - ('a' - 1);
2473
		    }
2474
		} else {
2475
		    /*
2476
		     * If there's a number in the very top left or
2477
		     * bottom right, there's no point putting an
2478
		     * unnecessary _ before or after it.
2479
		     */
2480
		    if (p > desc && n > 0)
2481
			*p++ = '_';
2482
		}
2483
		if (n > 0)
2484
		    p += sprintf(p, "%d", n);
2485
		run = 0;
2486
	    }
2487
	}
1.2.2 by Ben Hutchings
Import upstream version 7983
2488
2489
	if (r == 1) {
2490
	    int currrun = 0;
2491
2492
	    *p++ = ',';
2493
2494
	    /*
2495
	     * Encode the block structure. We do this by encoding
2496
	     * the pattern of dividing lines: first we iterate
2497
	     * over the cr*(cr-1) internal vertical grid lines in
2498
	     * ordinary reading order, then over the cr*(cr-1)
2499
	     * internal horizontal ones in transposed reading
2500
	     * order.
2501
	     * 
2502
	     * We encode the number of non-lines between the
2503
	     * lines; _ means zero (two adjacent divisions), a
2504
	     * means 1, ..., y means 25, and z means 25 non-lines
2505
	     * _and no following line_ (so that za means 26, zb 27
2506
	     * etc).
2507
	     */
2508
	    for (i = 0; i <= 2*cr*(cr-1); i++) {
2509
		int p0, p1, edge;
2510
2511
		if (i == 2*cr*(cr-1)) {
2512
		    edge = TRUE;       /* terminating virtual edge */
2513
		} else {
2514
		    if (i < cr*(cr-1)) {
2515
			y = i/(cr-1);
2516
			x = i%(cr-1);
2517
			p0 = y*cr+x;
2518
			p1 = y*cr+x+1;
2519
		    } else {
2520
			x = i/(cr-1) - cr;
2521
			y = i%(cr-1);
2522
			p0 = y*cr+x;
2523
			p1 = (y+1)*cr+x;
2524
		    }
2525
		    edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
2526
		}
2527
2528
		if (edge) {
2529
		    while (currrun > 25)
2530
			*p++ = 'z', currrun -= 25;
2531
		    if (currrun)
2532
			*p++ = 'a'-1 + currrun;
2533
		    else
2534
			*p++ = '_';
2535
		    currrun = 0;
2536
		} else
2537
		    currrun++;
2538
	    }
2539
	}
2540
2541
	assert(p - desc < 7 * area);
1 by Ben Hutchings
Import upstream version 6452
2542
	*p++ = '\0';
2543
	desc = sresize(desc, p - desc, char);
2544
    }
2545
2546
    sfree(grid);
2547
2548
    return desc;
2549
}
2550
2551
static char *validate_desc(game_params *params, char *desc)
2552
{
1.2.2 by Ben Hutchings
Import upstream version 7983
2553
    int cr = params->c * params->r, area = cr*cr;
1 by Ben Hutchings
Import upstream version 6452
2554
    int squares = 0;
1.2.2 by Ben Hutchings
Import upstream version 7983
2555
    int *dsf;
1 by Ben Hutchings
Import upstream version 6452
2556
1.2.2 by Ben Hutchings
Import upstream version 7983
2557
    while (*desc && *desc != ',') {
1 by Ben Hutchings
Import upstream version 6452
2558
        int n = *desc++;
2559
        if (n >= 'a' && n <= 'z') {
2560
            squares += n - 'a' + 1;
2561
        } else if (n == '_') {
2562
            /* do nothing */;
2563
        } else if (n > '0' && n <= '9') {
2564
            int val = atoi(desc-1);
2565
            if (val < 1 || val > params->c * params->r)
2566
                return "Out-of-range number in game description";
2567
            squares++;
2568
            while (*desc >= '0' && *desc <= '9')
2569
                desc++;
2570
        } else
2571
            return "Invalid character in game description";
2572
    }
2573
2574
    if (squares < area)
2575
        return "Not enough data to fill grid";
2576
2577
    if (squares > area)
2578
        return "Too much data to fit in grid";
2579
1.2.2 by Ben Hutchings
Import upstream version 7983
2580
    if (params->r == 1) {
2581
	int pos;
2582
2583
	/*
2584
	 * Now we expect a suffix giving the jigsaw block
2585
	 * structure. Parse it and validate that it divides the
2586
	 * grid into the right number of regions which are the
2587
	 * right size.
2588
	 */
2589
	if (*desc != ',')
2590
	    return "Expected jigsaw block structure in game description";
2591
	pos = 0;
2592
2593
	dsf = snew_dsf(area);
2594
	desc++;
2595
2596
	while (*desc) {
2597
	    int c, adv;
2598
2599
	    if (*desc == '_')
2600
		c = 0;
2601
	    else if (*desc >= 'a' && *desc <= 'z')
2602
		c = *desc - 'a' + 1;
2603
	    else {
2604
		sfree(dsf);
2605
		return "Invalid character in game description";
2606
	    }
2607
	    desc++;
2608
2609
	    adv = (c != 25);	       /* 'z' is a special case */
2610
2611
	    while (c-- > 0) {
2612
		int p0, p1;
2613
2614
		/*
2615
		 * Non-edge; merge the two dsf classes on either
2616
		 * side of it.
2617
		 */
2618
		if (pos >= 2*cr*(cr-1)) {
2619
		    sfree(dsf);
2620
		    return "Too much data in block structure specification";
2621
		} else if (pos < cr*(cr-1)) {
2622
		    int y = pos/(cr-1);
2623
		    int x = pos%(cr-1);
2624
		    p0 = y*cr+x;
2625
		    p1 = y*cr+x+1;
2626
		} else {
2627
		    int x = pos/(cr-1) - cr;
2628
		    int y = pos%(cr-1);
2629
		    p0 = y*cr+x;
2630
		    p1 = (y+1)*cr+x;
2631
		}
2632
		dsf_merge(dsf, p0, p1);
2633
2634
		pos++;
2635
	    }
2636
	    if (adv)
2637
		pos++;
2638
	}
2639
2640
	/*
2641
	 * When desc is exhausted, we expect to have gone exactly
2642
	 * one space _past_ the end of the grid, due to the dummy
2643
	 * edge at the end.
2644
	 */
2645
	if (pos != 2*cr*(cr-1)+1) {
2646
	    sfree(dsf);
2647
	    return "Not enough data in block structure specification";
2648
	}
2649
2650
	/*
2651
	 * Now we've got our dsf. Verify that it matches
2652
	 * expectations.
2653
	 */
2654
	{
2655
	    int *canons, *counts;
2656
	    int i, j, c, ncanons = 0;
2657
2658
	    canons = snewn(cr, int);
2659
	    counts = snewn(cr, int);
2660
2661
	    for (i = 0; i < area; i++) {
2662
		j = dsf_canonify(dsf, i);
2663
2664
		for (c = 0; c < ncanons; c++)
2665
		    if (canons[c] == j) {
2666
			counts[c]++;
2667
			if (counts[c] > cr) {
2668
			    sfree(dsf);
2669
			    sfree(canons);
2670
			    sfree(counts);
2671
			    return "A jigsaw block is too big";
2672
			}
2673
			break;
2674
		    }
2675
2676
		if (c == ncanons) {
2677
		    if (ncanons >= cr) {
2678
			sfree(dsf);
2679
			sfree(canons);
2680
			sfree(counts);
2681
			return "Too many distinct jigsaw blocks";
2682
		    }
2683
		    canons[ncanons] = j;
2684
		    counts[ncanons] = 1;
2685
		    ncanons++;
2686
		}
2687
	    }
2688
2689
	    /*
2690
	     * If we've managed to get through that loop without
2691
	     * tripping either of the error conditions, then we
2692
	     * must have partitioned the entire grid into at most
2693
	     * cr blocks of at most cr squares each; therefore we
2694
	     * must have _exactly_ cr blocks of _exactly_ cr
2695
	     * squares each. I'll verify that by assertion just in
2696
	     * case something has gone horribly wrong, but it
2697
	     * shouldn't have been able to happen by duff input,
2698
	     * only by a bug in the above code.
2699
	     */
2700
	    assert(ncanons == cr);
2701
	    for (c = 0; c < ncanons; c++)
2702
		assert(counts[c] == cr);
2703
2704
	    sfree(canons);
2705
	    sfree(counts);
2706
	}
2707
2708
	sfree(dsf);
2709
    } else {
2710
	if (*desc)
2711
	    return "Unexpected jigsaw block structure in game description";
2712
    }
2713
1 by Ben Hutchings
Import upstream version 6452
2714
    return NULL;
2715
}
2716
2717
static game_state *new_game(midend *me, game_params *params, char *desc)
2718
{
2719
    game_state *state = snew(game_state);
2720
    int c = params->c, r = params->r, cr = c*r, area = cr * cr;
2721
    int i;
2722
1.2.2 by Ben Hutchings
Import upstream version 7983
2723
    state->cr = cr;
2724
    state->xtype = params->xtype;
1 by Ben Hutchings
Import upstream version 6452
2725
2726
    state->grid = snewn(area, digit);
2727
    state->pencil = snewn(area * cr, unsigned char);
2728
    memset(state->pencil, 0, area * cr);
2729
    state->immutable = snewn(area, unsigned char);
2730
    memset(state->immutable, FALSE, area);
2731
1.2.2 by Ben Hutchings
Import upstream version 7983
2732
    state->blocks = snew(struct block_structure);
2733
    state->blocks->c = c; state->blocks->r = r;
2734
    state->blocks->refcount = 1;
2735
    state->blocks->whichblock = snewn(area*2, int);
2736
    state->blocks->blocks = snewn(cr, int *);
2737
    for (i = 0; i < cr; i++)
2738
	state->blocks->blocks[i] = state->blocks->whichblock + area + i*cr;
2739
#ifdef STANDALONE_SOLVER
2740
    state->blocks->blocknames = (char **)smalloc(cr*(sizeof(char *)+80));
2741
#endif
2742
1 by Ben Hutchings
Import upstream version 6452
2743
    state->completed = state->cheated = FALSE;
2744
2745
    i = 0;
1.2.2 by Ben Hutchings
Import upstream version 7983
2746
    while (*desc && *desc != ',') {
1 by Ben Hutchings
Import upstream version 6452
2747
        int n = *desc++;
2748
        if (n >= 'a' && n <= 'z') {
2749
            int run = n - 'a' + 1;
2750
            assert(i + run <= area);
2751
            while (run-- > 0)
2752
                state->grid[i++] = 0;
2753
        } else if (n == '_') {
2754
            /* do nothing */;
2755
        } else if (n > '0' && n <= '9') {
2756
            assert(i < area);
2757
	    state->immutable[i] = TRUE;
2758
            state->grid[i++] = atoi(desc-1);
2759
            while (*desc >= '0' && *desc <= '9')
2760
                desc++;
2761
        } else {
2762
            assert(!"We can't get here");
2763
        }
2764
    }
2765
    assert(i == area);
2766
1.2.2 by Ben Hutchings
Import upstream version 7983
2767
    if (r == 1) {
2768
	int pos = 0;
2769
	int *dsf;
2770
	int nb;
2771
2772
	assert(*desc == ',');
2773
2774
	dsf = snew_dsf(area);
2775
	desc++;
2776
2777
	while (*desc) {
2778
	    int c, adv;
2779
2780
	    if (*desc == '_')
2781
		c = 0;
2782
	    else if (*desc >= 'a' && *desc <= 'z')
2783
		c = *desc - 'a' + 1;
2784
	    else
2785
		assert(!"Shouldn't get here");
2786
	    desc++;
2787
2788
	    adv = (c != 25);	       /* 'z' is a special case */
2789
2790
	    while (c-- > 0) {
2791
		int p0, p1;
2792
2793
		/*
2794
		 * Non-edge; merge the two dsf classes on either
2795
		 * side of it.
2796
		 */
2797
		assert(pos < 2*cr*(cr-1));
2798
		if (pos < cr*(cr-1)) {
2799
		    int y = pos/(cr-1);
2800
		    int x = pos%(cr-1);
2801
		    p0 = y*cr+x;
2802
		    p1 = y*cr+x+1;
2803
		} else {
2804
		    int x = pos/(cr-1) - cr;
2805
		    int y = pos%(cr-1);
2806
		    p0 = y*cr+x;
2807
		    p1 = (y+1)*cr+x;
2808
		}
2809
		dsf_merge(dsf, p0, p1);
2810
2811
		pos++;
2812
	    }
2813
	    if (adv)
2814
		pos++;
2815
	}
2816
2817
	/*
2818
	 * When desc is exhausted, we expect to have gone exactly
2819
	 * one space _past_ the end of the grid, due to the dummy
2820
	 * edge at the end.
2821
	 */
2822
	assert(pos == 2*cr*(cr-1)+1);
2823
2824
	/*
2825
	 * Now we've got our dsf. Translate it into a block
2826
	 * structure.
2827
	 */
2828
	nb = 0;
2829
	for (i = 0; i < area; i++)
2830
	    state->blocks->whichblock[i] = -1;
2831
	for (i = 0; i < area; i++) {
2832
	    int j = dsf_canonify(dsf, i);
2833
	    if (state->blocks->whichblock[j] < 0)
2834
		state->blocks->whichblock[j] = nb++;
2835
	    state->blocks->whichblock[i] = state->blocks->whichblock[j];
2836
	}
2837
	assert(nb == cr);
2838
2839
	sfree(dsf);
2840
    } else {
2841
	int x, y;
2842
2843
	assert(!*desc);
2844
2845
	for (y = 0; y < cr; y++)
2846
	    for (x = 0; x < cr; x++)
2847
		state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
2848
    }
2849
2850
    /*
2851
     * Having sorted out whichblock[], set up the block index arrays.
2852
     */
2853
    for (i = 0; i < cr; i++)
2854
	state->blocks->blocks[i][cr-1] = 0;
2855
    for (i = 0; i < area; i++) {
2856
	int b = state->blocks->whichblock[i];
2857
	int j = state->blocks->blocks[b][cr-1]++;
2858
	assert(j < cr);
2859
	state->blocks->blocks[b][j] = i;
2860
    }
2861
2862
#ifdef STANDALONE_SOLVER
2863
    /*
2864
     * Set up the block names for solver diagnostic output.
2865
     */
2866
    {
2867
	char *p = (char *)(state->blocks->blocknames + cr);
2868
2869
	if (r == 1) {
2870
	    for (i = 0; i < cr; i++)
2871
		state->blocks->blocknames[i] = NULL;
2872
2873
	    for (i = 0; i < area; i++) {
2874
		int j = state->blocks->whichblock[i];
2875
		if (!state->blocks->blocknames[j]) {
2876
		    state->blocks->blocknames[j] = p;
2877
		    p += 1 + sprintf(p, "starting at (%d,%d)",
2878
				     1 + i%cr, 1 + i/cr);
2879
		}
2880
	    }
2881
	} else {
2882
	    int bx, by;
2883
	    for (by = 0; by < r; by++)
2884
		for (bx = 0; bx < c; bx++) {
2885
		    state->blocks->blocknames[by*c+bx] = p;
2886
		    p += 1 + sprintf(p, "(%d,%d)", bx+1, by+1);
2887
		}
2888
	}
2889
	assert(p - (char *)state->blocks->blocknames < cr*(sizeof(char *)+80));
2890
	for (i = 0; i < cr; i++)
2891
	    assert(state->blocks->blocknames[i]);
2892
    }
2893
#endif
2894
1 by Ben Hutchings
Import upstream version 6452
2895
    return state;
2896
}
2897
2898
static game_state *dup_game(game_state *state)
2899
{
2900
    game_state *ret = snew(game_state);
1.2.2 by Ben Hutchings
Import upstream version 7983
2901
    int cr = state->cr, area = cr * cr;
2902
2903
    ret->cr = state->cr;
2904
    ret->xtype = state->xtype;
2905
2906
    ret->blocks = state->blocks;
2907
    ret->blocks->refcount++;
1 by Ben Hutchings
Import upstream version 6452
2908
2909
    ret->grid = snewn(area, digit);
2910
    memcpy(ret->grid, state->grid, area);
2911
2912
    ret->pencil = snewn(area * cr, unsigned char);
2913
    memcpy(ret->pencil, state->pencil, area * cr);
2914
2915
    ret->immutable = snewn(area, unsigned char);
2916
    memcpy(ret->immutable, state->immutable, area);
2917
2918
    ret->completed = state->completed;
2919
    ret->cheated = state->cheated;
2920
2921
    return ret;
2922
}
2923
2924
static void free_game(game_state *state)
2925
{
1.2.2 by Ben Hutchings
Import upstream version 7983
2926
    if (--state->blocks->refcount == 0) {
2927
	sfree(state->blocks->whichblock);
2928
	sfree(state->blocks->blocks);
2929
#ifdef STANDALONE_SOLVER
2930
	sfree(state->blocks->blocknames);
2931
#endif
2932
	sfree(state->blocks);
2933
    }
1 by Ben Hutchings
Import upstream version 6452
2934
    sfree(state->immutable);
2935
    sfree(state->pencil);
2936
    sfree(state->grid);
2937
    sfree(state);
2938
}
2939
2940
static char *solve_game(game_state *state, game_state *currstate,
2941
			char *ai, char **error)
2942
{
1.2.2 by Ben Hutchings
Import upstream version 7983
2943
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
2944
    char *ret;
2945
    digit *grid;
2946
    int solve_ret;
2947
2948
    /*
2949
     * If we already have the solution in ai, save ourselves some
2950
     * time.
2951
     */
2952
    if (ai)
2953
        return dupstr(ai);
2954
2955
    grid = snewn(cr*cr, digit);
2956
    memcpy(grid, state->grid, cr*cr);
1.2.2 by Ben Hutchings
Import upstream version 7983
2957
    solve_ret = solver(cr, state->blocks, state->xtype, grid, DIFF_RECURSIVE);
1 by Ben Hutchings
Import upstream version 6452
2958
2959
    *error = NULL;
2960
2961
    if (solve_ret == DIFF_IMPOSSIBLE)
2962
	*error = "No solution exists for this puzzle";
2963
    else if (solve_ret == DIFF_AMBIGUOUS)
2964
	*error = "Multiple solutions exist for this puzzle";
2965
2966
    if (*error) {
2967
        sfree(grid);
2968
        return NULL;
2969
    }
2970
2971
    ret = encode_solve_move(cr, grid);
2972
2973
    sfree(grid);
2974
2975
    return ret;
2976
}
2977
1.2.2 by Ben Hutchings
Import upstream version 7983
2978
static char *grid_text_format(int cr, struct block_structure *blocks,
2979
			      int xtype, digit *grid)
1 by Ben Hutchings
Import upstream version 6452
2980
{
1.2.2 by Ben Hutchings
Import upstream version 7983
2981
    int vmod, hmod;
1 by Ben Hutchings
Import upstream version 6452
2982
    int x, y;
1.2.2 by Ben Hutchings
Import upstream version 7983
2983
    int totallen, linelen, nlines;
2984
    char *ret, *p, ch;
2985
2986
    /*
2987
     * For non-jigsaw Sudoku, we format in the way we always have,
2988
     * by having the digits unevenly spaced so that the dividing
2989
     * lines can fit in:
2990
     *
2991
     * . . | . .
2992
     * . . | . .
2993
     * ----+----
2994
     * . . | . .
2995
     * . . | . .
2996
     *
2997
     * For jigsaw puzzles, however, we must leave space between
2998
     * _all_ pairs of digits for an optional dividing line, so we
2999
     * have to move to the rather ugly
3000
     * 
3001
     * .   .   .   .
3002
     * ------+------
3003
     * .   . | .   .
3004
     *       +---+  
3005
     * .   . | . | .
3006
     * ------+   |  
3007
     * .   .   . | .
3008
     * 
3009
     * We deal with both cases using the same formatting code; we
3010
     * simply invent a vmod value such that there's a vertical
3011
     * dividing line before column i iff i is divisible by vmod
3012
     * (so it's r in the first case and 1 in the second), and hmod
3013
     * likewise for horizontal dividing lines.
3014
     */
3015
3016
    if (blocks->r != 1) {
3017
	vmod = blocks->r;
3018
	hmod = blocks->c;
3019
    } else {
3020
	vmod = hmod = 1;
3021
    }
3022
3023
    /*
3024
     * Line length: we have cr digits, each with a space after it,
3025
     * and (cr-1)/vmod dividing lines, each with a space after it.
3026
     * The final space is replaced by a newline, but that doesn't
3027
     * affect the length.
3028
     */
3029
    linelen = 2*(cr + (cr-1)/vmod);
3030
3031
    /*
3032
     * Number of lines: we have cr rows of digits, and (cr-1)/hmod
3033
     * dividing rows.
3034
     */
3035
    nlines = cr + (cr-1)/hmod;
3036
3037
    /*
3038
     * Allocate the space.
3039
     */
3040
    totallen = linelen * nlines;
3041
    ret = snewn(totallen+1, char);     /* leave room for terminating NUL */
3042
3043
    /*
3044
     * Write the text.
3045
     */
1 by Ben Hutchings
Import upstream version 6452
3046
    p = ret;
3047
    for (y = 0; y < cr; y++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
3048
	/*
3049
	 * Row of digits.
3050
	 */
3051
	for (x = 0; x < cr; x++) {
3052
	    /*
3053
	     * Digit.
3054
	     */
3055
	    digit d = grid[y*cr+x];
3056
3057
            if (d == 0) {
3058
		/*
3059
		 * Empty space: we usually write a dot, but we'll
3060
		 * highlight spaces on the X-diagonals (in X mode)
3061
		 * by using underscores instead.
3062
		 */
3063
		if (xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x)))
3064
		    ch = '_';
3065
		else
3066
		    ch = '.';
3067
	    } else if (d <= 9) {
3068
                ch = '0' + d;
3069
	    } else {
3070
                ch = 'a' + d-10;
3071
	    }
3072
3073
	    *p++ = ch;
3074
	    if (x == cr-1) {
3075
		*p++ = '\n';
3076
		continue;
3077
	    }
3078
	    *p++ = ' ';
3079
3080
	    if ((x+1) % vmod)
3081
		continue;
3082
3083
	    /*
3084
	     * Optional dividing line.
3085
	     */
3086
	    if (blocks->whichblock[y*cr+x] != blocks->whichblock[y*cr+x+1])
3087
		ch = '|';
3088
	    else
3089
		ch = ' ';
3090
	    *p++ = ch;
3091
	    *p++ = ' ';
3092
	}
3093
	if (y == cr-1 || (y+1) % hmod)
3094
	    continue;
3095
3096
	/*
3097
	 * Dividing row.
3098
	 */
3099
	for (x = 0; x < cr; x++) {
3100
	    int dwid;
3101
	    int tl, tr, bl, br;
3102
3103
	    /*
3104
	     * Division between two squares. This varies
3105
	     * complicatedly in length.
3106
	     */
3107
	    dwid = 2;		       /* digit and its following space */
3108
	    if (x == cr-1)
3109
		dwid--;		       /* no following space at end of line */
3110
	    if (x > 0 && x % vmod == 0)
3111
		dwid++;		       /* preceding space after a divider */
3112
3113
	    if (blocks->whichblock[y*cr+x] != blocks->whichblock[(y+1)*cr+x])
3114
		ch = '-';
3115
	    else
3116
		ch = ' ';
3117
3118
	    while (dwid-- > 0)
3119
		*p++ = ch;
3120
3121
	    if (x == cr-1) {
3122
		*p++ = '\n';
3123
		break;
3124
	    }
3125
3126
	    if ((x+1) % vmod)
3127
		continue;
3128
3129
	    /*
3130
	     * Corner square. This is:
3131
	     * 	- a space if all four surrounding squares are in
3132
	     * 	  the same block
3133
	     * 	- a vertical line if the two left ones are in one
3134
	     * 	  block and the two right in another
3135
	     * 	- a horizontal line if the two top ones are in one
3136
	     * 	  block and the two bottom in another
3137
	     * 	- a plus sign in all other cases. (If we had a
3138
	     * 	  richer character set available we could break
3139
	     * 	  this case up further by doing fun things with
3140
	     * 	  line-drawing T-pieces.)
3141
	     */
3142
	    tl = blocks->whichblock[y*cr+x];
3143
	    tr = blocks->whichblock[y*cr+x+1];
3144
	    bl = blocks->whichblock[(y+1)*cr+x];
3145
	    br = blocks->whichblock[(y+1)*cr+x+1];
3146
3147
	    if (tl == tr && tr == bl && bl == br)
3148
		ch = ' ';
3149
	    else if (tl == bl && tr == br)
3150
		ch = '|';
3151
	    else if (tl == tr && bl == br)
3152
		ch = '-';
3153
	    else
3154
		ch = '+';
3155
3156
	    *p++ = ch;
3157
	}
1 by Ben Hutchings
Import upstream version 6452
3158
    }
3159
1.2.2 by Ben Hutchings
Import upstream version 7983
3160
    assert(p - ret == totallen);
1 by Ben Hutchings
Import upstream version 6452
3161
    *p = '\0';
3162
    return ret;
3163
}
3164
3165
static char *game_text_format(game_state *state)
3166
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3167
    return grid_text_format(state->cr, state->blocks, state->xtype,
3168
			    state->grid);
1 by Ben Hutchings
Import upstream version 6452
3169
}
3170
3171
struct game_ui {
3172
    /*
3173
     * These are the coordinates of the currently highlighted
3174
     * square on the grid, or -1,-1 if there isn't one. When there
3175
     * is, pressing a valid number or letter key or Space will
3176
     * enter that number or letter in the grid.
3177
     */
3178
    int hx, hy;
3179
    /*
3180
     * This indicates whether the current highlight is a
3181
     * pencil-mark one or a real one.
3182
     */
3183
    int hpencil;
3184
};
3185
3186
static game_ui *new_ui(game_state *state)
3187
{
3188
    game_ui *ui = snew(game_ui);
3189
3190
    ui->hx = ui->hy = -1;
3191
    ui->hpencil = 0;
3192
3193
    return ui;
3194
}
3195
3196
static void free_ui(game_ui *ui)
3197
{
3198
    sfree(ui);
3199
}
3200
3201
static char *encode_ui(game_ui *ui)
3202
{
3203
    return NULL;
3204
}
3205
3206
static void decode_ui(game_ui *ui, char *encoding)
3207
{
3208
}
3209
3210
static void game_changed_state(game_ui *ui, game_state *oldstate,
3211
                               game_state *newstate)
3212
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3213
    int cr = newstate->cr;
1 by Ben Hutchings
Import upstream version 6452
3214
    /*
3215
     * We prevent pencil-mode highlighting of a filled square. So
3216
     * if the user has just filled in a square which we had a
3217
     * pencil-mode highlight in (by Undo, or by Redo, or by Solve),
3218
     * then we cancel the highlight.
3219
     */
3220
    if (ui->hx >= 0 && ui->hy >= 0 && ui->hpencil &&
3221
        newstate->grid[ui->hy * cr + ui->hx] != 0) {
3222
        ui->hx = ui->hy = -1;
3223
    }
3224
}
3225
3226
struct game_drawstate {
3227
    int started;
1.2.2 by Ben Hutchings
Import upstream version 7983
3228
    int cr, xtype;
1 by Ben Hutchings
Import upstream version 6452
3229
    int tilesize;
3230
    digit *grid;
3231
    unsigned char *pencil;
3232
    unsigned char *hl;
3233
    /* This is scratch space used within a single call to game_redraw. */
3234
    int *entered_items;
3235
};
3236
3237
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
3238
			    int x, int y, int button)
3239
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3240
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
3241
    int tx, ty;
3242
    char buf[80];
3243
3244
    button &= ~MOD_MASK;
3245
3246
    tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
3247
    ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
3248
3249
    if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
3250
        if (button == LEFT_BUTTON) {
3251
            if (state->immutable[ty*cr+tx]) {
3252
                ui->hx = ui->hy = -1;
3253
            } else if (tx == ui->hx && ty == ui->hy && ui->hpencil == 0) {
3254
                ui->hx = ui->hy = -1;
3255
            } else {
3256
                ui->hx = tx;
3257
                ui->hy = ty;
3258
                ui->hpencil = 0;
3259
            }
3260
            return "";		       /* UI activity occurred */
3261
        }
3262
        if (button == RIGHT_BUTTON) {
3263
            /*
3264
             * Pencil-mode highlighting for non filled squares.
3265
             */
3266
            if (state->grid[ty*cr+tx] == 0) {
3267
                if (tx == ui->hx && ty == ui->hy && ui->hpencil) {
3268
                    ui->hx = ui->hy = -1;
3269
                } else {
3270
                    ui->hpencil = 1;
3271
                    ui->hx = tx;
3272
                    ui->hy = ty;
3273
                }
3274
            } else {
3275
                ui->hx = ui->hy = -1;
3276
            }
3277
            return "";		       /* UI activity occurred */
3278
        }
3279
    }
3280
3281
    if (ui->hx != -1 && ui->hy != -1 &&
3282
	((button >= '1' && button <= '9' && button - '0' <= cr) ||
3283
	 (button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
3284
	 (button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
3285
	 button == ' ' || button == '\010' || button == '\177')) {
3286
	int n = button - '0';
3287
	if (button >= 'A' && button <= 'Z')
3288
	    n = button - 'A' + 10;
3289
	if (button >= 'a' && button <= 'z')
3290
	    n = button - 'a' + 10;
3291
	if (button == ' ' || button == '\010' || button == '\177')
3292
	    n = 0;
3293
3294
        /*
3295
         * Can't overwrite this square. In principle this shouldn't
3296
         * happen anyway because we should never have even been
3297
         * able to highlight the square, but it never hurts to be
3298
         * careful.
3299
         */
3300
	if (state->immutable[ui->hy*cr+ui->hx])
3301
	    return NULL;
3302
3303
        /*
3304
         * Can't make pencil marks in a filled square. In principle
3305
         * this shouldn't happen anyway because we should never
3306
         * have even been able to pencil-highlight the square, but
3307
         * it never hurts to be careful.
3308
         */
3309
        if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
3310
            return NULL;
3311
3312
	sprintf(buf, "%c%d,%d,%d",
3313
		(char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
3314
3315
	ui->hx = ui->hy = -1;
3316
3317
	return dupstr(buf);
3318
    }
3319
3320
    return NULL;
3321
}
3322
3323
static game_state *execute_move(game_state *from, char *move)
3324
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3325
    int cr = from->cr;
1 by Ben Hutchings
Import upstream version 6452
3326
    game_state *ret;
3327
    int x, y, n;
3328
3329
    if (move[0] == 'S') {
3330
	char *p;
3331
3332
	ret = dup_game(from);
3333
	ret->completed = ret->cheated = TRUE;
3334
3335
	p = move+1;
3336
	for (n = 0; n < cr*cr; n++) {
3337
	    ret->grid[n] = atoi(p);
3338
3339
	    if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
3340
		free_game(ret);
3341
		return NULL;
3342
	    }
3343
3344
	    while (*p && isdigit((unsigned char)*p)) p++;
3345
	    if (*p == ',') p++;
3346
	}
3347
3348
	return ret;
3349
    } else if ((move[0] == 'P' || move[0] == 'R') &&
3350
	sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
3351
	x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
3352
3353
	ret = dup_game(from);
3354
        if (move[0] == 'P' && n > 0) {
3355
            int index = (y*cr+x) * cr + (n-1);
3356
            ret->pencil[index] = !ret->pencil[index];
3357
        } else {
3358
            ret->grid[y*cr+x] = n;
3359
            memset(ret->pencil + (y*cr+x)*cr, 0, cr);
3360
3361
            /*
3362
             * We've made a real change to the grid. Check to see
3363
             * if the game has been completed.
3364
             */
1.2.2 by Ben Hutchings
Import upstream version 7983
3365
            if (!ret->completed && check_valid(cr, ret->blocks, ret->xtype,
3366
					       ret->grid)) {
1 by Ben Hutchings
Import upstream version 6452
3367
                ret->completed = TRUE;
3368
            }
3369
        }
3370
	return ret;
3371
    } else
3372
	return NULL;		       /* couldn't parse move string */
3373
}
3374
3375
/* ----------------------------------------------------------------------
3376
 * Drawing routines.
3377
 */
3378
3379
#define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
3380
#define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
3381
3382
static void game_compute_size(game_params *params, int tilesize,
3383
			      int *x, int *y)
3384
{
3385
    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
3386
    struct { int tilesize; } ads, *ds = &ads;
3387
    ads.tilesize = tilesize;
3388
3389
    *x = SIZE(params->c * params->r);
3390
    *y = SIZE(params->c * params->r);
3391
}
3392
3393
static void game_set_size(drawing *dr, game_drawstate *ds,
3394
			  game_params *params, int tilesize)
3395
{
3396
    ds->tilesize = tilesize;
3397
}
3398
3399
static float *game_colours(frontend *fe, int *ncolours)
3400
{
3401
    float *ret = snewn(3 * NCOLOURS, float);
3402
3403
    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
3404
1.2.2 by Ben Hutchings
Import upstream version 7983
3405
    ret[COL_XDIAGONALS * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0];
3406
    ret[COL_XDIAGONALS * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1];
3407
    ret[COL_XDIAGONALS * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2];
3408
1 by Ben Hutchings
Import upstream version 6452
3409
    ret[COL_GRID * 3 + 0] = 0.0F;
3410
    ret[COL_GRID * 3 + 1] = 0.0F;
3411
    ret[COL_GRID * 3 + 2] = 0.0F;
3412
3413
    ret[COL_CLUE * 3 + 0] = 0.0F;
3414
    ret[COL_CLUE * 3 + 1] = 0.0F;
3415
    ret[COL_CLUE * 3 + 2] = 0.0F;
3416
3417
    ret[COL_USER * 3 + 0] = 0.0F;
3418
    ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
3419
    ret[COL_USER * 3 + 2] = 0.0F;
3420
1.2.2 by Ben Hutchings
Import upstream version 7983
3421
    ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
3422
    ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
3423
    ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
1 by Ben Hutchings
Import upstream version 6452
3424
3425
    ret[COL_ERROR * 3 + 0] = 1.0F;
3426
    ret[COL_ERROR * 3 + 1] = 0.0F;
3427
    ret[COL_ERROR * 3 + 2] = 0.0F;
3428
3429
    ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
3430
    ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
3431
    ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
3432
3433
    *ncolours = NCOLOURS;
3434
    return ret;
3435
}
3436
3437
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
3438
{
3439
    struct game_drawstate *ds = snew(struct game_drawstate);
1.2.2 by Ben Hutchings
Import upstream version 7983
3440
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
3441
3442
    ds->started = FALSE;
3443
    ds->cr = cr;
1.2.2 by Ben Hutchings
Import upstream version 7983
3444
    ds->xtype = state->xtype;
1 by Ben Hutchings
Import upstream version 6452
3445
    ds->grid = snewn(cr*cr, digit);
1.2.2 by Ben Hutchings
Import upstream version 7983
3446
    memset(ds->grid, cr+2, cr*cr);
1 by Ben Hutchings
Import upstream version 6452
3447
    ds->pencil = snewn(cr*cr*cr, digit);
3448
    memset(ds->pencil, 0, cr*cr*cr);
3449
    ds->hl = snewn(cr*cr, unsigned char);
3450
    memset(ds->hl, 0, cr*cr);
3451
    ds->entered_items = snewn(cr*cr, int);
3452
    ds->tilesize = 0;                  /* not decided yet */
3453
    return ds;
3454
}
3455
3456
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
3457
{
3458
    sfree(ds->hl);
3459
    sfree(ds->pencil);
3460
    sfree(ds->grid);
3461
    sfree(ds->entered_items);
3462
    sfree(ds);
3463
}
3464
3465
static void draw_number(drawing *dr, game_drawstate *ds, game_state *state,
3466
			int x, int y, int hl)
3467
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3468
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
3469
    int tx, ty;
3470
    int cx, cy, cw, ch;
3471
    char str[2];
3472
3473
    if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
3474
        ds->hl[y*cr+x] == hl &&
3475
        !memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
3476
	return;			       /* no change required */
3477
1.2.2 by Ben Hutchings
Import upstream version 7983
3478
    tx = BORDER + x * TILE_SIZE + 1 + GRIDEXTRA;
3479
    ty = BORDER + y * TILE_SIZE + 1 + GRIDEXTRA;
1 by Ben Hutchings
Import upstream version 6452
3480
3481
    cx = tx;
3482
    cy = ty;
1.2.2 by Ben Hutchings
Import upstream version 7983
3483
    cw = TILE_SIZE-1-2*GRIDEXTRA;
3484
    ch = TILE_SIZE-1-2*GRIDEXTRA;
1 by Ben Hutchings
Import upstream version 6452
3485
1.2.2 by Ben Hutchings
Import upstream version 7983
3486
    if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1])
3487
	cx -= GRIDEXTRA, cw += GRIDEXTRA;
3488
    if (x+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x+1])
3489
	cw += GRIDEXTRA;
3490
    if (y > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y-1)*cr+x])
3491
	cy -= GRIDEXTRA, ch += GRIDEXTRA;
3492
    if (y+1 < cr && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[(y+1)*cr+x])
3493
	ch += GRIDEXTRA;
1 by Ben Hutchings
Import upstream version 6452
3494
3495
    clip(dr, cx, cy, cw, ch);
3496
3497
    /* background needs erasing */
1.2.2 by Ben Hutchings
Import upstream version 7983
3498
    draw_rect(dr, cx, cy, cw, ch,
3499
	      ((hl & 15) == 1 ? COL_HIGHLIGHT :
3500
	       (ds->xtype && (ondiag0(y*cr+x) || ondiag1(y*cr+x))) ? COL_XDIAGONALS :
3501
	       COL_BACKGROUND));
3502
3503
    /*
3504
     * Draw the corners of thick lines in corner-adjacent squares,
3505
     * which jut into this square by one pixel.
3506
     */
3507
    if (x > 0 && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x-1])
3508
	draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
3509
    if (x+1 < cr && y > 0 && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y-1)*cr+x+1])
3510
	draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
3511
    if (x > 0 && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x-1])
3512
	draw_rect(dr, tx-GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
3513
    if (x+1 < cr && y+1 < cr && state->blocks->whichblock[y*cr+x] != state->blocks->whichblock[(y+1)*cr+x+1])
3514
	draw_rect(dr, tx+TILE_SIZE-1-2*GRIDEXTRA, ty+TILE_SIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1 by Ben Hutchings
Import upstream version 6452
3515
3516
    /* pencil-mode highlight */
3517
    if ((hl & 15) == 2) {
3518
        int coords[6];
3519
        coords[0] = cx;
3520
        coords[1] = cy;
3521
        coords[2] = cx+cw/2;
3522
        coords[3] = cy;
3523
        coords[4] = cx;
3524
        coords[5] = cy+ch/2;
3525
        draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
3526
    }
3527
3528
    /* new number needs drawing? */
3529
    if (state->grid[y*cr+x]) {
3530
	str[1] = '\0';
3531
	str[0] = state->grid[y*cr+x] + '0';
3532
	if (str[0] > '9')
3533
	    str[0] += 'a' - ('9'+1);
3534
	draw_text(dr, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
3535
		  FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
3536
		  state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
3537
    } else {
3538
        int i, j, npencil;
3539
	int pw, ph, pmax, fontsize;
3540
3541
        /* count the pencil marks required */
3542
        for (i = npencil = 0; i < cr; i++)
3543
            if (state->pencil[(y*cr+x)*cr+i])
3544
		npencil++;
3545
3546
	/*
3547
	 * It's not sensible to arrange pencil marks in the same
3548
	 * layout as the squares within a block, because this leads
3549
	 * to the font being too small. Instead, we arrange pencil
3550
	 * marks in the nearest thing we can to a square layout,
3551
	 * and we adjust the square layout depending on the number
3552
	 * of pencil marks in the square.
3553
	 */
3554
	for (pw = 1; pw * pw < npencil; pw++);
3555
	if (pw < 3) pw = 3;	       /* otherwise it just looks _silly_ */
3556
	ph = (npencil + pw - 1) / pw;
3557
	if (ph < 2) ph = 2;	       /* likewise */
3558
	pmax = max(pw, ph);
3559
	fontsize = TILE_SIZE/(pmax*(11-pmax)/8);
3560
3561
        for (i = j = 0; i < cr; i++)
3562
            if (state->pencil[(y*cr+x)*cr+i]) {
3563
                int dx = j % pw, dy = j / pw;
3564
3565
                str[1] = '\0';
3566
                str[0] = i + '1';
3567
                if (str[0] > '9')
3568
                    str[0] += 'a' - ('9'+1);
3569
                draw_text(dr, tx + (4*dx+3) * TILE_SIZE / (4*pw+2),
3570
                          ty + (4*dy+3) * TILE_SIZE / (4*ph+2),
3571
                          FONT_VARIABLE, fontsize,
3572
                          ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
3573
                j++;
3574
            }
3575
    }
3576
3577
    unclip(dr);
3578
3579
    draw_update(dr, cx, cy, cw, ch);
3580
3581
    ds->grid[y*cr+x] = state->grid[y*cr+x];
3582
    memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
3583
    ds->hl[y*cr+x] = hl;
3584
}
3585
3586
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
3587
			game_state *state, int dir, game_ui *ui,
3588
			float animtime, float flashtime)
3589
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3590
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
3591
    int x, y;
3592
3593
    if (!ds->started) {
3594
	/*
3595
	 * The initial contents of the window are not guaranteed
3596
	 * and can vary with front ends. To be on the safe side,
3597
	 * all games should start by drawing a big
3598
	 * background-colour rectangle covering the whole window.
3599
	 */
3600
	draw_rect(dr, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
3601
3602
	/*
1.2.2 by Ben Hutchings
Import upstream version 7983
3603
	 * Draw the grid. We draw it as a big thick rectangle of
3604
	 * COL_GRID initially; individual calls to draw_number()
3605
	 * will poke the right-shaped holes in it.
1 by Ben Hutchings
Import upstream version 6452
3606
	 */
1.2.2 by Ben Hutchings
Import upstream version 7983
3607
	draw_rect(dr, BORDER-GRIDEXTRA, BORDER-GRIDEXTRA,
3608
		  cr*TILE_SIZE+1+2*GRIDEXTRA, cr*TILE_SIZE+1+2*GRIDEXTRA,
3609
		  COL_GRID);
1 by Ben Hutchings
Import upstream version 6452
3610
    }
3611
3612
    /*
3613
     * This array is used to keep track of rows, columns and boxes
3614
     * which contain a number more than once.
3615
     */
3616
    for (x = 0; x < cr * cr; x++)
3617
	ds->entered_items[x] = 0;
3618
    for (x = 0; x < cr; x++)
3619
	for (y = 0; y < cr; y++) {
3620
	    digit d = state->grid[y*cr+x];
3621
	    if (d) {
1.2.2 by Ben Hutchings
Import upstream version 7983
3622
		int box = state->blocks->whichblock[y*cr+x];
3623
 		ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1;
1 by Ben Hutchings
Import upstream version 6452
3624
		ds->entered_items[y*cr+d-1] |= ((ds->entered_items[y*cr+d-1] & 4) << 1) | 4;
3625
		ds->entered_items[box*cr+d-1] |= ((ds->entered_items[box*cr+d-1] & 16) << 1) | 16;
1.2.2 by Ben Hutchings
Import upstream version 7983
3626
		if (ds->xtype) {
3627
		    if (ondiag0(y*cr+x))
3628
			ds->entered_items[d-1] |= ((ds->entered_items[d-1] & 64) << 1) | 64;
3629
		    if (ondiag1(y*cr+x))
3630
			ds->entered_items[cr+d-1] |= ((ds->entered_items[cr+d-1] & 64) << 1) | 64;
3631
		}
1 by Ben Hutchings
Import upstream version 6452
3632
	    }
3633
	}
3634
3635
    /*
3636
     * Draw any numbers which need redrawing.
3637
     */
3638
    for (x = 0; x < cr; x++) {
3639
	for (y = 0; y < cr; y++) {
3640
            int highlight = 0;
3641
            digit d = state->grid[y*cr+x];
3642
3643
            if (flashtime > 0 &&
3644
                (flashtime <= FLASH_TIME/3 ||
3645
                 flashtime >= FLASH_TIME*2/3))
3646
                highlight = 1;
3647
3648
            /* Highlight active input areas. */
3649
            if (x == ui->hx && y == ui->hy)
3650
                highlight = ui->hpencil ? 2 : 1;
3651
3652
	    /* Mark obvious errors (ie, numbers which occur more than once
3653
	     * in a single row, column, or box). */
3654
	    if (d && ((ds->entered_items[x*cr+d-1] & 2) ||
3655
		      (ds->entered_items[y*cr+d-1] & 8) ||
1.2.2 by Ben Hutchings
Import upstream version 7983
3656
		      (ds->entered_items[state->blocks->whichblock[y*cr+x]*cr+d-1] & 32) ||
3657
		      (ds->xtype && ((ondiag0(y*cr+x) && (ds->entered_items[d-1] & 128)) ||
3658
				     (ondiag1(y*cr+x) && (ds->entered_items[cr+d-1] & 128))))))
1 by Ben Hutchings
Import upstream version 6452
3659
		highlight |= 16;
3660
3661
	    draw_number(dr, ds, state, x, y, highlight);
3662
	}
3663
    }
3664
3665
    /*
3666
     * Update the _entire_ grid if necessary.
3667
     */
3668
    if (!ds->started) {
3669
	draw_update(dr, 0, 0, SIZE(cr), SIZE(cr));
3670
	ds->started = TRUE;
3671
    }
3672
}
3673
3674
static float game_anim_length(game_state *oldstate, game_state *newstate,
3675
			      int dir, game_ui *ui)
3676
{
3677
    return 0.0F;
3678
}
3679
3680
static float game_flash_length(game_state *oldstate, game_state *newstate,
3681
			       int dir, game_ui *ui)
3682
{
3683
    if (!oldstate->completed && newstate->completed &&
3684
	!oldstate->cheated && !newstate->cheated)
3685
        return FLASH_TIME;
3686
    return 0.0F;
3687
}
3688
3689
static int game_timing_state(game_state *state, game_ui *ui)
3690
{
3691
    return TRUE;
3692
}
3693
3694
static void game_print_size(game_params *params, float *x, float *y)
3695
{
3696
    int pw, ph;
3697
3698
    /*
3699
     * I'll use 9mm squares by default. They should be quite big
3700
     * for this game, because players will want to jot down no end
3701
     * of pencil marks in the squares.
3702
     */
3703
    game_compute_size(params, 900, &pw, &ph);
3704
    *x = pw / 100.0;
3705
    *y = ph / 100.0;
3706
}
3707
3708
static void game_print(drawing *dr, game_state *state, int tilesize)
3709
{
1.2.2 by Ben Hutchings
Import upstream version 7983
3710
    int cr = state->cr;
1 by Ben Hutchings
Import upstream version 6452
3711
    int ink = print_mono_colour(dr, 0);
3712
    int x, y;
3713
3714
    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
3715
    game_drawstate ads, *ds = &ads;
3716
    game_set_size(dr, ds, NULL, tilesize);
3717
3718
    /*
3719
     * Border.
3720
     */
3721
    print_line_width(dr, 3 * TILE_SIZE / 40);
3722
    draw_rect_outline(dr, BORDER, BORDER, cr*TILE_SIZE, cr*TILE_SIZE, ink);
3723
3724
    /*
1.2.2 by Ben Hutchings
Import upstream version 7983
3725
     * Highlight X-diagonal squares.
3726
     */
3727
    if (state->xtype) {
3728
	int i;
3729
	int xhighlight = print_grey_colour(dr, 0.90F);
3730
3731
	for (i = 0; i < cr; i++)
3732
	    draw_rect(dr, BORDER + i*TILE_SIZE, BORDER + i*TILE_SIZE,
3733
		      TILE_SIZE, TILE_SIZE, xhighlight);
3734
	for (i = 0; i < cr; i++)
3735
	    if (i*2 != cr-1)  /* avoid redoing centre square, just for fun */
3736
		draw_rect(dr, BORDER + i*TILE_SIZE,
3737
			  BORDER + (cr-1-i)*TILE_SIZE,
3738
			  TILE_SIZE, TILE_SIZE, xhighlight);
3739
    }
3740
3741
    /*
3742
     * Main grid.
1 by Ben Hutchings
Import upstream version 6452
3743
     */
3744
    for (x = 1; x < cr; x++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
3745
	print_line_width(dr, TILE_SIZE / 40);
1 by Ben Hutchings
Import upstream version 6452
3746
	draw_line(dr, BORDER+x*TILE_SIZE, BORDER,
3747
		  BORDER+x*TILE_SIZE, BORDER+cr*TILE_SIZE, ink);
3748
    }
3749
    for (y = 1; y < cr; y++) {
1.2.2 by Ben Hutchings
Import upstream version 7983
3750
	print_line_width(dr, TILE_SIZE / 40);
1 by Ben Hutchings
Import upstream version 6452
3751
	draw_line(dr, BORDER, BORDER+y*TILE_SIZE,
3752
		  BORDER+cr*TILE_SIZE, BORDER+y*TILE_SIZE, ink);
3753
    }
3754
3755
    /*
1.2.2 by Ben Hutchings
Import upstream version 7983
3756
     * Thick lines between cells. In order to do this using the
3757
     * line-drawing rather than rectangle-drawing API (so as to
3758
     * get line thicknesses to scale correctly) and yet have
3759
     * correctly mitred joins between lines, we must do this by
3760
     * tracing the boundary of each sub-block and drawing it in
3761
     * one go as a single polygon.
3762
     */
3763
    {
3764
	int *coords;
3765
	int bi, i, n;
3766
	int x, y, dx, dy, sx, sy, sdx, sdy;
3767
3768
	print_line_width(dr, 3 * TILE_SIZE / 40);
3769
3770
	/*
3771
	 * Maximum perimeter of a k-omino is 2k+2. (Proof: start
3772
	 * with k unconnected squares, with total perimeter 4k.
3773
	 * Now repeatedly join two disconnected components
3774
	 * together into a larger one; every time you do so you
3775
	 * remove at least two unit edges, and you require k-1 of
3776
	 * these operations to create a single connected piece, so
3777
	 * you must have at most 4k-2(k-1) = 2k+2 unit edges left
3778
	 * afterwards.)
3779
	 */
3780
	coords = snewn(4*cr+4, int);   /* 2k+2 points, 2 coords per point */
3781
3782
	/*
3783
	 * Iterate over all the blocks.
3784
	 */
3785
	for (bi = 0; bi < cr; bi++) {
3786
3787
	    /*
3788
	     * For each block, find a starting square within it
3789
	     * which has a boundary at the left.
3790
	     */
3791
	    for (i = 0; i < cr; i++) {
3792
		int j = state->blocks->blocks[bi][i];
3793
		if (j % cr == 0 || state->blocks->whichblock[j-1] != bi)
3794
		    break;
3795
	    }
3796
	    assert(i < cr); /* every block must have _some_ leftmost square */
3797
	    x = state->blocks->blocks[bi][i] % cr;
3798
	    y = state->blocks->blocks[bi][i] / cr;
3799
	    dx = -1;
3800
	    dy = 0;
3801
3802
	    /*
3803
	     * Now begin tracing round the perimeter. At all
3804
	     * times, (x,y) describes some square within the
3805
	     * block, and (x+dx,y+dy) is some adjacent square
3806
	     * outside it; so the edge between those two squares
3807
	     * is always an edge of the block.
3808
	     */
3809
	    sx = x, sy = y, sdx = dx, sdy = dy;   /* save starting position */
3810
	    n = 0;
3811
	    do {
3812
		int cx, cy, tx, ty, nin;
3813
3814
		/*
3815
		 * To begin with, record the point at one end of
3816
		 * the edge. To do this, we translate (x,y) down
3817
		 * and right by half a unit (so they're describing
3818
		 * a point in the _centre_ of the square) and then
3819
		 * translate back again in a manner rotated by dy
3820
		 * and dx.
3821
		 */
3822
		assert(n < 2*cr+2);
3823
		cx = ((2*x+1) + dy + dx) / 2;
3824
		cy = ((2*y+1) - dx + dy) / 2;
3825
		coords[2*n+0] = BORDER + cx * TILE_SIZE;
3826
		coords[2*n+1] = BORDER + cy * TILE_SIZE;
3827
		n++;
3828
3829
		/*
3830
		 * Now advance to the next edge, by looking at the
3831
		 * two squares beyond it. If they're both outside
3832
		 * the block, we turn right (by leaving x,y the
3833
		 * same and rotating dx,dy clockwise); if they're
3834
		 * both inside, we turn left (by rotating dx,dy
3835
		 * anticlockwise and contriving to leave x+dx,y+dy
3836
		 * unchanged); if one of each, we go straight on
3837
		 * (and may enforce by assertion that they're one
3838
		 * of each the _right_ way round).
3839
		 */
3840
		nin = 0;
3841
		tx = x - dy + dx;
3842
		ty = y + dx + dy;
3843
		nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
3844
			state->blocks->whichblock[ty*cr+tx] == bi);
3845
		tx = x - dy;
3846
		ty = y + dx;
3847
		nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
3848
			state->blocks->whichblock[ty*cr+tx] == bi);
3849
		if (nin == 0) {
3850
		    /*
3851
		     * Turn right.
3852
		     */
3853
		    int tmp;
3854
		    tmp = dx;
3855
		    dx = -dy;
3856
		    dy = tmp;
3857
		} else if (nin == 2) {
3858
		    /*
3859
		     * Turn left.
3860
		     */
3861
		    int tmp;
3862
3863
		    x += dx;
3864
		    y += dy;
3865
		    
3866
		    tmp = dx;
3867
		    dx = dy;
3868
		    dy = -tmp;
3869
3870
		    x -= dx;
3871
		    y -= dy;
3872
		} else {
3873
		    /*
3874
		     * Go straight on.
3875
		     */
3876
		    x -= dy;
3877
		    y += dx;
3878
		}
3879
3880
		/*
3881
		 * Now enforce by assertion that we ended up
3882
		 * somewhere sensible.
3883
		 */
3884
		assert(x >= 0 && x < cr && y >= 0 && y < cr &&
3885
		       state->blocks->whichblock[y*cr+x] == bi);
3886
		assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
3887
		       state->blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
3888
3889
	    } while (x != sx || y != sy || dx != sdx || dy != sdy);
3890
3891
	    /*
3892
	     * That's our polygon; now draw it.
3893
	     */
3894
	    draw_polygon(dr, coords, n, -1, ink);
3895
	}
3896
3897
	sfree(coords);
3898
    }
3899
3900
    /*
1 by Ben Hutchings
Import upstream version 6452
3901
     * Numbers.
3902
     */
3903
    for (y = 0; y < cr; y++)
3904
	for (x = 0; x < cr; x++)
3905
	    if (state->grid[y*cr+x]) {
3906
		char str[2];
3907
		str[1] = '\0';
3908
		str[0] = state->grid[y*cr+x] + '0';
3909
		if (str[0] > '9')
3910
		    str[0] += 'a' - ('9'+1);
3911
		draw_text(dr, BORDER + x*TILE_SIZE + TILE_SIZE/2,
3912
			  BORDER + y*TILE_SIZE + TILE_SIZE/2,
3913
			  FONT_VARIABLE, TILE_SIZE/2,
3914
			  ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
3915
	    }
3916
}
3917
3918
#ifdef COMBINED
3919
#define thegame solo
3920
#endif
3921
3922
const struct game thegame = {
1.1.4 by Ben Hutchings
Import upstream version 7446
3923
    "Solo", "games.solo", "solo",
1 by Ben Hutchings
Import upstream version 6452
3924
    default_params,
3925
    game_fetch_preset,
3926
    decode_params,
3927
    encode_params,
3928
    free_params,
3929
    dup_params,
3930
    TRUE, game_configure, custom_params,
3931
    validate_params,
3932
    new_game_desc,
3933
    validate_desc,
3934
    new_game,
3935
    dup_game,
3936
    free_game,
3937
    TRUE, solve_game,
3938
    TRUE, game_text_format,
3939
    new_ui,
3940
    free_ui,
3941
    encode_ui,
3942
    decode_ui,
3943
    game_changed_state,
3944
    interpret_move,
3945
    execute_move,
3946
    PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
3947
    game_colours,
3948
    game_new_drawstate,
3949
    game_free_drawstate,
3950
    game_redraw,
3951
    game_anim_length,
3952
    game_flash_length,
3953
    TRUE, FALSE, game_print_size, game_print,
3954
    FALSE,			       /* wants_statusbar */
3955
    FALSE, game_timing_state,
1.1.4 by Ben Hutchings
Import upstream version 7446
3956
    REQUIRE_RBUTTON | REQUIRE_NUMPAD,  /* flags */
1 by Ben Hutchings
Import upstream version 6452
3957
};
3958
3959
#ifdef STANDALONE_SOLVER
3960
3961
int main(int argc, char **argv)
3962
{
3963
    game_params *p;
3964
    game_state *s;
3965
    char *id = NULL, *desc, *err;
3966
    int grade = FALSE;
3967
    int ret;
3968
3969
    while (--argc > 0) {
3970
        char *p = *++argv;
3971
        if (!strcmp(p, "-v")) {
3972
            solver_show_working = TRUE;
3973
        } else if (!strcmp(p, "-g")) {
3974
            grade = TRUE;
3975
        } else if (*p == '-') {
3976
            fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
3977
            return 1;
3978
        } else {
3979
            id = p;
3980
        }
3981
    }
3982
3983
    if (!id) {
3984
        fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
3985
        return 1;
3986
    }
3987
3988
    desc = strchr(id, ':');
3989
    if (!desc) {
3990
        fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
3991
        return 1;
3992
    }
3993
    *desc++ = '\0';
3994
3995
    p = default_params();
3996
    decode_params(p, id);
3997
    err = validate_desc(p, desc);
3998
    if (err) {
3999
        fprintf(stderr, "%s: %s\n", argv[0], err);
4000
        return 1;
4001
    }
4002
    s = new_game(NULL, p, desc);
4003
1.2.2 by Ben Hutchings
Import upstream version 7983
4004
    ret = solver(s->cr, s->blocks, s->xtype, s->grid, DIFF_RECURSIVE);
1 by Ben Hutchings
Import upstream version 6452
4005
    if (grade) {
4006
	printf("Difficulty rating: %s\n",
4007
	       ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
4008
	       ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
4009
	       ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
4010
	       ret==DIFF_SET ? "Advanced (set elimination required)":
4011
	       ret==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
4012
	       ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
4013
	       ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
4014
	       ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
4015
	       "INTERNAL ERROR: unrecognised difficulty code");
4016
    } else {
1.2.2 by Ben Hutchings
Import upstream version 7983
4017
        printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid));
1 by Ben Hutchings
Import upstream version 6452
4018
    }
4019
4020
    return 0;
4021
}
4022
4023
#endif