~ubuntu-branches/ubuntu/jaunty/simh/jaunty

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/* pdp10_ksio.c: PDP-10 KS10 I/O subsystem simulator

   Copyright (c) 1993-2005, Robert M Supnik

   Permission is hereby granted, free of charge, to any person obtaining a
   copy of this software and associated documentation files (the "Software"),
   to deal in the Software without restriction, including without limitation
   the rights to use, copy, modify, merge, publish, distribute, sublicense,
   and/or sell copies of the Software, and to permit persons to whom the
   Software is furnished to do so, subject to the following conditions:

   The above copyright notice and this permission notice shall be included in
   all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
   IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

   Except as contained in this notice, the name of Robert M Supnik shall not be
   used in advertising or otherwise to promote the sale, use or other dealings
   in this Software without prior written authorization from Robert M Supnik.

   uba          Unibus adapters

   22-Sep-05    RMS     Fixed declarations (from Sterling Garwood)
   25-Jan-04    RMS     Added stub floating address routine
   12-Mar-03    RMS     Added logical name support
   10-Oct-02    RMS     Revised for dynamic table generation
                        Added SHOW IOSPACE routine
   29-Sep-02    RMS     Added variable vector, central map support
   25-Jan-02    RMS     Revised for multiple DZ11's
   06-Jan-02    RMS     Revised enable/disable support
   23-Sep-01    RMS     New IO page address constants
   07-Sep-01    RMS     Revised device disable mechanism
   25-Aug-01    RMS     Enabled DZ11
   21-Aug-01    RMS     Updated DZ11 disable
   01-Jun-01    RMS     Updated DZ11 vectors
   12-May-01    RMS     Fixed typo

   The KS10 uses the PDP-11 Unibus for its I/O, via adapters.  While
   nominally four adapters are supported, in practice only 1 and 3
   are implemented.  The disks are placed on adapter 1, the rest of
   the I/O devices on adapter 3.

   In theory, we should maintain completely separate Unibuses, with
   distinct PI systems.  In practice, this simulator has so few devices
   that we can get away with a single PI system, masking for which
   devices are on adapter 1, and which on adapter 3.  The Unibus
   implementation is modeled on the Qbus in the PDP-11 simulator and
   is described there.

   The I/O subsystem is programmed by I/O instructions which create
   Unibus operations (read, read pause, write, write byte).  DMA is
   the responsibility of the I/O device simulators, which also implement
   Unibus to physical memory mapping.

   The priority interrupt subsystem (and other privileged functions)
   is programmed by I/O instructions with internal devices codes
   (opcodes 700-702).  These are dispatched here, although many are
   handled in the memory management unit or elsewhere.

   The ITS instructions are significantly different from the TOPS-10/20
   instructions.  They do not use the extended address calculation but
   instead provide instruction variants (Q for Unibus adapter 1, I for
   Unibus adapter 3) which insert the Unibus adapter number into the
   effective address.
*/

#include "pdp10_defs.h"
#include <setjmp.h>

#define XBA_MBZ         0400000                         /* ba mbz */
#define eaRB            (ea & ~1)
#define GETBYTE(ea,x)   ((((ea) & 1)? (x) >> 8: (x)) & 0377)
#define UBNXM_FAIL(pa,op) \
                        n = iocmap[GET_IOUBA (pa)]; \
                        if (n >= 0) ubcs[n] = ubcs[n] | UBCS_TMO | UBCS_NXD; \
                        pager_word = PF_HARD | PF_VIRT | PF_IO | \
                            ((op == WRITEB)? PF_BYTE: 0) | \
                            (TSTF (F_USR)? PF_USER: 0) | (pa); \
                        ABORT (PAGE_FAIL)

/* Unibus adapter data */

int32 ubcs[UBANUM] = { 0 };                             /* status registers */
int32 ubmap[UBANUM][UMAP_MEMSIZE] = { 0 };              /* Unibus maps */
int32 int_req = 0;                                      /* interrupt requests */

/* Map IO controller numbers to Unibus adapters: -1 = non-existent */

static int iocmap[IO_N_UBA] = {                         /* map I/O ext to UBA # */
 -1, 0, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
 }; 

static const int32 ubabr76[UBANUM] = {
    INT_UB1 & (INT_IPL7 | INT_IPL6), INT_UB3 & (INT_IPL7 | INT_IPL6)
    };
static const int32 ubabr54[UBANUM] = {
    INT_UB1 & (INT_IPL5 | INT_IPL4), INT_UB3 & (INT_IPL5 | INT_IPL4)
    };
static const int32 ubashf[4] = { 18, 26, 0, 8 };

extern d10 *M;                                          /* main memory */
extern d10 *ac_cur;
extern d10 pager_word;
extern int32 flags;
extern const int32 pi_l2bit[8];
extern UNIT cpu_unit;
extern FILE *sim_log;
extern jmp_buf save_env;
extern DEVICE *sim_devices[];

extern int32 pi_eval (void);
extern int32 rp_inta (void);
extern int32 tu_inta (void);
extern int32 lp20_inta (void);
extern int32 dz_rxinta (void);
extern int32 dz_txinta (void);

t_stat ubmap_rd (int32 *data, int32 addr, int32 access);
t_stat ubmap_wr (int32 data, int32 addr, int32 access);
t_stat ubs_rd (int32 *data, int32 addr, int32 access);
t_stat ubs_wr (int32 data, int32 addr, int32 access);
t_stat rd_zro (int32 *data, int32 addr, int32 access);
t_stat wr_nop (int32 data, int32 addr, int32 access);
t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat uba_reset (DEVICE *dptr);
d10 ReadIO (a10 ea);
void WriteIO (a10 ea, d10 val, int32 mode);

/* Unibus adapter data structures

   uba_dev      UBA device descriptor
   uba_unit     UBA units
   uba_reg      UBA register list
*/

DIB ubmp1_dib = { IOBA_UBMAP1, IOLN_UBMAP1, &ubmap_rd, &ubmap_wr, 0 };
DIB ubmp3_dib = { IOBA_UBMAP3, IOLN_UBMAP3, &ubmap_rd, &ubmap_wr, 0 };
DIB ubcs1_dib = { IOBA_UBCS1, IOLN_UBCS1, &ubs_rd, &ubs_wr, 0 };
DIB ubcs3_dib = { IOBA_UBCS3, IOLN_UBCS3, &ubs_rd, &ubs_wr, 0 };
DIB ubmn1_dib = { IOBA_UBMNT1, IOLN_UBMNT1, &rd_zro, &wr_nop, 0 };
DIB ubmn3_dib = { IOBA_UBMNT3, IOLN_UBMNT3, &rd_zro, &wr_nop, 0 };
DIB msys_dib = { 00100000, 1, &rd_zro, &wr_nop, 0 };

UNIT uba_unit[] = {
    { UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) },
    { UDATA (NULL, UNIT_FIX, UMAP_MEMSIZE) }
    };

REG uba_reg[] = {
    { ORDATA (INTREQ, int_req, 32), REG_RO },
    { ORDATA (UB1CS, ubcs[0], 18) },
    { ORDATA (UB3CS, ubcs[1], 18) },
    { NULL }
    };

DEVICE uba_dev = {
    "UBA", uba_unit, uba_reg, NULL,
    UBANUM, 8, UMAP_ASIZE, 1, 8, 32,
    &uba_ex, &uba_dep, &uba_reset,
    NULL, NULL, NULL,
    NULL, 0
    };

/* PDP-11 I/O structures */

DIB *dib_tab[DIB_MAX];                                  /* run-time DIBs */

int32 (*int_ack[32])(void);                             /* int ack routines */

int32 int_vec[32];                                      /* int vectors */

DIB *std_dib[] = {                                      /* standard DIBs */
    &ubmp1_dib,
    &ubmp3_dib,
    &ubcs1_dib,
    &ubcs3_dib,
    &ubmn1_dib,
    &ubmn3_dib,
    &msys_dib,
    NULL
    };

/* IO 710       (DEC) TIOE - test I/O word, skip if zero
                (ITS) IORDI - read word from Unibus 3
                returns TRUE if skip, FALSE otherwise
*/

t_bool io710 (int32 ac, a10 ea)
{
d10 val;

if (Q_ITS) AC(ac) = ReadIO (IO_UBA3 | ea);              /* IORDI */
else {                                                  /* TIOE */
    val = ReadIO (ea);                                  /* read word */
    if ((AC(ac) & val) == 0) return TRUE;
    }
return FALSE;
}

/* IO 711       (DEC) TION - test I/O word, skip if non-zero
                (ITS) IORDQ - read word from Unibus 1
                returns TRUE if skip, FALSE otherwise
*/

t_bool io711 (int32 ac, a10 ea)
{
d10 val;

if (Q_ITS) AC(ac) = ReadIO (IO_UBA1 | ea);              /* IORDQ */
else {                                                  /* TION */
    val = ReadIO (ea);                                  /* read word */
    if ((AC(ac) & val) != 0) return TRUE;
    }
return FALSE;
}

/* IO 712       (DEC) RDIO - read I/O word, addr in ea
                (ITS) IORD - read I/O word, addr in M[ea]
*/

d10 io712 (a10 ea)
{
return ReadIO (ea);                                     /* RDIO, IORD */
}

/* IO 713       (DEC) WRIO - write I/O word, addr in ea
                (ITS) IOWR - write I/O word, addr in M[ea]
*/

void io713 (d10 val, a10 ea)
{
WriteIO (ea, val & 0177777, WRITE);                     /* WRIO, IOWR */
return;
}

/* IO 714       (DEC) BSIO - set bit in I/O address
                (ITS) IOWRI - write word to Unibus 3
*/

void io714 (d10 val, a10 ea)
{
d10 temp;

val = val & 0177777;
if (Q_ITS) WriteIO (IO_UBA3 | ea, val, WRITE);          /* IOWRI */
else {
    temp = ReadIO (ea);                                 /* BSIO */
    temp = temp | val;
    WriteIO (ea, temp, WRITE);
    }
return;
}

/* IO 715       (DEC) BCIO - clear bit in I/O address
                (ITS) IOWRQ - write word to Unibus 1
*/

void io715 (d10 val, a10 ea)
{
d10 temp;

val = val & 0177777;
if (Q_ITS) WriteIO (IO_UBA1 | ea, val, WRITE);          /* IOWRQ */
else {
    temp = ReadIO (ea);                                 /* BCIO */
    temp = temp & ~val;
    WriteIO (ea, temp, WRITE);
    }
return;
}

/* IO 720       (DEC) TIOEB - test I/O byte, skip if zero
                (ITS) IORDBI - read byte from Unibus 3
                returns TRUE if skip, FALSE otherwise
*/

t_bool io720 (int32 ac, a10 ea)
{
d10 val;

if (Q_ITS) {                                            /* IORDBI */
    val = ReadIO (IO_UBA3 | eaRB);
    AC(ac) = GETBYTE (ea, val);
    }
else {                                                  /* TIOEB */
    val = ReadIO (eaRB);
    val = GETBYTE (ea, val);
    if ((AC(ac) & val) == 0) return TRUE;
    }
return FALSE;
}

/* IO 721       (DEC) TIONB - test I/O word, skip if non-zero
                (ITS) IORDBQ - read word from Unibus 1
                returns TRUE if skip, FALSE otherwise
*/

t_bool io721 (int32 ac, a10 ea)
{
d10 val;

if (Q_ITS) {                                            /* IORDBQ */
    val = ReadIO (IO_UBA1 | eaRB);
    AC(ac) = GETBYTE (ea, val);
    }
else {                                                  /* TIONB */
    val = ReadIO (eaRB);
    val = GETBYTE (ea, val);
    if ((AC(ac) & val) != 0) return TRUE;
    }
return FALSE;
}

/* IO 722       (DEC) RDIOB - read I/O byte, addr in ea
                (ITS) IORDB - read I/O byte, addr in M[ea]
*/

d10 io722 (a10 ea)
{
d10 val;

val = ReadIO (eaRB);                                    /* RDIOB, IORDB */
return GETBYTE (ea, val);
}

/* IO 723       (DEC) WRIOB - write I/O byte, addr in ea
                (ITS) IOWRB - write I/O byte, addr in M[ea]
*/

void io723 (d10 val, a10 ea)
{
WriteIO (ea, val & 0377, WRITEB);                       /* WRIOB, IOWRB */
return;
}

/* IO 724       (DEC) BSIOB - set bit in I/O byte address
                (ITS) IOWRBI - write byte to Unibus 3
*/

void io724 (d10 val, a10 ea)
{
d10 temp;

val = val & 0377;
if (Q_ITS) WriteIO (IO_UBA3 | ea, val, WRITEB);         /* IOWRBI */
else {
    temp = ReadIO (eaRB);                               /* BSIOB */
    temp = GETBYTE (ea, temp);
    temp = temp | val;
    WriteIO (ea, temp, WRITEB);
    }
return;
}

/* IO 725       (DEC) BCIOB - clear bit in I/O byte address
                (ITS) IOWRBQ - write byte to Unibus 1
*/

void io725 (d10 val, a10 ea)
{
d10 temp;

val = val & 0377;
if (Q_ITS) WriteIO (IO_UBA1 | ea, val, WRITEB);         /* IOWRBQ */
else {
    temp = ReadIO (eaRB);                               /* BCIOB */
    temp = GETBYTE (ea, temp);
    temp = temp & ~val;
    WriteIO (ea, temp, WRITEB);
    }
return;
}

/* Read and write I/O devices.
   These routines are the linkage between the 64b world of the main
   simulator and the 32b world of the device simulators.
*/

d10 ReadIO (a10 ea)
{
uint32 pa = (uint32) ea;
int32 i, n, val;
DIB *dibp;

for (i = 0; dibp = dib_tab[i]; i++ ) {
    if ((pa >= dibp->ba) &&
       (pa < (dibp->ba + dibp->lnt))) {
        dibp->rd (&val, pa, READ);
        pi_eval ();
        return ((d10) val);
        }
    }
UBNXM_FAIL (pa, READ);
}

void WriteIO (a10 ea, d10 val, int32 mode)
{
uint32 pa = (uint32) ea;
int32 i, n;
DIB *dibp;

for (i = 0; dibp = dib_tab[i]; i++ ) {
    if ((pa >= dibp->ba) &&
       (pa < (dibp->ba + dibp->lnt))) {
        dibp->wr ((int32) val, pa, mode);
        pi_eval ();
        return;
        } 
    }
UBNXM_FAIL (pa, mode);
}

/* Mapped read and write routines - used by standard Unibus devices on Unibus 1 */

a10 Map_Addr10 (a10 ba, int32 ub)
{
a10 pa10;
int32 vpn = PAG_GETVPN (ba >> 2);                       /* get PDP-10 page number */
    
if ((vpn >= UMAP_MEMSIZE) || (ba & XBA_MBZ) ||
    ((ubmap[ub][vpn] & UMAP_VLD) == 0)) return -1;      /* invalid map? */
pa10 = (ubmap[ub][vpn] + PAG_GETOFF (ba >> 2)) & PAMASK;
return pa10;
}

int32 Map_ReadB (uint32 ba, int32 bc, uint8 *buf)
{
uint32 lim;
a10 pa10;

lim = ba + bc;
for ( ; ba < lim; ba++) {                               /* by bytes */
    pa10 = Map_Addr10 (ba, 1);                          /* map addr */
    if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {            /* inv map or NXM? */
        ubcs[1] = ubcs[1] | UBCS_TMO;                   /* UBA times out */
        return (lim - ba);                              /* return bc */
        }
    *buf++ = (uint8) ((M[pa10] >> ubashf[ba & 3]) & 0377);
    }
return 0;
}

int32 Map_ReadW (uint32 ba, int32 bc, uint16 *buf)
{
uint32 lim;
a10 pa10;

ba = ba & ~01;                                          /* align start */
lim = ba + (bc & ~01);
for ( ; ba < lim; ba = ba + 2) {                        /* by words */
    pa10 = Map_Addr10 (ba, 1);                          /* map addr */
    if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {            /* inv map or NXM? */
        ubcs[1] = ubcs[1] | UBCS_TMO;                   /* UBA times out */
        return (lim - ba);                              /* return bc */
        }
    *buf++ = (uint16) ((M[pa10] >> ((ba & 2)? 0: 18)) & 0177777);
    }
return 0;
}

int32 Map_WriteB (uint32 ba, int32 bc, uint8 *buf)
{
uint32 lim;
a10 pa10;
d10 mask;

lim = ba + bc;
for ( ; ba < lim; ba++) {                               /* by bytes */
    pa10 = Map_Addr10 (ba, 1);                          /* map addr */
    if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {            /* inv map or NXM? */
        ubcs[1] = ubcs[1] | UBCS_TMO;                   /* UBA times out */
        return (lim - ba);                              /* return bc */
        }
    mask = 0377;
    M[pa10] = (M[pa10] & ~(mask << ubashf[ba & 3])) |
        (((d10) *buf++) << ubashf[ba & 3]);
    }
return 0;
}

int32 Map_WriteW (uint32 ba, int32 bc, uint16 *buf)
{
uint32 lim;
a10 pa10;
d10 val;

ba = ba & ~01;                                          /* align start */
lim = ba + (bc & ~01);
for ( ; ba < lim; ba++) {                               /* by bytes */
    pa10 = Map_Addr10 (ba, 1);                          /* map addr */
    if ((pa10 < 0) || MEM_ADDR_NXM (pa10)) {            /* inv map or NXM? */
        ubcs[1] = ubcs[1] | UBCS_TMO;                   /* UBA times out */
        return (lim - ba);                              /* return bc */
        }
    val = *buf++;                                       /* get data */
    if (ba & 2) M[pa10] = (M[pa10] & 0777777600000) | val;
    else M[pa10] = (M[pa10] & 0600000777777) | (val << 18);
    }
return 0;
}

/* Evaluate Unibus priority interrupts */

int32 pi_ub_eval ()
{
int32 i, lvl;

for (i = lvl = 0; i < UBANUM; i++) {
    if (int_req & ubabr76[i])
        lvl = lvl | pi_l2bit[UBCS_GET_HI (ubcs[i])];
    if (int_req & ubabr54[i])
        lvl = lvl | pi_l2bit[UBCS_GET_LO (ubcs[i])];
    }
return lvl;
}

/* Return Unibus device vector

   Takes as input the request level calculated by pi_eval
   If there is an interrupting Unibus device at that level, return its vector,
        otherwise, returns 0
*/

int32 pi_ub_vec (int32 rlvl, int32 *uba)
{
int32 i, masked_irq;

for (i = masked_irq = 0; i < UBANUM; i++) {
    if ((rlvl == UBCS_GET_HI (ubcs[i])) &&              /* req on hi level? */
        (masked_irq = int_req & ubabr76[i])) break;
    if ((rlvl == UBCS_GET_LO (ubcs[i])) &&              /* req on lo level? */
        (masked_irq = int_req & ubabr54[i])) break;
    }
*uba = (i << 1) + 1;                                    /* store uba # */
for (i = 0; (i < 32) && masked_irq; i++) {              /* find hi pri req */
    if ((masked_irq >> i) & 1) {
        int_req = int_req & ~(1u << i);                 /* clear req */
        if (int_ack[i]) return int_ack[i]();
        return int_vec[i];                              /* return vector */
        }
    }
return 0;
}

/* Unibus adapter map routines */

t_stat ubmap_rd (int32 *val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];

if (n < 0) ABORT (STOP_ILLIOC);
*val = ubmap[n][pa & UMAP_AMASK];
return SCPE_OK;
}

t_stat ubmap_wr (int32 val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];

if (n < 0) ABORT (STOP_ILLIOC);
ubmap[n][pa & UMAP_AMASK] = UMAP_POSFL (val) | UMAP_POSPN (val);
return SCPE_OK;
}

/* Unibus adapter control/status routines */

t_stat ubs_rd (int32 *val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];

if (n < 0) ABORT (STOP_ILLIOC);
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI;
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO;
*val = ubcs[n] = ubcs[n] & ~UBCS_RDZ;
return SCPE_OK;
}

t_stat ubs_wr (int32 val, int32 pa, int32 mode)
{
int32 n = iocmap[GET_IOUBA (pa)];

if (n < 0) ABORT (STOP_ILLIOC);
if (val & UBCS_INI) {
    reset_all (5);                                      /* start after UBA */
    ubcs[n] = val & UBCS_DXF;
    }
else ubcs[n] = val & UBCS_RDW;
if (int_req & ubabr76[n]) ubcs[n] = ubcs[n] | UBCS_HI;
if (int_req & ubabr54[n]) ubcs[n] = ubcs[n] | UBCS_LO;
return SCPE_OK;
}

/* Unibus adapter read zero/write ignore routines */

t_stat rd_zro (int32 *val, int32 pa, int32 mode)
{
*val = 0;
return SCPE_OK;
}

t_stat wr_nop (int32 val, int32 pa, int32 mode)
{
return SCPE_OK;
}

/* Simulator interface routines */

t_stat uba_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw)
{
int32 uba = uptr - uba_unit;

if (addr >= UMAP_MEMSIZE) return SCPE_NXM;
*vptr = ubmap[uba][addr];
return SCPE_OK;
}

t_stat uba_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw)
{
int32 uba = uptr - uba_unit;

if (addr >= UMAP_MEMSIZE) return SCPE_NXM;
ubmap[uba][addr] = (int32) val & UMAP_MASK;
return SCPE_OK;
}

t_stat uba_reset (DEVICE *dptr)
{
int32 i, uba;

int_req = 0;
for (uba = 0; uba < UBANUM; uba++) {
    ubcs[uba] = 0;
    for (i = 0; i < UMAP_MEMSIZE; i++) ubmap[uba][i] = 0;
    }
pi_eval ();
return SCPE_OK;
}

/* Change device address */

t_stat set_addr (UNIT *uptr, int32 val, char *cptr, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 newba;
t_stat r;

if (cptr == NULL) return SCPE_ARG;
if ((val == 0) || (uptr == NULL)) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
newba = (uint32) get_uint (cptr, 8, PAMASK, &r);        /* get new */
if ((r != SCPE_OK) || (newba == dibp->ba)) return r;
if (GET_IOUBA (newba) != GET_IOUBA (dibp->ba)) return SCPE_ARG;
if (newba % ((uint32) val)) return SCPE_ARG;            /* check modulus */
if (GET_IOUBA (newba) != GET_IOUBA (dibp->ba)) return SCPE_ARG;
dibp->ba = newba;                                       /* store */
return SCPE_OK;
}

/* Show device address */

t_stat show_addr (FILE *st, UNIT *uptr, int32 val, void *desc)
{
DEVICE *dptr;
DIB *dibp;

if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if ((dibp == NULL) || (dibp->ba <= IOPAGEBASE)) return SCPE_IERR;
fprintf (st, "address=%07o", dibp->ba);
if (dibp->lnt > 1)
    fprintf (st, "-%07o", dibp->ba + dibp->lnt - 1);
return SCPE_OK;
}

/* Change device vector */

t_stat set_vec (UNIT *uptr, int32 arg, char *cptr, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 newvec;
t_stat r;

if (cptr == NULL) return SCPE_ARG;
if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
newvec = (uint32) get_uint (cptr, 8, VEC_Q + 01000, &r);
if ((r != SCPE_OK) || (newvec == VEC_Q) ||
    ((newvec + (dibp->vnum * 4)) >= (VEC_Q + 01000)) ||
    (newvec & ((dibp->vnum > 1)? 07: 03))) return SCPE_ARG;
dibp->vec = newvec;
return SCPE_OK;
}

/* Show device vector */

t_stat show_vec (FILE *st, UNIT *uptr, int32 arg, void *desc)
{
DEVICE *dptr;
DIB *dibp;
uint32 vec, numvec;

if (uptr == NULL) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
dibp = (DIB *) dptr->ctxt;
if (dibp == NULL) return SCPE_IERR;
vec = dibp->vec;
if (arg) numvec = arg;
else numvec = dibp->vnum;
if (vec == 0) fprintf (st, "no vector");
else {
    fprintf (st, "vector=%o", vec);
    if (numvec > 1) fprintf (st, "-%o", vec + (4 * (numvec - 1)));
    }
return SCPE_OK;
}

/* Test for conflict in device addresses */

t_bool dev_conflict (DIB *curr)
{
uint32 i, end;
DEVICE *dptr;
DIB *dibp;

end = curr->ba + curr->lnt - 1;                         /* get end */
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) {     /* loop thru dev */
    dibp = (DIB *) dptr->ctxt;                          /* get DIB */
    if ((dibp == NULL) || (dibp == curr) ||
        (dptr->flags & DEV_DIS)) continue;
    if (((curr->ba >= dibp->ba) &&                      /* overlap start? */
        (curr->ba < (dibp->ba + dibp->lnt))) ||
        ((end >= dibp->ba) &&                           /* overlap end? */
        (end < (dibp->ba + dibp->lnt)))) {
        printf ("Device %s address conflict at %08o\n",
            sim_dname (dptr), dibp->ba);
        if (sim_log) fprintf (sim_log,
            "Device %s address conflict at %08o\n",
            sim_dname (dptr), dibp->ba);
        return TRUE;
        }
    }
return FALSE;
}

/* Build interrupt tables */

void build_int_vec (int32 vloc, int32 ivec, int32 (*iack)(void) )
{
if (iack != NULL) int_ack[vloc] = iack;
else int_vec[vloc] = ivec;
return;
}

/* Build dib_tab from device list */

t_bool build_dib_tab (void)
{
int32 i, j, k;
DEVICE *dptr;
DIB *dibp;

for (i = 0; i < 32; i++) {                              /* clear intr tables */
    int_vec[i] = 0;
    int_ack[i] = NULL;
	}
for (i = j = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
    dibp = (DIB *) dptr->ctxt;                          /* get DIB */
    if (dibp && !(dptr->flags & DEV_DIS)) {             /* defined, enabled? */
        if (dibp->vnum > VEC_DEVMAX) return SCPE_IERR;
        for (k = 0; k < dibp->vnum; k++)                /* loop thru vec */
            build_int_vec (dibp->vloc + k,              /* add vector */
                dibp->vec + (k * 4), dibp->ack[k]);
        if (dibp->lnt != 0) {                           /* I/O addresses? */
            dib_tab[j++] = dibp;                        /* add DIB to dib_tab */
            if (j >= DIB_MAX) return SCPE_IERR;         /* too many? */
            }   
        }                                               /* end if enabled */
    }                                                   /* end for */
for (i = 0; (dibp = std_dib[i]) != NULL; i++) {         /* loop thru std */
    dib_tab[j++] = dibp;                                /* add to dib_tab */
    if (j >= DIB_MAX) return SCPE_IERR;                 /* too many? */
    }
dib_tab[j] = NULL;                                      /* end with NULL */
for (i = 0; (dibp = dib_tab[i]) != NULL; i++) {         /* test built dib_tab */
    if (dev_conflict (dibp)) return SCPE_STOP;          /* for conflicts */
    }
return SCPE_OK;
}

/* Show dib_tab */

t_stat show_iospace (FILE *st, UNIT *uptr, int32 val, void *desc)
{
int32 i, j, done = 0;
DEVICE *dptr;
DIB *dibt;

build_dib_tab ();                                       /* build table */
while (done == 0) {                                     /* sort ascending */
    done = 1;                                           /* assume done */
    for (i = 0; dib_tab[i + 1] != NULL; i++) {          /* check table */
        if (dib_tab[i]->ba > dib_tab[i + 1]->ba) {      /* out of order? */
            dibt = dib_tab[i];                          /* interchange */
            dib_tab[i] = dib_tab[i + 1];
            dib_tab[i + 1] = dibt;
            done = 0;                                   /* not done */
            }
        }
    }                                                   /* end while */
for (i = 0; dib_tab[i] != NULL; i++) {                  /* print table */
    for (j = 0, dptr = NULL; sim_devices[j] != NULL; j++) {
        if (((DIB*) sim_devices[j]->ctxt) == dib_tab[i]) {
            dptr = sim_devices[j];
            break;
            }
        }
    fprintf (st, "%07o - %07o\t%s\n", dib_tab[i]->ba,
            dib_tab[i]->ba + dib_tab[i]->lnt - 1,
            dptr? sim_dname (dptr): "CPU");
    }
return SCPE_OK;
}

/* Stub auto-configure */

t_stat auto_config (char *name, int32 num)
{
return SCPE_OK;
}

/* Stub floating address */

t_stat set_addr_flt (UNIT *uptr, int32 val, char *cptr, void *desc)
{
return SCPE_OK;
}