~ubuntu-branches/ubuntu/lucid/ocamlgraph/lucid

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
(*
 * Graph: generic graph library
 * Copyright (C) 2004
 * Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License version 2, as published by the Free Software Foundation.
 * 
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * 
 * See the GNU Library General Public License version 2 for more details
 * (enclosed in the file LGPL).
 *)

(* $Id: per_imp.ml,v 1.31 2005/02/25 13:54:33 signoles Exp $ *)

(* Common implementation to persistent and imperative graphs. *)

open Sig
open Util

let cpt_vertex = ref min_int
  (* global counter for abstract vertex *)

module type VERTEX = sig
  type t 
  val compare : t -> t -> int 
  val hash : t -> int 
  val equal : t -> t -> bool
  type label
  val label : t -> label
  val create : label -> t
end

module type EDGE = sig
  type vertex
  type t
  val src : t -> vertex
  val dst : t -> vertex
  val compare : t -> t -> int
  type label
  val label : t -> label
  val create : vertex -> label -> vertex -> t
end

(* Common signature to an imperative/persistent association table *)
module type HM = sig
  type 'a return
  type 'a t
  type key
  val create : unit -> 'a t
  val empty : 'a return
  val is_empty : 'a t -> bool
  val add : key -> 'a -> 'a t -> 'a return
  val remove : key -> 'a t -> 'a return
  val mem : key -> 'a t -> bool
  val find : key -> 'a t -> 'a
  val find_and_raise : key -> 'a t -> string -> 'a
    (* [find_and_raise k t s] is equivalent to [find k t] but
       raises [Invalid_argument s] when [find k t] raises [Not_found] *)

  val iter : (key -> 'a -> unit) -> 'a t -> unit
  val map : (key -> 'a -> key * 'a) -> 'a t -> 'a t
  val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  val copy : 'a t -> 'a t
end

(* [HM] implementation using hashtbl. *)
module Make_Hashtbl(X: COMPARABLE) = struct

  include Hashtbl.Make(X)
  type 'a return = unit

  let empty = ()
    (* never call and not visible for the user thank's to signature 
       constraints *)

  let create () = create 997

  let is_empty h =
    try
      iter (fun _ -> raise Exit) h;
      true
    with Exit ->
      false

  let add k v h = replace h k v
  let remove k h = remove h k
  let mem k h = mem h k
  let find k h = find h k

  let find_and_raise k h s = try find k h with Not_found -> invalid_arg s

  let map f h = 
    let h' = create ()  in
    iter (fun k v -> let k, v = f k v in add k v h') h;
    h'

end

(* [HM] implementation using map *)
module Make_Map(X: COMPARABLE) = struct
  include Map.Make(X)
  type 'a return = 'a t
  let is_empty m = (m = empty)
  let create () = assert false
    (* never call and not visible for the user thank's to 
       signature constraints *)
  let copy m = m
  let map f m = fold (fun k v m -> let k, v = f k v in add k v m) m empty
  let find_and_raise k h s = try find k h with Not_found -> invalid_arg s
end

(* All the predecessor operations from the iterators on the edges *)
module Pred(S: sig
	      module PV: COMPARABLE
	      module PE: EDGE with type vertex = PV.t
	      type t
	      val mem_vertex : PV.t -> t -> bool
	      val iter_edges : (PV.t -> PV.t -> unit) -> t -> unit
	      val fold_edges : (PV.t -> PV.t -> 'a -> 'a) -> t -> 'a -> 'a
	      val iter_edges_e : (PE.t -> unit) -> t -> unit
	      val fold_edges_e : (PE.t -> 'a -> 'a) -> t -> 'a -> 'a
	    end) =
struct

  open S

  let iter_pred f g v = 
    if not (mem_vertex v g) then invalid_arg "iter_pred";
    iter_edges (fun v1 v2 -> if PV.equal v v2 then f v1) g

  let fold_pred f g v = 
    if not (mem_vertex v g) then invalid_arg "fold_pred";
    fold_edges (fun v1 v2 a -> if PV.equal v v2 then f v1 a else a) g

  let pred g v = fold_pred (fun v l -> v :: l) g v []

  let in_degree g v = 
    if not (mem_vertex v g) then invalid_arg "in_degree";
    fold_pred (fun v n -> n + 1) g v 0

  let iter_pred_e f g v =
    if not (mem_vertex v g) then invalid_arg "iter_pred_e";
    iter_edges_e (fun e -> if PV.equal v (PE.dst e) then f e) g

  let fold_pred_e f g v =
    if not (mem_vertex v g) then invalid_arg "fold_pred_e";
    fold_edges_e (fun e a -> if PV.equal v (PE.dst e) then f e a else a) g
      
  let pred_e g v = fold_pred_e (fun v l -> v :: l) g v []

end

(* Common implementation to all (directed) graph implementations. *)
module Minimal(S: Set.S)(HM: HM) = struct

  type vertex = HM.key

  let is_directed = true
  let empty = HM.empty
  let create = HM.create
  let is_empty = HM.is_empty

  let nb_vertex g = HM.fold (fun _ _ -> succ) g 0
  let nb_edges g = HM.fold (fun _ s n -> n + S.cardinal s) g 0
  let out_degree g v = 
    S.cardinal (try HM.find v g with Not_found -> invalid_arg "out_degree")

  let mem_vertex g v = HM.mem v g

  let unsafe_add_vertex g v = HM.add v S.empty g
  let unsafe_add_edge g v1 v2 = HM.add v1 (S.add v2 (HM.find v1 g)) g

  let iter_vertex f = HM.iter (fun v _ -> f v)
  let fold_vertex f = HM.fold (fun v _ -> f v)
    
end

(* Common implementation to all the unlabeled (directed) graphs. *)
module Unlabeled(V: COMPARABLE)(HM: HM with type key = V.t) = struct
  
  module S = Set.Make(V)

  module E = struct
    type vertex = V.t
    include OTProduct(V)(V)
    let src = fst
    let dst = snd
    type label = unit
    let label _ = ()
    let create v1 () v2 = v1, v2
  end

  type edge = E.t

  let mem_edge g v1 v2 = 
    try
      S.mem v2 (HM.find v1 g)
    with Not_found ->
      false

  let mem_edge_e g (v1, v2) = mem_edge g v1 v2

  let find_edge g v1 v2 = if mem_edge g v1 v2 then v1, v2 else raise Not_found

  let unsafe_remove_edge g v1 v2 = HM.add v1 (S.remove v2 (HM.find v1 g)) g
  let unsafe_remove_edge_e g (v1, v2) = unsafe_remove_edge g v1 v2

  let remove_edge g v1 v2 = 
    if not (HM.mem v2 g) then invalid_arg "remove_edge";
    HM.add v1 (S.remove v2 (HM.find_and_raise v1 g "remove_edge")) g

  let remove_edge_e g (v1, v2) = remove_edge g v1 v2

  let iter_succ f g v = S.iter f (HM.find_and_raise v g "iter_succ")
  let fold_succ f g v = S.fold f (HM.find_and_raise v g "fold_succ")

  let iter_succ_e f g v = iter_succ (fun v2 -> f (v, v2)) g v
  let fold_succ_e f g v = fold_succ (fun v2 -> f (v, v2)) g v

  let succ g v = S.elements (HM.find_and_raise v g "succ")
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f = 
    HM.map (fun v s -> f v, S.fold (fun v s -> S.add (f v) s) s S.empty)

  module I = struct
    type t = S.t HM.t
    module PV = V
    module PE = E
    let iter_edges f = HM.iter (fun v -> S.iter (f v))
    let fold_edges f = HM.fold (fun v -> S.fold (f v))
    let iter_edges_e f = iter_edges (fun v1 v2 -> f (v1, v2))
    let fold_edges_e f = fold_edges (fun v1 v2 a -> f (v1, v2) a)
  end
  include I

  include Pred(struct include I let mem_vertex = HM.mem end)

end

(* Common implementation to all the labeled (directed) graphs. *)
module Labeled(V: COMPARABLE)(E: ORDERED_TYPE)(HM: HM with type key = V.t) = 
struct

  module VE = OTProduct(V)(E)

  module S = Set.Make(VE)

  module E = struct
    type vertex = V.t
    type label = E.t
    type t = vertex * label * vertex
    let src (v, _, _) = v
    let dst (_, _, v) = v
    let label (_, l, _) = l
    let create v1 l v2 = v1, l, v2
    module C = OTProduct(V)(VE)
    let compare (x1, x2, x3) (y1, y2, y3) = 
      C.compare (x1, (x3, x2)) (y1, (y3, y2))
  end

  type edge = E.t

  let mem_edge g v1 v2 = 
    try
      S.exists (fun (v2', _) -> V.equal v2 v2') (HM.find v1 g)
    with Not_found ->
      false

  let mem_edge_e g (v1, l, v2) =
    try
      let ve = v2, l in
      S.exists (fun ve' -> VE.compare ve ve' == 0) (HM.find v1 g)
    with Not_found ->
      false

  exception Found of edge
  let find_edge g v1 v2 =
    try
      S.iter 
	(fun (v2', l) -> if V.equal v2 v2' then raise (Found (v1, l, v2')))
	(HM.find v1 g);
      raise Not_found
    with Found e ->
      e

  let unsafe_remove_edge g v1 v2 = 
    HM.add v1 (S.filter 
		 (fun (v2', _) -> not (V.equal v2 v2')) (HM.find v1 g)) g

  let unsafe_remove_edge_e g (v1, l, v2) = 
    HM.add v1 (S.remove (v2, l) (HM.find v1 g)) g

  let remove_edge g v1 v2 =
    if not (HM.mem v2 g) then invalid_arg "remove_edge";
    HM.add v1 (S.filter 
		 (fun (v2', _) -> not (V.equal v2 v2'))
		 (HM.find_and_raise v1 g "remove_edge")) g

  let remove_edge_e g (v1, l, v2) = 
    if not (HM.mem v2 g) then invalid_arg "remove_edge_e";
    HM.add v1 (S.remove (v2, l) (HM.find_and_raise v1 g "remove_edge_e")) g

  let iter_succ f g v = 
    S.iter (fun (w, _) -> f w) (HM.find_and_raise v g "iter_succ")
  let fold_succ f g v = 
    S.fold (fun (w, _) -> f w) (HM.find_and_raise v g "fold_succ")

  let iter_succ_e f g v = 
    S.iter (fun (w, l) -> f (v, l, w)) (HM.find_and_raise v g "iter_succ_e")
  let fold_succ_e f g v = 
    S.fold (fun (w, l) -> f (v, l, w)) (HM.find_and_raise v g "fold_succ_e")

  let succ g v = fold_succ (fun w l -> w :: l) g v []
  let succ_e g v = fold_succ_e (fun e l -> e :: l) g v []

  let map_vertex f = 
    HM.map (fun v s -> 
	      f v, S.fold (fun (v, l) s -> S.add (f v, l) s) s S.empty)

  module I = struct
    type t = S.t HM.t
    module PV = V
    module PE = E

    let iter_edges f = HM.iter (fun v -> S.iter (fun (w, _) -> f v w))
    let fold_edges f = HM.fold (fun v -> S.fold (fun (w, _) -> f v w))
    let iter_edges_e f = 
      HM.iter (fun v -> S.iter (fun (w, l) -> f (v, l, w)))
    let fold_edges_e f = 
      HM.fold (fun v -> S.fold (fun (w, l) -> f (v, l, w)))
  end
  include I

  include Pred(struct include I let mem_vertex = HM.mem end)

end

(* The vertex module and the vertex table for the concrete graphs. *)
module ConcreteVertex
  (F : functor(X: COMPARABLE) -> HM with type key = X.t)
  (V: COMPARABLE) = 
struct

  module V = struct
    include V
    type label = t
    let label v = v
    let create v = v
  end

  module HM = F(V)

end

(* Abstract [G]. *)
(* JS: factorisation de remove_edge impossible due à un bug caml;
   laisser le code en commentaire en attendant un fix *)
(*
module Make_Abstract(G: sig 
		       type return 
		       include Graph.S
		       val remove_edge : t -> V.t -> V.t -> return
		       val remove_edge_e : t -> E.t -> return
		     end) = 
struct
*)
module Make_Abstract(G: Sig.G) = struct

  module I = struct
    type t = { edges : G.t; mutable size : int }
	(* BE CAREFUL: [size] is only mutable in the imperative version.
	   As there is no extensible records in ocaml 3.07,
	   and for genericity reasons, [size] is mutable in both the
	   imperative and persistent implementation.
	   Do not modify size in the persistent implementation ! *)

    type vertex = G.vertex
    type edge = G.edge

    module PV = G.V
    module PE = G.E

    let iter_edges f g = G.iter_edges f g.edges
    let fold_edges f g = G.fold_edges f g.edges
    let iter_edges_e f g = G.iter_edges_e f g.edges
    let fold_edges_e f g = G.fold_edges_e f g.edges
    let mem_vertex v g = G.mem_vertex g.edges v
  end
  include I

  include Pred(I)

  (* optimisations *)

  let is_empty g = g.size = 0
  let nb_vertex g = g.size

  (* redefinitions *)

  let out_degree g = G.out_degree g.edges
  let in_degree g = G.in_degree g.edges

  let nb_edges g = G.nb_edges g.edges
  let succ g = G.succ g.edges
  let mem_vertex g = G.mem_vertex g.edges
  let mem_edge g = G.mem_edge g.edges
  let mem_edge_e g = G.mem_edge_e g.edges
  let find_edge g = G.find_edge g.edges

(* JS: factorisation de remove_edge impossible due à un bug caml;
   laisser le code en commentaire en attendant un fix *)
(*
  let remove_edge g = G.remove_edge g.edges
  let remove_edge_e g = G.remove_edge_e g.edges
*)
  let iter_vertex f g = G.iter_vertex f g.edges
  let fold_vertex f g = G.fold_vertex f g.edges
  let iter_succ f g = G.iter_succ f g.edges
  let fold_succ f g = G.fold_succ f g.edges
  let succ_e g = G.succ_e g.edges
  let iter_succ_e f g = G.iter_succ_e f g.edges
  let fold_succ_e f g = G.fold_succ_e f g.edges
  let map_vertex f g = { g with edges = G.map_vertex f g.edges }

end

(* Build persistent (resp. imperative) graphs from a persistent (resp. 
   imperative) association table *)
module Make(F : functor(X: COMPARABLE) -> HM with type key = X.t) = struct

  module Digraph = struct

    module Concrete(V: COMPARABLE) = struct

      include ConcreteVertex(F)(V)
      include Unlabeled(V)(HM)
      include Minimal(S)(HM)

    end

    module ConcreteLabeled(V: COMPARABLE)(E: ORDERED_TYPE_DFT) = struct

      let default = E.default

      include ConcreteVertex(F)(V)
      include Labeled(V)(E)(HM)
      include Minimal(S)(HM)

    end

    module Abstract(V: VERTEX) = struct

      module G = struct
	module V = V
	module HM = F(V)
	include Unlabeled(V)(HM) 
	include Minimal(S)(HM)
      end

      (* export some definitions of G *)
      module V = G.V
      module E = G.E
      module HM = G.HM
      module S = G.S
      let unsafe_add_vertex = G.unsafe_add_vertex
      let unsafe_add_edge = G.unsafe_add_edge
      let unsafe_remove_edge = G.unsafe_remove_edge
      let unsafe_remove_edge_e = G.unsafe_remove_edge_e
      let is_directed = G.is_directed
      let empty = G.empty
      let create = G.create

(* JS: factorisation de remove_edge impossible due à un bug caml;
   laisser le code en commentaire en attendant un fix *)
(*      
      include Make_Abstract(struct type return = S.t HM.return include G end)
*)
      include Make_Abstract(G)

      (* JS: 
	 2 lignes suivantes à supprimer quand la factorisation sera possible *)
      let remove_edge g = G.remove_edge g.edges
      let remove_edge_e g = G.remove_edge_e g.edges

    end

    module AbstractLabeled(V: VERTEX)(E: ORDERED_TYPE_DFT) = struct

      let default = E.default

      module G = struct
	module V = V
	module HM = F(V)
	include Labeled(V)(E)(HM) 
	include Minimal(S)(HM)
      end

      (* export some definitions of G *)
      module V = G.V
      module E = G.E
      module HM = G.HM
      module S = G.S
      let unsafe_add_vertex = G.unsafe_add_vertex
      let unsafe_add_edge = G.unsafe_add_edge
      let unsafe_remove_edge = G.unsafe_remove_edge
      let unsafe_remove_edge_e = G.unsafe_remove_edge_e
      let is_directed = G.is_directed
      let empty = G.empty
      let create = G.create

(* JS: factorisation de remove_edge impossible due à un bug caml;
   laisser le code en commentaire en attendant un fix *)
(*      
      include Make_Abstract(struct type return = S.t HM.return include G end)
*)
      include Make_Abstract(G)
      (* JS: 
	 2 lignes suivantes à supprimer quand la factorisation sera possible *)
      let remove_edge g = G.remove_edge g.edges
      let remove_edge_e g = G.remove_edge_e g.edges

    end

  end

end

(* Implementation of undirected graphs from implementation of directed graphs.
 *)
module Graph(G: Sig.G) = struct

  include G

  let is_directed = false

  (* Optimise the edges iterators. *)

  let iter_edges f =
    iter_edges (fun v1 v2 -> if V.compare v1 v2 >= 0 then f v1 v2)

  let fold_edges f =
    fold_edges 
      (fun v1 v2 acc -> if V.compare v1 v2 >= 0 then f v1 v2 acc else acc)

  let iter_edges_e f =
    iter_edges_e
      (fun e -> if V.compare (E.src e) (E.dst e) >= 0 then f e)

  let fold_edges_e f =
    fold_edges_e
      (fun e acc -> 
	 if V.compare (E.src e) (E.dst e) >= 0 then f e acc else acc)

  (* Redefine [nb_edges] *)

  let nb_edges g = fold_edges_e (fun _ -> (+) 1) g 0

  (* Redefine operations on predecessors:
     predecessors are successors in an undirected graph. *)

  let pred = succ
  let in_degree = out_degree
  let iter_pred = iter_succ
  let fold_pred = fold_succ
  let pred_e = succ_e
  let iter_pred_e = iter_succ_e
  let fold_pred_e = fold_succ_e

end