3
# ====================================================================
4
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5
# project. Rights for redistribution and usage in source and binary
6
# forms are granted according to the OpenSSL license.
7
# ====================================================================
9
# sha256/512_block procedure for x86_64.
11
# 40% improvement over compiler-generated code on Opteron. On EM64T
12
# sha256 was observed to run >80% faster and sha512 - >40%. No magical
13
# tricks, just straight implementation... I really wonder why gcc
14
# [being armed with inline assembler] fails to generate as fast code.
15
# The only thing which is cool about this module is that it's very
16
# same instruction sequence used for both SHA-256 and SHA-512. In
17
# former case the instructions operate on 32-bit operands, while in
18
# latter - on 64-bit ones. All I had to do is to get one flavor right,
19
# the other one passed the test right away:-)
21
# sha256_block runs in ~1005 cycles on Opteron, which gives you
22
# asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23
# frequency in GHz. sha512_block runs in ~1275 cycles, which results
24
# in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25
# Well, if you compare it to IA-64 implementation, which maintains
26
# X[16] in register bank[!], tends to 4 instructions per CPU clock
27
# cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28
# issue Opteron pipeline and X[16] maintained in memory. So that *if*
29
# there is a way to improve it, *then* the only way would be to try to
30
# offload X[16] updates to SSE unit, but that would require "deeper"
31
# loop unroll, which in turn would naturally cause size blow-up, not
32
# to mention increased complexity! And once again, only *if* it's
33
# actually possible to noticeably improve overall ILP, instruction
34
# level parallelism, on a given CPU implementation in this case.
36
# Special note on Intel EM64T. While Opteron CPU exhibits perfect
37
# perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38
# [currently available] EM64T CPUs apparently are far from it. On the
39
# contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40
# sha256_block:-( This is presumably because 64-bit shifts/rotates
41
# apparently are not atomic instructions, but implemented in microcode.
45
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
47
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
48
die "can't locate x86_64-xlate.pl";
50
open STDOUT,"| $^X $xlate $output";
52
if ($output =~ /512/) {
53
$func="sha512_block_data_order";
56
@ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
57
"%r8", "%r9", "%r10","%r11");
58
($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
65
$func="sha256_block_data_order";
68
@ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
69
"%r8d","%r9d","%r10d","%r11d");
70
($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
78
$ctx="%rdi"; # 1st arg
79
$round="%rdi"; # zaps $ctx
80
$inp="%rsi"; # 2nd arg
83
$_ctx="16*$SZ+0*8(%rsp)";
84
$_inp="16*$SZ+1*8(%rsp)";
85
$_end="16*$SZ+2*8(%rsp)";
86
$_rsp="16*$SZ+3*8(%rsp)";
87
$framesz="16*$SZ+4*8";
91
{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
103
ror \$`$Sigma1[2]-$Sigma1[1]`,$a1
105
mov $T1,`$SZ*($i&0xf)`(%rsp)
107
xor $a1,$a0 # Sigma1(e)
108
xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
112
add $a0,$T1 # T1+=Sigma1(e)
114
add $a2,$T1 # T1+=Ch(e,f,g)
121
add ($Tbl,$round,$SZ),$T1 # T1+=K[round]
124
ror \$`$Sigma0[2]-$Sigma0[1]`,$a0
127
xor $a0,$h # h=Sigma0(a)
134
or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c)
135
lea 1($round),$round # round++
137
add $a1,$h # h+=Maj(a,b,c)
142
{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
145
mov `$SZ*(($i+1)&0xf)`(%rsp),$a0
146
mov `$SZ*(($i+14)&0xf)`(%rsp),$T1
154
ror \$`$sigma0[1]-$sigma0[0]`,$a2
156
xor $a2,$a0 # sigma0(X[(i+1)&0xf])
163
ror \$`$sigma1[1]-$sigma1[0]`,$a1
165
xor $a1,$T1 # sigma1(X[(i+14)&0xf])
169
add `$SZ*(($i+9)&0xf)`(%rsp),$T1
171
add `$SZ*($i&0xf)`(%rsp),$T1
180
.type $func,\@function,4
189
mov %rsp,%rbp # copy %rsp
190
shl \$4,%rdx # num*16
192
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
193
and \$-64,%rsp # align stack frame
194
mov $ctx,$_ctx # save ctx, 1st arg
195
mov $inp,$_inp # save inp, 2nd arh
196
mov %rdx,$_end # save end pointer, "3rd" arg
197
mov %rbp,$_rsp # save copy of %rsp
200
lea $TABLE-.($Tbl),$Tbl
216
for($i=0;$i<16;$i++) {
217
$code.=" mov $SZ*$i($inp),$T1\n";
218
$code.=" bswap $T1\n";
219
&ROUND_00_15($i,@ROT);
220
unshift(@ROT,pop(@ROT));
228
&ROUND_16_XX($i,@ROT);
229
unshift(@ROT,pop(@ROT));
237
lea 16*$SZ($inp),$inp
275
.type $TABLE,\@object
277
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
278
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
279
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
280
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
281
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
282
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
283
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
284
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
285
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
286
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
287
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
288
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
289
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
290
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
291
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
292
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
297
.type $TABLE,\@object
299
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
300
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
301
.quad 0x3956c25bf348b538,0x59f111f1b605d019
302
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
303
.quad 0xd807aa98a3030242,0x12835b0145706fbe
304
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
305
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
306
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
307
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
308
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
309
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
310
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
311
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
312
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
313
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
314
.quad 0x06ca6351e003826f,0x142929670a0e6e70
315
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
316
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
317
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
318
.quad 0x81c2c92e47edaee6,0x92722c851482353b
319
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
320
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
321
.quad 0xd192e819d6ef5218,0xd69906245565a910
322
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
323
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
324
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
325
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
326
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
327
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
328
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
329
.quad 0x90befffa23631e28,0xa4506cebde82bde9
330
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
331
.quad 0xca273eceea26619c,0xd186b8c721c0c207
332
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
333
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
334
.quad 0x113f9804bef90dae,0x1b710b35131c471b
335
.quad 0x28db77f523047d84,0x32caab7b40c72493
336
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
337
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
338
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
342
$code =~ s/\`([^\`]*)\`/eval $1/gem;