~ubuntu-branches/ubuntu/natty/eglibc/natty-security

1 by Aurelien Jarno
Import upstream version 2.9
1
/* One way encryption based on SHA256 sum.
1.1.2 by Matthias Klose
Import upstream version 2.10.1
2
   Copyright (C) 2007, 2009 Free Software Foundation, Inc.
1 by Aurelien Jarno
Import upstream version 2.9
3
   This file is part of the GNU C Library.
4
   Contributed by Ulrich Drepper <drepper@redhat.com>, 2007.
5
6
   The GNU C Library is free software; you can redistribute it and/or
7
   modify it under the terms of the GNU Lesser General Public
8
   License as published by the Free Software Foundation; either
9
   version 2.1 of the License, or (at your option) any later version.
10
11
   The GNU C Library is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
   Lesser General Public License for more details.
15
16
   You should have received a copy of the GNU Lesser General Public
17
   License along with the GNU C Library; if not, write to the Free
18
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19
   02111-1307 USA.  */
20
21
#include <assert.h>
22
#include <errno.h>
23
#include <stdbool.h>
24
#include <stdlib.h>
25
#include <string.h>
26
#include <sys/param.h>
27
28
#include "sha256.h"
29
30
1.1.2 by Matthias Klose
Import upstream version 2.10.1
31
#ifdef USE_NSS
32
typedef int PRBool;
33
# include <hasht.h>
34
# include <nsslowhash.h>
35
36
# define sha256_init_ctx(ctxp, nss_ctxp) \
37
  do									      \
38
    {									      \
39
      if (((nss_ctxp = NSSLOWHASH_NewContext (nss_ictx, HASH_AlgSHA256))      \
40
	   == NULL))							      \
41
	{								      \
42
	  if (nss_ctx != NULL)						      \
43
	    NSSLOWHASH_Destroy (nss_ctx);				      \
44
	  if (nss_alt_ctx != NULL)					      \
45
	    NSSLOWHASH_Destroy (nss_alt_ctx);				      \
46
	  return NULL;							      \
47
	}								      \
48
      NSSLOWHASH_Begin (nss_ctxp);					      \
49
    }									      \
50
  while (0)
51
52
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
53
  NSSLOWHASH_Update (nss_ctxp, (const unsigned char *) buf, len)
54
55
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
56
  do									      \
57
    {									      \
58
      unsigned int ret;							      \
59
      NSSLOWHASH_End (nss_ctxp, result, &ret, sizeof (result));		      \
60
      assert (ret == sizeof (result));					      \
61
      NSSLOWHASH_Destroy (nss_ctxp);					      \
62
      nss_ctxp = NULL;							      \
63
    }									      \
64
  while (0)
65
#else
66
# define sha256_init_ctx(ctxp, nss_ctxp) \
67
  __sha256_init_ctx (ctxp)
68
69
# define sha256_process_bytes(buf, len, ctxp, nss_ctxp) \
70
  __sha256_process_bytes(buf, len, ctxp)
71
72
# define sha256_finish_ctx(ctxp, nss_ctxp, result) \
73
  __sha256_finish_ctx (ctxp, result)
74
#endif
75
76
1 by Aurelien Jarno
Import upstream version 2.9
77
/* Define our magic string to mark salt for SHA256 "encryption"
78
   replacement.  */
79
static const char sha256_salt_prefix[] = "$5$";
80
81
/* Prefix for optional rounds specification.  */
82
static const char sha256_rounds_prefix[] = "rounds=";
83
84
/* Maximum salt string length.  */
85
#define SALT_LEN_MAX 16
86
/* Default number of rounds if not explicitly specified.  */
87
#define ROUNDS_DEFAULT 5000
88
/* Minimum number of rounds.  */
89
#define ROUNDS_MIN 1000
90
/* Maximum number of rounds.  */
91
#define ROUNDS_MAX 999999999
92
93
/* Table with characters for base64 transformation.  */
94
static const char b64t[64] =
95
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
96
97
98
/* Prototypes for local functions.  */
99
extern char *__sha256_crypt_r (const char *key, const char *salt,
100
			       char *buffer, int buflen);
101
extern char *__sha256_crypt (const char *key, const char *salt);
102
103
104
char *
105
__sha256_crypt_r (key, salt, buffer, buflen)
106
     const char *key;
107
     const char *salt;
108
     char *buffer;
109
     int buflen;
110
{
111
  unsigned char alt_result[32]
112
    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
113
  unsigned char temp_result[32]
114
    __attribute__ ((__aligned__ (__alignof__ (uint32_t))));
115
  size_t salt_len;
116
  size_t key_len;
117
  size_t cnt;
118
  char *cp;
119
  char *copied_key = NULL;
120
  char *copied_salt = NULL;
121
  char *p_bytes;
122
  char *s_bytes;
123
  /* Default number of rounds.  */
124
  size_t rounds = ROUNDS_DEFAULT;
125
  bool rounds_custom = false;
126
127
  /* Find beginning of salt string.  The prefix should normally always
128
     be present.  Just in case it is not.  */
129
  if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0)
130
    /* Skip salt prefix.  */
131
    salt += sizeof (sha256_salt_prefix) - 1;
132
133
  if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1)
134
      == 0)
135
    {
136
      const char *num = salt + sizeof (sha256_rounds_prefix) - 1;
137
      char *endp;
138
      unsigned long int srounds = strtoul (num, &endp, 10);
139
      if (*endp == '$')
140
	{
141
	  salt = endp + 1;
142
	  rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX));
143
	  rounds_custom = true;
144
	}
145
    }
146
147
  salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX);
148
  key_len = strlen (key);
149
150
  if ((key - (char *) 0) % __alignof__ (uint32_t) != 0)
151
    {
152
      char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t));
153
      key = copied_key =
154
	memcpy (tmp + __alignof__ (uint32_t)
155
		- (tmp - (char *) 0) % __alignof__ (uint32_t),
156
		key, key_len);
157
      assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0);
158
    }
159
160
  if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0)
161
    {
162
      char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t));
163
      salt = copied_salt =
164
	memcpy (tmp + __alignof__ (uint32_t)
165
		- (tmp - (char *) 0) % __alignof__ (uint32_t),
166
		salt, salt_len);
167
      assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0);
168
    }
169
1.1.2 by Matthias Klose
Import upstream version 2.10.1
170
#ifdef USE_NSS
171
  /* Initialize libfreebl3.  */
172
  NSSLOWInitContext *nss_ictx = NSSLOW_Init ();
173
  if (nss_ictx == NULL)
174
    return NULL;
175
  NSSLOWHASHContext *nss_ctx = NULL;
176
  NSSLOWHASHContext *nss_alt_ctx = NULL;
177
#else
178
  struct sha256_ctx ctx;
179
  struct sha256_ctx alt_ctx;
180
#endif
181
1 by Aurelien Jarno
Import upstream version 2.9
182
  /* Prepare for the real work.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
183
  sha256_init_ctx (&ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
184
185
  /* Add the key string.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
186
  sha256_process_bytes (key, key_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
187
188
  /* The last part is the salt string.  This must be at most 16
189
     characters and it ends at the first `$' character.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
190
  sha256_process_bytes (salt, salt_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
191
192
193
  /* Compute alternate SHA256 sum with input KEY, SALT, and KEY.  The
194
     final result will be added to the first context.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
195
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
196
197
  /* Add key.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
198
  sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
199
200
  /* Add salt.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
201
  sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
202
203
  /* Add key again.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
204
  sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
205
206
  /* Now get result of this (32 bytes) and add it to the other
207
     context.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
208
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, alt_result);
1 by Aurelien Jarno
Import upstream version 2.9
209
210
  /* Add for any character in the key one byte of the alternate sum.  */
211
  for (cnt = key_len; cnt > 32; cnt -= 32)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
212
    sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
213
  sha256_process_bytes (alt_result, cnt, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
214
215
  /* Take the binary representation of the length of the key and for every
216
     1 add the alternate sum, for every 0 the key.  */
217
  for (cnt = key_len; cnt > 0; cnt >>= 1)
218
    if ((cnt & 1) != 0)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
219
      sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
220
    else
1.1.2 by Matthias Klose
Import upstream version 2.10.1
221
      sha256_process_bytes (key, key_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
222
223
  /* Create intermediate result.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
224
  sha256_finish_ctx (&ctx, nss_ctx, alt_result);
1 by Aurelien Jarno
Import upstream version 2.9
225
226
  /* Start computation of P byte sequence.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
227
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
228
229
  /* For every character in the password add the entire password.  */
230
  for (cnt = 0; cnt < key_len; ++cnt)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
231
    sha256_process_bytes (key, key_len, &alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
232
233
  /* Finish the digest.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
234
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
1 by Aurelien Jarno
Import upstream version 2.9
235
236
  /* Create byte sequence P.  */
237
  cp = p_bytes = alloca (key_len);
238
  for (cnt = key_len; cnt >= 32; cnt -= 32)
239
    cp = mempcpy (cp, temp_result, 32);
240
  memcpy (cp, temp_result, cnt);
241
242
  /* Start computation of S byte sequence.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
243
  sha256_init_ctx (&alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
244
245
  /* For every character in the password add the entire password.  */
246
  for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
247
    sha256_process_bytes (salt, salt_len, &alt_ctx, nss_alt_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
248
249
  /* Finish the digest.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
250
  sha256_finish_ctx (&alt_ctx, nss_alt_ctx, temp_result);
1 by Aurelien Jarno
Import upstream version 2.9
251
252
  /* Create byte sequence S.  */
253
  cp = s_bytes = alloca (salt_len);
254
  for (cnt = salt_len; cnt >= 32; cnt -= 32)
255
    cp = mempcpy (cp, temp_result, 32);
256
  memcpy (cp, temp_result, cnt);
257
258
  /* Repeatedly run the collected hash value through SHA256 to burn
259
     CPU cycles.  */
260
  for (cnt = 0; cnt < rounds; ++cnt)
261
    {
262
      /* New context.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
263
      sha256_init_ctx (&ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
264
265
      /* Add key or last result.  */
266
      if ((cnt & 1) != 0)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
267
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
268
      else
1.1.2 by Matthias Klose
Import upstream version 2.10.1
269
	sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
270
271
      /* Add salt for numbers not divisible by 3.  */
272
      if (cnt % 3 != 0)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
273
	sha256_process_bytes (s_bytes, salt_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
274
275
      /* Add key for numbers not divisible by 7.  */
276
      if (cnt % 7 != 0)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
277
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
278
279
      /* Add key or last result.  */
280
      if ((cnt & 1) != 0)
1.1.2 by Matthias Klose
Import upstream version 2.10.1
281
	sha256_process_bytes (alt_result, 32, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
282
      else
1.1.2 by Matthias Klose
Import upstream version 2.10.1
283
	sha256_process_bytes (p_bytes, key_len, &ctx, nss_ctx);
1 by Aurelien Jarno
Import upstream version 2.9
284
285
      /* Create intermediate result.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
286
      sha256_finish_ctx (&ctx, nss_ctx, alt_result);
1 by Aurelien Jarno
Import upstream version 2.9
287
    }
288
1.1.2 by Matthias Klose
Import upstream version 2.10.1
289
#ifdef USE_NSS
290
  /* Free libfreebl3 resources. */
291
  NSSLOW_Shutdown (nss_ictx);
292
#endif
293
1 by Aurelien Jarno
Import upstream version 2.9
294
  /* Now we can construct the result string.  It consists of three
295
     parts.  */
296
  cp = __stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen));
297
  buflen -= sizeof (sha256_salt_prefix) - 1;
298
299
  if (rounds_custom)
300
    {
301
      int n = snprintf (cp, MAX (0, buflen), "%s%zu$",
302
			sha256_rounds_prefix, rounds);
303
      cp += n;
304
      buflen -= n;
305
    }
306
307
  cp = __stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len));
308
  buflen -= MIN ((size_t) MAX (0, buflen), salt_len);
309
310
  if (buflen > 0)
311
    {
312
      *cp++ = '$';
313
      --buflen;
314
    }
315
1.1.2 by Matthias Klose
Import upstream version 2.10.1
316
  void b64_from_24bit (unsigned int b2, unsigned int b1, unsigned int b0,
317
		       int n)
318
  {
319
    unsigned int w = (b2 << 16) | (b1 << 8) | b0;
320
    while (n-- > 0 && buflen > 0)
321
      {
322
	*cp++ = b64t[w & 0x3f];
323
	--buflen;
324
	w >>= 6;
325
      }
326
  }
1 by Aurelien Jarno
Import upstream version 2.9
327
328
  b64_from_24bit (alt_result[0], alt_result[10], alt_result[20], 4);
329
  b64_from_24bit (alt_result[21], alt_result[1], alt_result[11], 4);
330
  b64_from_24bit (alt_result[12], alt_result[22], alt_result[2], 4);
331
  b64_from_24bit (alt_result[3], alt_result[13], alt_result[23], 4);
332
  b64_from_24bit (alt_result[24], alt_result[4], alt_result[14], 4);
333
  b64_from_24bit (alt_result[15], alt_result[25], alt_result[5], 4);
334
  b64_from_24bit (alt_result[6], alt_result[16], alt_result[26], 4);
335
  b64_from_24bit (alt_result[27], alt_result[7], alt_result[17], 4);
336
  b64_from_24bit (alt_result[18], alt_result[28], alt_result[8], 4);
337
  b64_from_24bit (alt_result[9], alt_result[19], alt_result[29], 4);
338
  b64_from_24bit (0, alt_result[31], alt_result[30], 3);
339
  if (buflen <= 0)
340
    {
341
      __set_errno (ERANGE);
342
      buffer = NULL;
343
    }
344
  else
345
    *cp = '\0';		/* Terminate the string.  */
346
347
  /* Clear the buffer for the intermediate result so that people
348
     attaching to processes or reading core dumps cannot get any
349
     information.  We do it in this way to clear correct_words[]
350
     inside the SHA256 implementation as well.  */
1.1.2 by Matthias Klose
Import upstream version 2.10.1
351
#ifndef USE_NSS
1 by Aurelien Jarno
Import upstream version 2.9
352
  __sha256_init_ctx (&ctx);
353
  __sha256_finish_ctx (&ctx, alt_result);
1.1.2 by Matthias Klose
Import upstream version 2.10.1
354
  memset (&ctx, '\0', sizeof (ctx));
355
  memset (&alt_ctx, '\0', sizeof (alt_ctx));
356
#endif
1 by Aurelien Jarno
Import upstream version 2.9
357
  memset (temp_result, '\0', sizeof (temp_result));
358
  memset (p_bytes, '\0', key_len);
359
  memset (s_bytes, '\0', salt_len);
360
  if (copied_key != NULL)
361
    memset (copied_key, '\0', key_len);
362
  if (copied_salt != NULL)
363
    memset (copied_salt, '\0', salt_len);
364
365
  return buffer;
366
}
367
368
#ifndef _LIBC
369
# define libc_freeres_ptr(decl) decl
370
#endif
371
libc_freeres_ptr (static char *buffer);
372
373
/* This entry point is equivalent to the `crypt' function in Unix
374
   libcs.  */
375
char *
376
__sha256_crypt (const char *key, const char *salt)
377
{
378
  /* We don't want to have an arbitrary limit in the size of the
379
     password.  We can compute an upper bound for the size of the
380
     result in advance and so we can prepare the buffer we pass to
381
     `sha256_crypt_r'.  */
382
  static int buflen;
383
  int needed = (sizeof (sha256_salt_prefix) - 1
384
		+ sizeof (sha256_rounds_prefix) + 9 + 1
385
		+ strlen (salt) + 1 + 43 + 1);
386
387
  if (buflen < needed)
388
    {
389
      char *new_buffer = (char *) realloc (buffer, needed);
390
      if (new_buffer == NULL)
391
	return NULL;
392
393
      buffer = new_buffer;
394
      buflen = needed;
395
    }
396
397
  return __sha256_crypt_r (key, salt, buffer, buflen);
398
}
399
400
#ifndef _LIBC
401
static void
402
__attribute__ ((__destructor__))
403
free_mem (void)
404
{
405
  free (buffer);
406
}
407
#endif