~ubuntu-branches/ubuntu/natty/lightning-extension/natty-security

1.1.20 by Chris Coulson
Import upstream version 1.6~b1+build1
1
// Copyright 2010 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#include <limits.h>
29
#include <math.h>
30
31
#include "double-conversion.h"
32
33
#include "bignum-dtoa.h"
34
#include "fast-dtoa.h"
35
#include "fixed-dtoa.h"
36
#include "ieee.h"
37
#include "strtod.h"
38
#include "utils.h"
39
40
namespace double_conversion {
41
42
const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
43
  int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
44
  static DoubleToStringConverter converter(flags,
45
                                           "Infinity",
46
                                           "NaN",
47
                                           'e',
48
                                           -6, 21,
49
                                           6, 0);
50
  return converter;
51
}
52
53
54
bool DoubleToStringConverter::HandleSpecialValues(
55
    double value,
56
    StringBuilder* result_builder) const {
57
  Double double_inspect(value);
58
  if (double_inspect.IsInfinite()) {
59
    if (infinity_symbol_ == NULL) return false;
60
    if (value < 0) {
61
      result_builder->AddCharacter('-');
62
    }
63
    result_builder->AddString(infinity_symbol_);
64
    return true;
65
  }
66
  if (double_inspect.IsNan()) {
67
    if (nan_symbol_ == NULL) return false;
68
    result_builder->AddString(nan_symbol_);
69
    return true;
70
  }
71
  return false;
72
}
73
74
75
void DoubleToStringConverter::CreateExponentialRepresentation(
76
    const char* decimal_digits,
77
    int length,
78
    int exponent,
79
    StringBuilder* result_builder) const {
80
  ASSERT(length != 0);
81
  result_builder->AddCharacter(decimal_digits[0]);
82
  if (length != 1) {
83
    result_builder->AddCharacter('.');
84
    result_builder->AddSubstring(&decimal_digits[1], length-1);
85
  }
86
  result_builder->AddCharacter(exponent_character_);
87
  if (exponent < 0) {
88
    result_builder->AddCharacter('-');
89
    exponent = -exponent;
90
  } else {
91
    if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
92
      result_builder->AddCharacter('+');
93
    }
94
  }
95
  if (exponent == 0) {
96
    result_builder->AddCharacter('0');
97
    return;
98
  }
99
  ASSERT(exponent < 1e4);
100
  const int kMaxExponentLength = 5;
101
  char buffer[kMaxExponentLength];
102
  int first_char_pos = kMaxExponentLength;
103
  while (exponent > 0) {
104
    buffer[--first_char_pos] = '0' + (exponent % 10);
105
    exponent /= 10;
106
  }
107
  result_builder->AddSubstring(&buffer[first_char_pos],
108
                               kMaxExponentLength - first_char_pos);
109
}
110
111
112
void DoubleToStringConverter::CreateDecimalRepresentation(
113
    const char* decimal_digits,
114
    int length,
115
    int decimal_point,
116
    int digits_after_point,
117
    StringBuilder* result_builder) const {
118
  // Create a representation that is padded with zeros if needed.
119
  if (decimal_point <= 0) {
120
      // "0.00000decimal_rep".
121
    result_builder->AddCharacter('0');
122
    if (digits_after_point > 0) {
123
      result_builder->AddCharacter('.');
124
      result_builder->AddPadding('0', -decimal_point);
125
      ASSERT(length <= digits_after_point - (-decimal_point));
126
      result_builder->AddSubstring(decimal_digits, length);
127
      int remaining_digits = digits_after_point - (-decimal_point) - length;
128
      result_builder->AddPadding('0', remaining_digits);
129
    }
130
  } else if (decimal_point >= length) {
131
    // "decimal_rep0000.00000" or "decimal_rep.0000"
132
    result_builder->AddSubstring(decimal_digits, length);
133
    result_builder->AddPadding('0', decimal_point - length);
134
    if (digits_after_point > 0) {
135
      result_builder->AddCharacter('.');
136
      result_builder->AddPadding('0', digits_after_point);
137
    }
138
  } else {
139
    // "decima.l_rep000"
140
    ASSERT(digits_after_point > 0);
141
    result_builder->AddSubstring(decimal_digits, decimal_point);
142
    result_builder->AddCharacter('.');
143
    ASSERT(length - decimal_point <= digits_after_point);
144
    result_builder->AddSubstring(&decimal_digits[decimal_point],
145
                                 length - decimal_point);
146
    int remaining_digits = digits_after_point - (length - decimal_point);
147
    result_builder->AddPadding('0', remaining_digits);
148
  }
149
  if (digits_after_point == 0) {
150
    if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
151
      result_builder->AddCharacter('.');
152
    }
153
    if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
154
      result_builder->AddCharacter('0');
155
    }
156
  }
157
}
158
159
160
bool DoubleToStringConverter::ToShortestIeeeNumber(
161
    double value,
162
    StringBuilder* result_builder,
163
    DoubleToStringConverter::DtoaMode mode) const {
164
  assert(mode == SHORTEST || mode == SHORTEST_SINGLE);
165
  if (Double(value).IsSpecial()) {
166
    return HandleSpecialValues(value, result_builder);
167
  }
168
169
  int decimal_point;
170
  bool sign;
171
  const int kDecimalRepCapacity = kBase10MaximalLength + 1;
172
  char decimal_rep[kDecimalRepCapacity];
173
  int decimal_rep_length;
174
175
  DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
176
                &sign, &decimal_rep_length, &decimal_point);
177
178
  bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
179
  if (sign && (value != 0.0 || !unique_zero)) {
180
    result_builder->AddCharacter('-');
181
  }
182
183
  int exponent = decimal_point - 1;
184
  if ((decimal_in_shortest_low_ <= exponent) &&
185
      (exponent < decimal_in_shortest_high_)) {
186
    CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
187
                                decimal_point,
188
                                Max(0, decimal_rep_length - decimal_point),
189
                                result_builder);
190
  } else {
191
    CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
192
                                    result_builder);
193
  }
194
  return true;
195
}
196
197
198
bool DoubleToStringConverter::ToFixed(double value,
199
                                      int requested_digits,
200
                                      StringBuilder* result_builder) const {
201
  ASSERT(kMaxFixedDigitsBeforePoint == 60);
202
  const double kFirstNonFixed = 1e60;
203
204
  if (Double(value).IsSpecial()) {
205
    return HandleSpecialValues(value, result_builder);
206
  }
207
208
  if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
209
  if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
210
211
  // Find a sufficiently precise decimal representation of n.
212
  int decimal_point;
213
  bool sign;
214
  // Add space for the '\0' byte.
215
  const int kDecimalRepCapacity =
216
      kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
217
  char decimal_rep[kDecimalRepCapacity];
218
  int decimal_rep_length;
219
  DoubleToAscii(value, FIXED, requested_digits,
220
                decimal_rep, kDecimalRepCapacity,
221
                &sign, &decimal_rep_length, &decimal_point);
222
223
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
224
  if (sign && (value != 0.0 || !unique_zero)) {
225
    result_builder->AddCharacter('-');
226
  }
227
228
  CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
229
                              requested_digits, result_builder);
230
  return true;
231
}
232
233
234
bool DoubleToStringConverter::ToExponential(
235
    double value,
236
    int requested_digits,
237
    StringBuilder* result_builder) const {
238
  if (Double(value).IsSpecial()) {
239
    return HandleSpecialValues(value, result_builder);
240
  }
241
242
  if (requested_digits < -1) return false;
243
  if (requested_digits > kMaxExponentialDigits) return false;
244
245
  int decimal_point;
246
  bool sign;
247
  // Add space for digit before the decimal point and the '\0' character.
248
  const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
249
  ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
250
  char decimal_rep[kDecimalRepCapacity];
251
  int decimal_rep_length;
252
253
  if (requested_digits == -1) {
254
    DoubleToAscii(value, SHORTEST, 0,
255
                  decimal_rep, kDecimalRepCapacity,
256
                  &sign, &decimal_rep_length, &decimal_point);
257
  } else {
258
    DoubleToAscii(value, PRECISION, requested_digits + 1,
259
                  decimal_rep, kDecimalRepCapacity,
260
                  &sign, &decimal_rep_length, &decimal_point);
261
    ASSERT(decimal_rep_length <= requested_digits + 1);
262
263
    for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
264
      decimal_rep[i] = '0';
265
    }
266
    decimal_rep_length = requested_digits + 1;
267
  }
268
269
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
270
  if (sign && (value != 0.0 || !unique_zero)) {
271
    result_builder->AddCharacter('-');
272
  }
273
274
  int exponent = decimal_point - 1;
275
  CreateExponentialRepresentation(decimal_rep,
276
                                  decimal_rep_length,
277
                                  exponent,
278
                                  result_builder);
279
  return true;
280
}
281
282
283
bool DoubleToStringConverter::ToPrecision(double value,
284
                                          int precision,
285
                                          StringBuilder* result_builder) const {
286
  if (Double(value).IsSpecial()) {
287
    return HandleSpecialValues(value, result_builder);
288
  }
289
290
  if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
291
    return false;
292
  }
293
294
  // Find a sufficiently precise decimal representation of n.
295
  int decimal_point;
296
  bool sign;
297
  // Add one for the terminating null character.
298
  const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
299
  char decimal_rep[kDecimalRepCapacity];
300
  int decimal_rep_length;
301
302
  DoubleToAscii(value, PRECISION, precision,
303
                decimal_rep, kDecimalRepCapacity,
304
                &sign, &decimal_rep_length, &decimal_point);
305
  ASSERT(decimal_rep_length <= precision);
306
307
  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
308
  if (sign && (value != 0.0 || !unique_zero)) {
309
    result_builder->AddCharacter('-');
310
  }
311
312
  // The exponent if we print the number as x.xxeyyy. That is with the
313
  // decimal point after the first digit.
314
  int exponent = decimal_point - 1;
315
316
  int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
317
  if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
318
      (decimal_point - precision + extra_zero >
319
       max_trailing_padding_zeroes_in_precision_mode_)) {
320
    // Fill buffer to contain 'precision' digits.
321
    // Usually the buffer is already at the correct length, but 'DoubleToAscii'
322
    // is allowed to return less characters.
323
    for (int i = decimal_rep_length; i < precision; ++i) {
324
      decimal_rep[i] = '0';
325
    }
326
327
    CreateExponentialRepresentation(decimal_rep,
328
                                    precision,
329
                                    exponent,
330
                                    result_builder);
331
  } else {
332
    CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
333
                                Max(0, precision - decimal_point),
334
                                result_builder);
335
  }
336
  return true;
337
}
338
339
340
static BignumDtoaMode DtoaToBignumDtoaMode(
341
    DoubleToStringConverter::DtoaMode dtoa_mode) {
342
  switch (dtoa_mode) {
343
    case DoubleToStringConverter::SHORTEST:  return BIGNUM_DTOA_SHORTEST;
344
    case DoubleToStringConverter::SHORTEST_SINGLE:
345
        return BIGNUM_DTOA_SHORTEST_SINGLE;
346
    case DoubleToStringConverter::FIXED:     return BIGNUM_DTOA_FIXED;
347
    case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
348
    default:
349
      UNREACHABLE();
350
      return BIGNUM_DTOA_SHORTEST;  // To silence compiler.
351
  }
352
}
353
354
355
void DoubleToStringConverter::DoubleToAscii(double v,
356
                                            DtoaMode mode,
357
                                            int requested_digits,
358
                                            char* buffer,
359
                                            int buffer_length,
360
                                            bool* sign,
361
                                            int* length,
362
                                            int* point) {
363
  Vector<char> vector(buffer, buffer_length);
364
  ASSERT(!Double(v).IsSpecial());
365
  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
366
367
  if (Double(v).Sign() < 0) {
368
    *sign = true;
369
    v = -v;
370
  } else {
371
    *sign = false;
372
  }
373
374
  if (mode == PRECISION && requested_digits == 0) {
375
    vector[0] = '\0';
376
    *length = 0;
377
    return;
378
  }
379
380
  if (v == 0) {
381
    vector[0] = '0';
382
    vector[1] = '\0';
383
    *length = 1;
384
    *point = 1;
385
    return;
386
  }
387
388
  bool fast_worked;
389
  switch (mode) {
390
    case SHORTEST:
391
      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
392
      break;
393
    case SHORTEST_SINGLE:
394
      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
395
                             vector, length, point);
396
      break;
397
    case FIXED:
398
      fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
399
      break;
400
    case PRECISION:
401
      fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
402
                             vector, length, point);
403
      break;
404
    default:
405
      UNREACHABLE();
406
      fast_worked = false;
407
  }
408
  if (fast_worked) return;
409
410
  // If the fast dtoa didn't succeed use the slower bignum version.
411
  BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
412
  BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
413
  vector[*length] = '\0';
414
}
415
416
417
// Consumes the given substring from the iterator.
418
// Returns false, if the substring does not match.
419
static bool ConsumeSubString(const char** current,
420
                             const char* end,
421
                             const char* substring) {
422
  ASSERT(**current == *substring);
423
  for (substring++; *substring != '\0'; substring++) {
424
    ++*current;
425
    if (*current == end || **current != *substring) return false;
426
  }
427
  ++*current;
428
  return true;
429
}
430
431
432
// Maximum number of significant digits in decimal representation.
433
// The longest possible double in decimal representation is
434
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
435
// (768 digits). If we parse a number whose first digits are equal to a
436
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
437
// must be rounded to the bigger one unless the tail consists of zeros, so
438
// we don't need to preserve all the digits.
439
const int kMaxSignificantDigits = 772;
440
441
442
// Returns true if a nonspace found and false if the end has reached.
443
static inline bool AdvanceToNonspace(const char** current, const char* end) {
444
  while (*current != end) {
445
    if (**current != ' ') return true;
446
    ++*current;
447
  }
448
  return false;
449
}
450
451
452
static bool isDigit(int x, int radix) {
453
  return (x >= '0' && x <= '9' && x < '0' + radix)
454
      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
455
      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
456
}
457
458
459
static double SignedZero(bool sign) {
460
  return sign ? -0.0 : 0.0;
461
}
462
463
464
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
465
template <int radix_log_2>
466
static double RadixStringToIeee(const char* current,
467
                                const char* end,
468
                                bool sign,
469
                                bool allow_trailing_junk,
470
                                double junk_string_value,
471
                                bool read_as_double,
472
                                const char** trailing_pointer) {
473
  ASSERT(current != end);
474
475
  const int kDoubleSize = Double::kSignificandSize;
476
  const int kSingleSize = Single::kSignificandSize;
477
  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
478
479
  // Skip leading 0s.
480
  while (*current == '0') {
481
    ++current;
482
    if (current == end) {
483
      *trailing_pointer = end;
484
      return SignedZero(sign);
485
    }
486
  }
487
488
  int64_t number = 0;
489
  int exponent = 0;
490
  const int radix = (1 << radix_log_2);
491
492
  do {
493
    int digit;
494
    if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
495
      digit = static_cast<char>(*current) - '0';
496
    } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
497
      digit = static_cast<char>(*current) - 'a' + 10;
498
    } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
499
      digit = static_cast<char>(*current) - 'A' + 10;
500
    } else {
501
      if (allow_trailing_junk || !AdvanceToNonspace(&current, end)) {
502
        break;
503
      } else {
504
        return junk_string_value;
505
      }
506
    }
507
508
    number = number * radix + digit;
509
    int overflow = static_cast<int>(number >> kSignificandSize);
510
    if (overflow != 0) {
511
      // Overflow occurred. Need to determine which direction to round the
512
      // result.
513
      int overflow_bits_count = 1;
514
      while (overflow > 1) {
515
        overflow_bits_count++;
516
        overflow >>= 1;
517
      }
518
519
      int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
520
      int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
521
      number >>= overflow_bits_count;
522
      exponent = overflow_bits_count;
523
524
      bool zero_tail = true;
525
      while (true) {
526
        ++current;
527
        if (current == end || !isDigit(*current, radix)) break;
528
        zero_tail = zero_tail && *current == '0';
529
        exponent += radix_log_2;
530
      }
531
532
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
533
        return junk_string_value;
534
      }
535
536
      int middle_value = (1 << (overflow_bits_count - 1));
537
      if (dropped_bits > middle_value) {
538
        number++;  // Rounding up.
539
      } else if (dropped_bits == middle_value) {
540
        // Rounding to even to consistency with decimals: half-way case rounds
541
        // up if significant part is odd and down otherwise.
542
        if ((number & 1) != 0 || !zero_tail) {
543
          number++;  // Rounding up.
544
        }
545
      }
546
547
      // Rounding up may cause overflow.
548
      if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
549
        exponent++;
550
        number >>= 1;
551
      }
552
      break;
553
    }
554
    ++current;
555
  } while (current != end);
556
557
  ASSERT(number < ((int64_t)1 << kSignificandSize));
558
  ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
559
560
  *trailing_pointer = current;
561
562
  if (exponent == 0) {
563
    if (sign) {
564
      if (number == 0) return -0.0;
565
      number = -number;
566
    }
567
    return static_cast<double>(number);
568
  }
569
570
  ASSERT(number != 0);
571
  return Double(DiyFp(number, exponent)).value();
572
}
573
574
575
double StringToDoubleConverter::StringToIeee(
576
    const char* input,
577
    int length,
578
    int* processed_characters_count,
579
    bool read_as_double) {
580
  const char* current = input;
581
  const char* end = input + length;
582
583
  *processed_characters_count = 0;
584
585
  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
586
  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
587
  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
588
  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
589
590
  // To make sure that iterator dereferencing is valid the following
591
  // convention is used:
592
  // 1. Each '++current' statement is followed by check for equality to 'end'.
593
  // 2. If AdvanceToNonspace returned false then current == end.
594
  // 3. If 'current' becomes equal to 'end' the function returns or goes to
595
  // 'parsing_done'.
596
  // 4. 'current' is not dereferenced after the 'parsing_done' label.
597
  // 5. Code before 'parsing_done' may rely on 'current != end'.
598
  if (current == end) return empty_string_value_;
599
600
  if (allow_leading_spaces || allow_trailing_spaces) {
601
    if (!AdvanceToNonspace(&current, end)) {
602
      *processed_characters_count = current - input;
603
      return empty_string_value_;
604
    }
605
    if (!allow_leading_spaces && (input != current)) {
606
      // No leading spaces allowed, but AdvanceToNonspace moved forward.
607
      return junk_string_value_;
608
    }
609
  }
610
611
  // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
612
  const int kBufferSize = kMaxSignificantDigits + 10;
613
  char buffer[kBufferSize];  // NOLINT: size is known at compile time.
614
  int buffer_pos = 0;
615
616
  // Exponent will be adjusted if insignificant digits of the integer part
617
  // or insignificant leading zeros of the fractional part are dropped.
618
  int exponent = 0;
619
  int significant_digits = 0;
620
  int insignificant_digits = 0;
621
  bool nonzero_digit_dropped = false;
622
623
  bool sign = false;
624
625
  if (*current == '+' || *current == '-') {
626
    sign = (*current == '-');
627
    ++current;
628
    const char* next_non_space = current;
629
    // Skip following spaces (if allowed).
630
    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
631
    if (!allow_spaces_after_sign && (current != next_non_space)) {
632
      return junk_string_value_;
633
    }
634
    current = next_non_space;
635
  }
636
637
  if (infinity_symbol_ != NULL) {
638
    if (*current == infinity_symbol_[0]) {
639
      if (!ConsumeSubString(&current, end, infinity_symbol_)) {
640
        return junk_string_value_;
641
      }
642
643
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
644
        return junk_string_value_;
645
      }
646
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
647
        return junk_string_value_;
648
      }
649
650
      ASSERT(buffer_pos == 0);
651
      *processed_characters_count = current - input;
652
      return sign ? -Double::Infinity() : Double::Infinity();
653
    }
654
  }
655
656
  if (nan_symbol_ != NULL) {
657
    if (*current == nan_symbol_[0]) {
658
      if (!ConsumeSubString(&current, end, nan_symbol_)) {
659
        return junk_string_value_;
660
      }
661
662
      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
663
        return junk_string_value_;
664
      }
665
      if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
666
        return junk_string_value_;
667
      }
668
669
      ASSERT(buffer_pos == 0);
670
      *processed_characters_count = current - input;
671
      return sign ? -Double::NaN() : Double::NaN();
672
    }
673
  }
674
675
  bool leading_zero = false;
676
  if (*current == '0') {
677
    ++current;
678
    if (current == end) {
679
      *processed_characters_count = current - input;
680
      return SignedZero(sign);
681
    }
682
683
    leading_zero = true;
684
685
    // It could be hexadecimal value.
686
    if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
687
      ++current;
688
      if (current == end || !isDigit(*current, 16)) {
689
        return junk_string_value_;  // "0x".
690
      }
691
692
      const char* tail_pointer = NULL;
693
      double result = RadixStringToIeee<4>(current,
694
                                           end,
695
                                           sign,
696
                                           allow_trailing_junk,
697
                                           junk_string_value_,
698
                                           read_as_double,
699
                                           &tail_pointer);
700
      if (tail_pointer != NULL) {
701
        if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end);
702
        *processed_characters_count = tail_pointer - input;
703
      }
704
      return result;
705
    }
706
707
    // Ignore leading zeros in the integer part.
708
    while (*current == '0') {
709
      ++current;
710
      if (current == end) {
711
        *processed_characters_count = current - input;
712
        return SignedZero(sign);
713
      }
714
    }
715
  }
716
717
  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
718
719
  // Copy significant digits of the integer part (if any) to the buffer.
720
  while (*current >= '0' && *current <= '9') {
721
    if (significant_digits < kMaxSignificantDigits) {
722
      ASSERT(buffer_pos < kBufferSize);
723
      buffer[buffer_pos++] = static_cast<char>(*current);
724
      significant_digits++;
725
      // Will later check if it's an octal in the buffer.
726
    } else {
727
      insignificant_digits++;  // Move the digit into the exponential part.
728
      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
729
    }
730
    octal = octal && *current < '8';
731
    ++current;
732
    if (current == end) goto parsing_done;
733
  }
734
735
  if (significant_digits == 0) {
736
    octal = false;
737
  }
738
739
  if (*current == '.') {
740
    if (octal && !allow_trailing_junk) return junk_string_value_;
741
    if (octal) goto parsing_done;
742
743
    ++current;
744
    if (current == end) {
745
      if (significant_digits == 0 && !leading_zero) {
746
        return junk_string_value_;
747
      } else {
748
        goto parsing_done;
749
      }
750
    }
751
752
    if (significant_digits == 0) {
753
      // octal = false;
754
      // Integer part consists of 0 or is absent. Significant digits start after
755
      // leading zeros (if any).
756
      while (*current == '0') {
757
        ++current;
758
        if (current == end) {
759
          *processed_characters_count = current - input;
760
          return SignedZero(sign);
761
        }
762
        exponent--;  // Move this 0 into the exponent.
763
      }
764
    }
765
766
    // There is a fractional part.
767
    // We don't emit a '.', but adjust the exponent instead.
768
    while (*current >= '0' && *current <= '9') {
769
      if (significant_digits < kMaxSignificantDigits) {
770
        ASSERT(buffer_pos < kBufferSize);
771
        buffer[buffer_pos++] = static_cast<char>(*current);
772
        significant_digits++;
773
        exponent--;
774
      } else {
775
        // Ignore insignificant digits in the fractional part.
776
        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
777
      }
778
      ++current;
779
      if (current == end) goto parsing_done;
780
    }
781
  }
782
783
  if (!leading_zero && exponent == 0 && significant_digits == 0) {
784
    // If leading_zeros is true then the string contains zeros.
785
    // If exponent < 0 then string was [+-]\.0*...
786
    // If significant_digits != 0 the string is not equal to 0.
787
    // Otherwise there are no digits in the string.
788
    return junk_string_value_;
789
  }
790
791
  // Parse exponential part.
792
  if (*current == 'e' || *current == 'E') {
793
    if (octal && !allow_trailing_junk) return junk_string_value_;
794
    if (octal) goto parsing_done;
795
    ++current;
796
    if (current == end) {
797
      if (allow_trailing_junk) {
798
        goto parsing_done;
799
      } else {
800
        return junk_string_value_;
801
      }
802
    }
803
    char sign = '+';
804
    if (*current == '+' || *current == '-') {
805
      sign = static_cast<char>(*current);
806
      ++current;
807
      if (current == end) {
808
        if (allow_trailing_junk) {
809
          goto parsing_done;
810
        } else {
811
          return junk_string_value_;
812
        }
813
      }
814
    }
815
816
    if (current == end || *current < '0' || *current > '9') {
817
      if (allow_trailing_junk) {
818
        goto parsing_done;
819
      } else {
820
        return junk_string_value_;
821
      }
822
    }
823
824
    const int max_exponent = INT_MAX / 2;
825
    ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
826
    int num = 0;
827
    do {
828
      // Check overflow.
829
      int digit = *current - '0';
830
      if (num >= max_exponent / 10
831
          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
832
        num = max_exponent;
833
      } else {
834
        num = num * 10 + digit;
835
      }
836
      ++current;
837
    } while (current != end && *current >= '0' && *current <= '9');
838
839
    exponent += (sign == '-' ? -num : num);
840
  }
841
842
  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
843
    return junk_string_value_;
844
  }
845
  if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
846
    return junk_string_value_;
847
  }
848
  if (allow_trailing_spaces) {
849
    AdvanceToNonspace(&current, end);
850
  }
851
852
  parsing_done:
853
  exponent += insignificant_digits;
854
855
  if (octal) {
856
    double result;
857
    const char* tail_pointer = NULL;
858
    result = RadixStringToIeee<3>(buffer,
859
                                  buffer + buffer_pos,
860
                                  sign,
861
                                  allow_trailing_junk,
862
                                  junk_string_value_,
863
                                  read_as_double,
864
                                  &tail_pointer);
865
    ASSERT(tail_pointer != NULL);
866
    *processed_characters_count = current - input;
867
    return result;
868
  }
869
870
  if (nonzero_digit_dropped) {
871
    buffer[buffer_pos++] = '1';
872
    exponent--;
873
  }
874
875
  ASSERT(buffer_pos < kBufferSize);
876
  buffer[buffer_pos] = '\0';
877
878
  double converted;
879
  if (read_as_double) {
880
    converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
881
  } else {
882
    converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
883
  }
884
  *processed_characters_count = current - input;
885
  return sign? -converted: converted;
886
}
887
888
}  // namespace double_conversion