~ubuntu-branches/ubuntu/natty/mysql-5.1/natty-proposed

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA
*/

/* Pack MyISAM file */

#ifndef USE_MY_FUNC
#define USE_MY_FUNC			/* We need at least my_malloc */
#endif

#include "myisamdef.h"
#include <queues.h>
#include <my_tree.h>
#include "mysys_err.h"
#ifdef MSDOS
#include <io.h>
#endif
#ifndef __GNU_LIBRARY__
#define __GNU_LIBRARY__			/* Skip warnings in getopt.h */
#endif
#include <my_getopt.h>
#include <assert.h>

#if SIZEOF_LONG_LONG > 4
#define BITS_SAVED 64
#else
#define BITS_SAVED 32
#endif

#define IS_OFFSET ((uint) 32768)	/* Bit if offset or char in tree */
#define HEAD_LENGTH	32
#define ALLOWED_JOIN_DIFF	256	/* Diff allowed to join trees */

#define DATA_TMP_EXT		".TMD"
#define OLD_EXT			".OLD"
#define WRITE_COUNT		MY_HOW_OFTEN_TO_WRITE

struct st_file_buffer {
  File file;
  uchar *buffer,*pos,*end;
  my_off_t pos_in_file;
  int bits;
  ulonglong bitbucket;
};

struct st_huff_tree;
struct st_huff_element;

typedef struct st_huff_counts {
  uint	field_length,max_zero_fill;
  uint	pack_type;
  uint	max_end_space,max_pre_space,length_bits,min_space;
  ulong max_length;
  enum en_fieldtype field_type;
  struct st_huff_tree *tree;		/* Tree for field */
  my_off_t counts[256];
  my_off_t end_space[8];
  my_off_t pre_space[8];
  my_off_t tot_end_space,tot_pre_space,zero_fields,empty_fields,bytes_packed;
  TREE int_tree;        /* Tree for detecting distinct column values. */
  uchar *tree_buff;      /* Column values, 'field_length' each. */
  uchar *tree_pos;       /* Points to end of column values in 'tree_buff'. */
} HUFF_COUNTS;

typedef struct st_huff_element HUFF_ELEMENT;

/*
  WARNING: It is crucial for the optimizations in calc_packed_length()
  that 'count' is the first element of 'HUFF_ELEMENT'.
*/
struct st_huff_element {
  my_off_t count;
  union un_element {
    struct st_nod {
      HUFF_ELEMENT *left,*right;
    } nod;
    struct st_leaf {
      HUFF_ELEMENT *null;
      uint	element_nr;		/* Number of element */
    } leaf;
  } a;
};


typedef struct st_huff_tree {
  HUFF_ELEMENT *root,*element_buffer;
  HUFF_COUNTS *counts;
  uint tree_number;
  uint elements;
  my_off_t bytes_packed;
  uint tree_pack_length;
  uint min_chr,max_chr,char_bits,offset_bits,max_offset,height;
  ulonglong *code;
  uchar *code_len;
} HUFF_TREE;


typedef struct st_isam_mrg {
  MI_INFO **file,**current,**end;
  uint free_file;
  uint count;
  uint	min_pack_length;		/* Theese is used by packed data */
  uint	max_pack_length;
  uint	ref_length;
  uint	max_blob_length;
  my_off_t records;
  /* true if at least one source file has at least one disabled index */
  my_bool src_file_has_indexes_disabled;
} PACK_MRG_INFO;


extern int main(int argc,char * *argv);
static void get_options(int *argc,char ***argv);
static MI_INFO *open_isam_file(char *name,int mode);
static my_bool open_isam_files(PACK_MRG_INFO *mrg,char **names,uint count);
static int compress(PACK_MRG_INFO *file,char *join_name);
static HUFF_COUNTS *init_huff_count(MI_INFO *info,my_off_t records);
static void free_counts_and_tree_and_queue(HUFF_TREE *huff_trees,
					   uint trees,
					   HUFF_COUNTS *huff_counts,
					   uint fields);
static int compare_tree(void* cmp_arg __attribute__((unused)),
			const uchar *s,const uchar *t);
static int get_statistic(PACK_MRG_INFO *mrg,HUFF_COUNTS *huff_counts);
static void check_counts(HUFF_COUNTS *huff_counts,uint trees,
			 my_off_t records);
static int test_space_compress(HUFF_COUNTS *huff_counts,my_off_t records,
			       uint max_space_length,my_off_t *space_counts,
			       my_off_t tot_space_count,
			       enum en_fieldtype field_type);
static HUFF_TREE* make_huff_trees(HUFF_COUNTS *huff_counts,uint trees);
static int make_huff_tree(HUFF_TREE *tree,HUFF_COUNTS *huff_counts);
static int compare_huff_elements(void *not_used, uchar *a,uchar *b);
static int save_counts_in_queue(uchar *key,element_count count,
				    HUFF_TREE *tree);
static my_off_t calc_packed_length(HUFF_COUNTS *huff_counts,uint flag);
static uint join_same_trees(HUFF_COUNTS *huff_counts,uint trees);
static int make_huff_decode_table(HUFF_TREE *huff_tree,uint trees);
static void make_traverse_code_tree(HUFF_TREE *huff_tree,
				    HUFF_ELEMENT *element,uint size,
				    ulonglong code);
static int write_header(PACK_MRG_INFO *isam_file, uint header_length,uint trees,
			my_off_t tot_elements,my_off_t filelength);
static void write_field_info(HUFF_COUNTS *counts, uint fields,uint trees);
static my_off_t write_huff_tree(HUFF_TREE *huff_tree,uint trees);
static uint *make_offset_code_tree(HUFF_TREE *huff_tree,
				       HUFF_ELEMENT *element,
				       uint *offset);
static uint max_bit(uint value);
static int compress_isam_file(PACK_MRG_INFO *file,HUFF_COUNTS *huff_counts);
static char *make_new_name(char *new_name,char *old_name);
static char *make_old_name(char *new_name,char *old_name);
static void init_file_buffer(File file,pbool read_buffer);
static int flush_buffer(ulong neaded_length);
static void end_file_buffer(void);
static void write_bits(ulonglong value, uint bits);
static void flush_bits(void);
static int save_state(MI_INFO *isam_file,PACK_MRG_INFO *mrg,my_off_t new_length,
		      ha_checksum crc);
static int save_state_mrg(File file,PACK_MRG_INFO *isam_file,my_off_t new_length,
			  ha_checksum crc);
static int mrg_close(PACK_MRG_INFO *mrg);
static int mrg_rrnd(PACK_MRG_INFO *info,uchar *buf);
static void mrg_reset(PACK_MRG_INFO *mrg);
#if !defined(DBUG_OFF)
static void fakebigcodes(HUFF_COUNTS *huff_counts, HUFF_COUNTS *end_count);
static int fakecmp(my_off_t **count1, my_off_t **count2);
#endif


static int error_on_write=0,test_only=0,verbose=0,silent=0,
	   write_loop=0,force_pack=0, isamchk_neaded=0;
static int tmpfile_createflag=O_RDWR | O_TRUNC | O_EXCL;
static my_bool backup, opt_wait;
/*
  tree_buff_length is somewhat arbitrary. The bigger it is the better
  the chance to win in terms of compression factor. On the other hand,
  this table becomes part of the compressed file header. And its length
  is coded with 16 bits in the header. Hence the limit is 2**16 - 1.
*/
static uint tree_buff_length= 65536 - MALLOC_OVERHEAD;
static char tmp_dir[FN_REFLEN]={0},*join_table;
static my_off_t intervall_length;
static ha_checksum glob_crc;
static struct st_file_buffer file_buffer;
static QUEUE queue;
static HUFF_COUNTS *global_count;
static char zero_string[]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
static const char *load_default_groups[]= { "myisampack",0 };

	/* The main program */

int main(int argc, char **argv)
{
  int error,ok;
  PACK_MRG_INFO merge;
  char **default_argv;
  MY_INIT(argv[0]);

  load_defaults("my",load_default_groups,&argc,&argv);
  default_argv= argv;
  get_options(&argc,&argv);

  error=ok=isamchk_neaded=0;
  if (join_table)
  {						/* Join files into one */
    if (open_isam_files(&merge,argv,(uint) argc) ||
	compress(&merge,join_table))
      error=1;
  }
  else while (argc--)
  {
    MI_INFO *isam_file;
    if (!(isam_file=open_isam_file(*argv++,O_RDWR)))
      error=1;
    else
    {
      merge.file= &isam_file;
      merge.current=0;
      merge.free_file=0;
      merge.count=1;
      if (compress(&merge,0))
	error=1;
      else
	ok=1;
    }
  }
  if (ok && isamchk_neaded && !silent)
    puts("Remember to run myisamchk -rq on compressed tables");
  VOID(fflush(stdout));
  VOID(fflush(stderr));
  free_defaults(default_argv);
  my_end(verbose ? MY_CHECK_ERROR | MY_GIVE_INFO : MY_CHECK_ERROR);
  exit(error ? 2 : 0);
#ifndef _lint
  return 0;					/* No compiler warning */
#endif
}

enum options_mp {OPT_CHARSETS_DIR_MP=256, OPT_AUTO_CLOSE};

static struct my_option my_long_options[] =
{
#ifdef __NETWARE__
  {"autoclose", OPT_AUTO_CLOSE, "Auto close the screen on exit for Netware.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
#endif
  {"backup", 'b', "Make a backup of the table as table_name.OLD.",
   &backup, &backup, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"character-sets-dir", OPT_CHARSETS_DIR_MP,
   "Directory where character sets are.", &charsets_dir,
   &charsets_dir, 0, GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},
  {"debug", '#', "Output debug log. Often this is 'd:t:o,filename'.",
   0, 0, 0, GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0},
  {"force", 'f',
   "Force packing of table even if it gets bigger or if tempfile exists.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"join", 'j',
   "Join all given tables into 'new_table_name'. All tables MUST have identical layouts.",
   &join_table, &join_table, 0, GET_STR, REQUIRED_ARG, 0, 0, 0,
   0, 0, 0},
  {"help", '?', "Display this help and exit.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"silent", 's', "Be more silent.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"tmpdir", 'T', "Use temporary directory to store temporary table.",
   0, 0, 0, GET_STR, REQUIRED_ARG, 0, 0, 0, 0, 0, 0},
  {"test", 't', "Don't pack table, only test packing it.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"verbose", 'v', "Write info about progress and packing result. Use many -v for more verbosity!",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"version", 'V', "Output version information and exit.",
   0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0},
  {"wait", 'w', "Wait and retry if table is in use.", &opt_wait,
   &opt_wait, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0},
  { 0, 0, 0, 0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0}
};

#include <help_start.h>

static void print_version(void)
{
  VOID(printf("%s Ver 1.23 for %s on %s\n",
              my_progname, SYSTEM_TYPE, MACHINE_TYPE));
  NETWARE_SET_SCREEN_MODE(1);
}


static void usage(void)
{
  print_version();
  puts("Copyright 2002-2008 MySQL AB, 2008 Sun Microsystems, Inc.");
  puts("This software comes with ABSOLUTELY NO WARRANTY. This is free software,");
  puts("and you are welcome to modify and redistribute it under the GPL license\n");

  puts("Pack a MyISAM-table to take much less space.");
  puts("Keys are not updated, you must run myisamchk -rq on the datafile");
  puts("afterwards to update the keys.");
  puts("You should give the .MYI file as the filename argument.");

  VOID(printf("\nUsage: %s [OPTIONS] filename...\n", my_progname));
  my_print_help(my_long_options);
  print_defaults("my", load_default_groups);
  my_print_variables(my_long_options);
}

#include <help_end.h>

static my_bool
get_one_option(int optid, const struct my_option *opt __attribute__((unused)),
	       char *argument)
{
  uint length;

  switch(optid) {
#ifdef __NETWARE__
  case OPT_AUTO_CLOSE:
    setscreenmode(SCR_AUTOCLOSE_ON_EXIT);
    break;
#endif
  case 'f':
    force_pack= 1;
    tmpfile_createflag= O_RDWR | O_TRUNC;
    break;
  case 's':
    write_loop= verbose= 0;
    silent= 1;
    break;
  case 't':
    test_only= 1;
    /* Avoid to reset 'verbose' if it was already set > 1. */
    if (! verbose)
      verbose= 1;
    break;
  case 'T':
    length= (uint) (strmov(tmp_dir, argument) - tmp_dir);
    if (length != dirname_length(tmp_dir))
    {
      tmp_dir[length]=FN_LIBCHAR;
      tmp_dir[length+1]=0;
    }
    break;
  case 'v':
    verbose++; /* Allow for selecting the level of verbosity. */
    silent= 0;
    break;
  case '#':
    DBUG_PUSH(argument ? argument : "d:t:o");
    break;
  case 'V':
    print_version();
    exit(0);
  case 'I':
  case '?':
    usage();
    exit(0);
  }
  return 0;
}

	/* reads options */
	/* Initiates DEBUG - but no debugging here ! */

static void get_options(int *argc,char ***argv)
{
  int ho_error;

  my_progname= argv[0][0];
  if (isatty(fileno(stdout)))
    write_loop=1;

  if ((ho_error=handle_options(argc, argv, my_long_options, get_one_option)))
    exit(ho_error);

  if (!*argc)
  {
    usage();
    exit(1);
  }
  if (join_table)
  {
    backup=0;					/* Not needed */
    tmp_dir[0]=0;
  }
  return;
}


static MI_INFO *open_isam_file(char *name,int mode)
{
  MI_INFO *isam_file;
  MYISAM_SHARE *share;
  DBUG_ENTER("open_isam_file");

  if (!(isam_file=mi_open(name,mode,
			  (opt_wait ? HA_OPEN_WAIT_IF_LOCKED :
			   HA_OPEN_ABORT_IF_LOCKED))))
  {
    VOID(fprintf(stderr, "%s gave error %d on open\n", name, my_errno));
    DBUG_RETURN(0);
  }
  share=isam_file->s;
  if (share->options & HA_OPTION_COMPRESS_RECORD && !join_table)
  {
    if (!force_pack)
    {
      VOID(fprintf(stderr, "%s is already compressed\n", name));
      VOID(mi_close(isam_file));
      DBUG_RETURN(0);
    }
    if (verbose)
      puts("Recompressing already compressed table");
    share->options&= ~HA_OPTION_READ_ONLY_DATA; /* We are modifing it */
  }
  if (! force_pack && share->state.state.records != 0 &&
      (share->state.state.records <= 1 ||
       share->state.state.data_file_length < 1024))
  {
    VOID(fprintf(stderr, "%s is too small to compress\n", name));
    VOID(mi_close(isam_file));
    DBUG_RETURN(0);
  }
  VOID(mi_lock_database(isam_file,F_WRLCK));
  DBUG_RETURN(isam_file);
}


static my_bool open_isam_files(PACK_MRG_INFO *mrg, char **names, uint count)
{
  uint i,j;
  mrg->count=0;
  mrg->current=0;
  mrg->file=(MI_INFO**) my_malloc(sizeof(MI_INFO*)*count,MYF(MY_FAE));
  mrg->free_file=1;
  mrg->src_file_has_indexes_disabled= 0;
  for (i=0; i < count ; i++)
  {
    if (!(mrg->file[i]=open_isam_file(names[i],O_RDONLY)))
      goto error;

    mrg->src_file_has_indexes_disabled|=
      ! mi_is_all_keys_active(mrg->file[i]->s->state.key_map,
                              mrg->file[i]->s->base.keys);
  }
  /* Check that files are identical */
  for (j=0 ; j < count-1 ; j++)
  {
    MI_COLUMNDEF *m1,*m2,*end;
    if (mrg->file[j]->s->base.reclength != mrg->file[j+1]->s->base.reclength ||
	mrg->file[j]->s->base.fields != mrg->file[j+1]->s->base.fields)
      goto diff_file;
    m1=mrg->file[j]->s->rec;
    end=m1+mrg->file[j]->s->base.fields;
    m2=mrg->file[j+1]->s->rec;
    for ( ; m1 != end ; m1++,m2++)
    {
      if (m1->type != m2->type || m1->length != m2->length)
	goto diff_file;
    }
  }
  mrg->count=count;
  return 0;

 diff_file:
  VOID(fprintf(stderr, "%s: Tables '%s' and '%s' are not identical\n",
               my_progname, names[j], names[j+1]));
 error:
  while (i--)
    mi_close(mrg->file[i]);
  my_free((uchar*) mrg->file,MYF(0));
  return 1;
}


static int compress(PACK_MRG_INFO *mrg,char *result_table)
{
  int error;
  File new_file,join_isam_file;
  MI_INFO *isam_file;
  MYISAM_SHARE *share;
  char org_name[FN_REFLEN],new_name[FN_REFLEN],temp_name[FN_REFLEN];
  uint i,header_length,fields,trees,used_trees;
  my_off_t old_length,new_length,tot_elements;
  HUFF_COUNTS *huff_counts;
  HUFF_TREE *huff_trees;
  DBUG_ENTER("compress");

  isam_file=mrg->file[0];			/* Take this as an example */
  share=isam_file->s;
  new_file=join_isam_file= -1;
  trees=fields=0;
  huff_trees=0;
  huff_counts=0;

  /* Create temporary or join file */

  if (backup)
    VOID(fn_format(org_name,isam_file->filename,"",MI_NAME_DEXT,2));
  else
    VOID(fn_format(org_name,isam_file->filename,"",MI_NAME_DEXT,2+4+16));
  if (!test_only && result_table)
  {
    /* Make a new indexfile based on first file in list */
    uint length;
    uchar *buff;
    strmov(org_name,result_table);		/* Fix error messages */
    VOID(fn_format(new_name,result_table,"",MI_NAME_IEXT,2));
    if ((join_isam_file=my_create(new_name,0,tmpfile_createflag,MYF(MY_WME)))
	< 0)
      goto err;
    length=(uint) share->base.keystart;
    if (!(buff= (uchar*) my_malloc(length,MYF(MY_WME))))
      goto err;
    if (my_pread(share->kfile,buff,length,0L,MYF(MY_WME | MY_NABP)) ||
	my_write(join_isam_file,buff,length,
		 MYF(MY_WME | MY_NABP | MY_WAIT_IF_FULL)))
    {
      my_free(buff,MYF(0));
      goto err;
    }
    my_free(buff,MYF(0));
    VOID(fn_format(new_name,result_table,"",MI_NAME_DEXT,2));
  }
  else if (!tmp_dir[0])
    VOID(make_new_name(new_name,org_name));
  else
    VOID(fn_format(new_name,org_name,tmp_dir,DATA_TMP_EXT,1+2+4));
  if (!test_only &&
      (new_file=my_create(new_name,0,tmpfile_createflag,MYF(MY_WME))) < 0)
    goto err;

  /* Start calculating statistics */

  mrg->records=0;
  for (i=0 ; i < mrg->count ; i++)
    mrg->records+=mrg->file[i]->s->state.state.records;

  DBUG_PRINT("info", ("Compressing %s: (%lu records)",
                      result_table ? new_name : org_name,
                      (ulong) mrg->records));
  if (write_loop || verbose)
  {
    VOID(printf("Compressing %s: (%lu records)\n",
                result_table ? new_name : org_name, (ulong) mrg->records));
  }
  trees=fields=share->base.fields;
  huff_counts=init_huff_count(isam_file,mrg->records);
  QUICK_SAFEMALLOC;

  /*
    Read the whole data file(s) for statistics.
  */
  DBUG_PRINT("info", ("- Calculating statistics"));
  if (write_loop || verbose)
    VOID(printf("- Calculating statistics\n"));
  if (get_statistic(mrg,huff_counts))
    goto err;
  NORMAL_SAFEMALLOC;
  old_length=0;
  for (i=0; i < mrg->count ; i++)
    old_length+= (mrg->file[i]->s->state.state.data_file_length -
		  mrg->file[i]->s->state.state.empty);

  /*
    Create a global priority queue in preparation for making 
    temporary Huffman trees.
  */
  if (init_queue(&queue,256,0,0,compare_huff_elements,0))
    goto err;

  /*
    Check each column if we should use pre-space-compress, end-space-
    compress, empty-field-compress or zero-field-compress.
  */
  check_counts(huff_counts,fields,mrg->records);

  /*
    Build a Huffman tree for each column.
  */
  huff_trees=make_huff_trees(huff_counts,trees);

  /*
    If the packed lengths of combined columns is less then the sum of
    the non-combined columns, then create common Huffman trees for them.
    We do this only for byte compressed columns, not for distinct values
    compressed columns.
  */
  if ((int) (used_trees=join_same_trees(huff_counts,trees)) < 0)
    goto err;

  /*
    Assign codes to all byte or column values.
  */
  if (make_huff_decode_table(huff_trees,fields))
    goto err;

  /* Prepare a file buffer. */
  init_file_buffer(new_file,0);

  /*
    Reserve space in the target file for the fixed compressed file header.
  */
  file_buffer.pos_in_file=HEAD_LENGTH;
  if (! test_only)
    VOID(my_seek(new_file,file_buffer.pos_in_file,MY_SEEK_SET,MYF(0)));

  /*
    Write field infos: field type, pack type, length bits, tree number.
  */
  write_field_info(huff_counts,fields,used_trees);

  /*
    Write decode trees.
  */
  if (!(tot_elements=write_huff_tree(huff_trees,trees)))
    goto err;

  /*
    Calculate the total length of the compression info header.
    This includes the fixed compressed file header, the column compression
    type descriptions, and the decode trees.
  */
  header_length=(uint) file_buffer.pos_in_file+
    (uint) (file_buffer.pos-file_buffer.buffer);

  /*
    Compress the source file into the target file.
  */
  DBUG_PRINT("info", ("- Compressing file"));
  if (write_loop || verbose)
    VOID(printf("- Compressing file\n"));
  error=compress_isam_file(mrg,huff_counts);
  new_length=file_buffer.pos_in_file;
  if (!error && !test_only)
  {
    uchar buff[MEMMAP_EXTRA_MARGIN];		/* End marginal for memmap */
    bzero(buff,sizeof(buff));
    error=my_write(file_buffer.file,buff,sizeof(buff),
		   MYF(MY_WME | MY_NABP | MY_WAIT_IF_FULL)) != 0;
  }

  /*
    Write the fixed compressed file header.
  */
  if (!error)
    error=write_header(mrg,header_length,used_trees,tot_elements,
		       new_length);

  /* Flush the file buffer. */
  end_file_buffer();

  /* Display statistics. */
  DBUG_PRINT("info", ("Min record length: %6d  Max length: %6d  "
                      "Mean total length: %6ld\n",
                      mrg->min_pack_length, mrg->max_pack_length,
                      (ulong) (mrg->records ? (new_length/mrg->records) : 0)));
  if (verbose && mrg->records)
    VOID(printf("Min record length: %6d   Max length: %6d   "
                "Mean total length: %6ld\n", mrg->min_pack_length,
                mrg->max_pack_length, (ulong) (new_length/mrg->records)));

  /* Close source and target file. */
  if (!test_only)
  {
    error|=my_close(new_file,MYF(MY_WME));
    if (!result_table)
    {
      error|=my_close(isam_file->dfile,MYF(MY_WME));
      isam_file->dfile= -1;		/* Tell mi_close file is closed */
    }
  }

  /* Cleanup. */
  free_counts_and_tree_and_queue(huff_trees,trees,huff_counts,fields);
  if (! test_only && ! error)
  {
    if (result_table)
    {
      error=save_state_mrg(join_isam_file,mrg,new_length,glob_crc);
    }
    else
    {
      if (backup)
      {
	if (my_rename(org_name,make_old_name(temp_name,isam_file->filename),
		      MYF(MY_WME)))
	  error=1;
	else
	{
	  if (tmp_dir[0])
	    error=my_copy(new_name,org_name,MYF(MY_WME));
	  else
	    error=my_rename(new_name,org_name,MYF(MY_WME));
	  if (!error)
          {
	    VOID(my_copystat(temp_name,org_name,MYF(MY_COPYTIME)));
            if (tmp_dir[0])
              VOID(my_delete(new_name,MYF(MY_WME)));
          }
	}
      }
      else
      {
	if (tmp_dir[0])
        {
	  error=my_copy(new_name,org_name,
			MYF(MY_WME | MY_HOLD_ORIGINAL_MODES | MY_COPYTIME));
          if (!error)
            VOID(my_delete(new_name,MYF(MY_WME)));
        }
	else
	  error=my_redel(org_name,new_name,MYF(MY_WME | MY_COPYTIME));
      }
      if (! error)
	error=save_state(isam_file,mrg,new_length,glob_crc);
    }
  }
  error|=mrg_close(mrg);
  if (join_isam_file >= 0)
    error|=my_close(join_isam_file,MYF(MY_WME));
  if (error)
  {
    VOID(fprintf(stderr, "Aborting: %s is not compressed\n", org_name));
    VOID(my_delete(new_name,MYF(MY_WME)));
    DBUG_RETURN(-1);
  }
  if (write_loop || verbose)
  {
    if (old_length)
      VOID(printf("%.4g%%     \n",
                  (((longlong) (old_length - new_length)) * 100.0 /
                   (longlong) old_length)));
    else
      puts("Empty file saved in compressed format");
  }
  DBUG_RETURN(0);

 err:
  free_counts_and_tree_and_queue(huff_trees,trees,huff_counts,fields);
  if (new_file >= 0)
    VOID(my_close(new_file,MYF(0)));
  if (join_isam_file >= 0)
    VOID(my_close(join_isam_file,MYF(0)));
  mrg_close(mrg);
  VOID(fprintf(stderr, "Aborted: %s is not compressed\n", org_name));
  DBUG_RETURN(-1);
}

	/* Init a huff_count-struct for each field and init it */

static HUFF_COUNTS *init_huff_count(MI_INFO *info,my_off_t records)
{
  reg2 uint i;
  reg1 HUFF_COUNTS *count;
  if ((count = (HUFF_COUNTS*) my_malloc(info->s->base.fields*
					sizeof(HUFF_COUNTS),
					MYF(MY_ZEROFILL | MY_WME))))
  {
    for (i=0 ; i < info->s->base.fields ; i++)
    {
      enum en_fieldtype type;
      count[i].field_length=info->s->rec[i].length;
      type= count[i].field_type= (enum en_fieldtype) info->s->rec[i].type;
      if (type == FIELD_INTERVALL ||
	  type == FIELD_CONSTANT ||
	  type == FIELD_ZERO)
	type = FIELD_NORMAL;
      if (count[i].field_length <= 8 &&
	  (type == FIELD_NORMAL ||
	   type == FIELD_SKIP_ZERO))
	count[i].max_zero_fill= count[i].field_length;
      /*
        For every column initialize a tree, which is used to detect distinct
        column values. 'int_tree' works together with 'tree_buff' and
        'tree_pos'. It's keys are implemented by pointers into 'tree_buff'.
        This is accomplished by '-1' as the element size.
      */
      init_tree(&count[i].int_tree,0,0,-1,(qsort_cmp2) compare_tree,0, NULL,
		NULL);
      if (records && type != FIELD_BLOB && type != FIELD_VARCHAR)
	count[i].tree_pos=count[i].tree_buff =
	  my_malloc(count[i].field_length > 1 ? tree_buff_length : 2,
		    MYF(MY_WME));
    }
  }
  return count;
}


	/* Free memory used by counts and trees */

static void free_counts_and_tree_and_queue(HUFF_TREE *huff_trees, uint trees,
					   HUFF_COUNTS *huff_counts,
					   uint fields)
{
  register uint i;

  if (huff_trees)
  {
    for (i=0 ; i < trees ; i++)
    {
      if (huff_trees[i].element_buffer)
	my_free((uchar*) huff_trees[i].element_buffer,MYF(0));
      if (huff_trees[i].code)
	my_free((uchar*) huff_trees[i].code,MYF(0));
    }
    my_free((uchar*) huff_trees,MYF(0));
  }
  if (huff_counts)
  {
    for (i=0 ; i < fields ; i++)
    {
      if (huff_counts[i].tree_buff)
      {
	my_free((uchar*) huff_counts[i].tree_buff,MYF(0));
	delete_tree(&huff_counts[i].int_tree);
      }
    }
    my_free((uchar*) huff_counts,MYF(0));
  }
  delete_queue(&queue);		/* This is safe to free */
  return;
}

	/* Read through old file and gather some statistics */

static int get_statistic(PACK_MRG_INFO *mrg,HUFF_COUNTS *huff_counts)
{
  int error;
  uint length;
  ulong reclength,max_blob_length;
  uchar *record,*pos,*next_pos,*end_pos,*start_pos;
  ha_rows record_count;
  my_bool static_row_size;
  HUFF_COUNTS *count,*end_count;
  TREE_ELEMENT *element;
  DBUG_ENTER("get_statistic");

  reclength=mrg->file[0]->s->base.reclength;
  record=(uchar*) my_alloca(reclength);
  end_count=huff_counts+mrg->file[0]->s->base.fields;
  record_count=0; glob_crc=0;
  max_blob_length=0;

  /* Check how to calculate checksum */
  static_row_size=1;
  for (count=huff_counts ; count < end_count ; count++)
  {
    if (count->field_type == FIELD_BLOB ||
        count->field_type == FIELD_VARCHAR)
    {
      static_row_size=0;
      break;
    }
  }

  mrg_reset(mrg);
  while ((error=mrg_rrnd(mrg,record)) != HA_ERR_END_OF_FILE)
  {
    ulong tot_blob_length=0;
    if (! error)
    {
      /* glob_crc is a checksum over all bytes of all records. */
      if (static_row_size)
	glob_crc+=mi_static_checksum(mrg->file[0],record);
      else
	glob_crc+=mi_checksum(mrg->file[0],record);

      /* Count the incidence of values separately for every column. */
      for (pos=record,count=huff_counts ;
	   count < end_count ;
	   count++,
	   pos=next_pos)
      {
	next_pos=end_pos=(start_pos=pos)+count->field_length;

	/*
          Put the whole column value in a tree if there is room for it.
          'int_tree' is used to quickly check for duplicate values.
          'tree_buff' collects as many distinct column values as
          possible. If the field length is > 1, it is tree_buff_length,
          else 2 bytes. Each value is 'field_length' bytes big. If there
          are more distinct column values than fit into the buffer, we
          give up with this tree. BLOBs and VARCHARs do not have a
          tree_buff as it can only be used with fixed length columns.
          For the special case of field length == 1, we handle only the
          case that there is only one distinct value in the table(s).
          Otherwise, we can have a maximum of 256 distinct values. This
          is then handled by the normal Huffman tree build.

          Another limit for collecting distinct column values is the
          number of values itself. Since we would need to build a
          Huffman tree for the values, we are limited by the 'IS_OFFSET'
          constant. This constant expresses a bit which is used to
          determine if a tree element holds a final value or an offset
          to a child element. Hence, all values and offsets need to be
          smaller than 'IS_OFFSET'. A tree element is implemented with
          two integer values, one for the left branch and one for the
          right branch. For the extreme case that the first element
          points to the last element, the number of integers in the tree
          must be less or equal to IS_OFFSET. So the number of elements
          must be less or equal to IS_OFFSET / 2.

          WARNING: At first, we insert a pointer into the record buffer
          as the key for the tree. If we got a new distinct value, which
          is really inserted into the tree, instead of being counted
          only, we will copy the column value from the record buffer to
          'tree_buff' and adjust the key pointer of the tree accordingly.
        */
	if (count->tree_buff)
	{
	  global_count=count;
	  if (!(element=tree_insert(&count->int_tree,pos, 0, 
				    count->int_tree.custom_arg)) ||
	      (element->count == 1 &&
	       (count->tree_buff + tree_buff_length <
                count->tree_pos + count->field_length)) ||
              (count->int_tree.elements_in_tree > IS_OFFSET / 2) ||
	      (count->field_length == 1 &&
	       count->int_tree.elements_in_tree > 1))
	  {
	    delete_tree(&count->int_tree);
	    my_free(count->tree_buff,MYF(0));
	    count->tree_buff=0;
	  }
	  else
	  {
            /*
              If tree_insert() succeeds, it either creates a new element
              or increments the counter of an existing element.
            */
	    if (element->count == 1)
	    {
              /* Copy the new column value into 'tree_buff'. */
	      memcpy(count->tree_pos,pos,(size_t) count->field_length);
              /* Adjust the key pointer in the tree. */
	      tree_set_pointer(element,count->tree_pos);
              /* Point behind the last column value so far. */
	      count->tree_pos+=count->field_length;
	    }
	  }
	}

	/* Save character counters and space-counts and zero-field-counts */
	if (count->field_type == FIELD_NORMAL ||
	    count->field_type == FIELD_SKIP_ENDSPACE)
	{
          /* Ignore trailing space. */
	  for ( ; end_pos > pos ; end_pos--)
	    if (end_pos[-1] != ' ')
	      break;
          /* Empty fields are just counted. Go to the next record. */
	  if (end_pos == pos)
	  {
	    count->empty_fields++;
	    count->max_zero_fill=0;
	    continue;
	  }
          /*
            Count the total of all trailing spaces and the number of
            short trailing spaces. Remember the longest trailing space.
          */
	  length= (uint) (next_pos-end_pos);
	  count->tot_end_space+=length;
	  if (length < 8)
	    count->end_space[length]++;
	  if (count->max_end_space < length)
	    count->max_end_space = length;
	}

	if (count->field_type == FIELD_NORMAL ||
	    count->field_type == FIELD_SKIP_PRESPACE)
	{
          /* Ignore leading space. */
	  for (pos=start_pos; pos < end_pos ; pos++)
	    if (pos[0] != ' ')
	      break;
          /* Empty fields are just counted. Go to the next record. */
	  if (end_pos == pos)
	  {
	    count->empty_fields++;
	    count->max_zero_fill=0;
	    continue;
	  }
          /*
            Count the total of all leading spaces and the number of
            short leading spaces. Remember the longest leading space.
          */
	  length= (uint) (pos-start_pos);
	  count->tot_pre_space+=length;
	  if (length < 8)
	    count->pre_space[length]++;
	  if (count->max_pre_space < length)
	    count->max_pre_space = length;
	}

        /* Calculate pos, end_pos, and max_length for variable length fields. */
	if (count->field_type == FIELD_BLOB)
	{
	  uint field_length=count->field_length -portable_sizeof_char_ptr;
	  ulong blob_length= _mi_calc_blob_length(field_length, start_pos);
	  memcpy_fixed((char*) &pos,  start_pos+field_length,sizeof(char*));
	  end_pos=pos+blob_length;
	  tot_blob_length+=blob_length;
	  set_if_bigger(count->max_length,blob_length);
	}
	else if (count->field_type == FIELD_VARCHAR)
	{
          uint pack_length= HA_VARCHAR_PACKLENGTH(count->field_length-1);
	  length= (pack_length == 1 ? (uint) *(uchar*) start_pos :
                   uint2korr(start_pos));
	  pos= start_pos+pack_length;
	  end_pos= pos+length;
	  set_if_bigger(count->max_length,length);
	}

        /* Evaluate 'max_zero_fill' for short fields. */
	if (count->field_length <= 8 &&
	    (count->field_type == FIELD_NORMAL ||
	     count->field_type == FIELD_SKIP_ZERO))
	{
	  uint i;
          /* Zero fields are just counted. Go to the next record. */
	  if (!memcmp((uchar*) start_pos,zero_string,count->field_length))
	  {
	    count->zero_fields++;
	    continue;
	  }
          /*
            max_zero_fill starts with field_length. It is decreased every
            time a shorter "zero trailer" is found. It is set to zero when
            an empty field is found (see above). This suggests that the
            variable should be called 'min_zero_fill'.
          */
	  for (i =0 ; i < count->max_zero_fill && ! end_pos[-1 - (int) i] ;
	       i++) ;
	  if (i < count->max_zero_fill)
	    count->max_zero_fill=i;
	}

        /* Ignore zero fields and check fields. */
	if (count->field_type == FIELD_ZERO ||
	    count->field_type == FIELD_CHECK)
	  continue;

        /*
          Count the incidence of every byte value in the
          significant field value.
        */
	for ( ; pos < end_pos ; pos++)
	  count->counts[(uchar) *pos]++;

        /* Step to next field. */
      }

      if (tot_blob_length > max_blob_length)
	max_blob_length=tot_blob_length;
      record_count++;
      if (write_loop && record_count % WRITE_COUNT == 0)
      {
	VOID(printf("%lu\r", (ulong) record_count));
        VOID(fflush(stdout));
      }
    }
    else if (error != HA_ERR_RECORD_DELETED)
    {
      VOID(fprintf(stderr, "Got error %d while reading rows", error));
      break;
    }

    /* Step to next record. */
  }
  if (write_loop)
  {
    VOID(printf("            \r"));
    VOID(fflush(stdout));
  }

  /*
    If --debug=d,fakebigcodes is set, fake the counts to get big Huffman
    codes.
  */
  DBUG_EXECUTE_IF("fakebigcodes", fakebigcodes(huff_counts, end_count););

  DBUG_PRINT("info", ("Found the following number of incidents "
                      "of the byte codes:"));
  if (verbose >= 2)
    VOID(printf("Found the following number of incidents "
                "of the byte codes:\n"));
  for (count= huff_counts ; count < end_count; count++)
  {
    uint      idx;
    my_off_t  total_count;
    char      llbuf[32];

    DBUG_PRINT("info", ("column: %3u", (uint) (count - huff_counts + 1)));
    if (verbose >= 2)
      VOID(printf("column: %3u\n", (uint) (count - huff_counts + 1)));
    if (count->tree_buff)
    {
      DBUG_PRINT("info", ("number of distinct values: %u",
                          (uint) ((count->tree_pos - count->tree_buff) /
                                  count->field_length)));
      if (verbose >= 2)
        VOID(printf("number of distinct values: %u\n",
                    (uint) ((count->tree_pos - count->tree_buff) /
                            count->field_length)));
    }
    total_count= 0;
    for (idx= 0; idx < 256; idx++)
    {
      if (count->counts[idx])
      {
        total_count+= count->counts[idx];
        DBUG_PRINT("info", ("counts[0x%02x]: %12s", idx,
                            llstr((longlong) count->counts[idx], llbuf)));
        if (verbose >= 2)
          VOID(printf("counts[0x%02x]: %12s\n", idx,
                      llstr((longlong) count->counts[idx], llbuf)));
      }
    }
    DBUG_PRINT("info", ("total:        %12s", llstr((longlong) total_count,
                                                    llbuf)));
    if ((verbose >= 2) && total_count)
    {
      VOID(printf("total:        %12s\n",
                  llstr((longlong) total_count, llbuf)));
    }
  }

  mrg->records=record_count;
  mrg->max_blob_length=max_blob_length;
  my_afree((uchar*) record);
  DBUG_RETURN(error != HA_ERR_END_OF_FILE);
}

static int compare_huff_elements(void *not_used __attribute__((unused)),
				 uchar *a, uchar *b)
{
  return *((my_off_t*) a) < *((my_off_t*) b) ? -1 :
    (*((my_off_t*) a) == *((my_off_t*) b)  ? 0 : 1);
}

	/* Check each tree if we should use pre-space-compress, end-space-
	   compress, empty-field-compress or zero-field-compress */

static void check_counts(HUFF_COUNTS *huff_counts, uint trees,
			 my_off_t records)
{
  uint space_fields,fill_zero_fields,field_count[(int) FIELD_enum_val_count];
  my_off_t old_length,new_length,length;
  DBUG_ENTER("check_counts");

  bzero((uchar*) field_count,sizeof(field_count));
  space_fields=fill_zero_fields=0;

  for (; trees-- ; huff_counts++)
  {
    if (huff_counts->field_type == FIELD_BLOB)
    {
      huff_counts->length_bits=max_bit(huff_counts->max_length);
      goto found_pack;
    }
    else if (huff_counts->field_type == FIELD_VARCHAR)
    {
      huff_counts->length_bits=max_bit(huff_counts->max_length);
      goto found_pack;
    }
    else if (huff_counts->field_type == FIELD_CHECK)
    {
      huff_counts->bytes_packed=0;
      huff_counts->counts[0]=0;
      goto found_pack;
    }

    huff_counts->field_type=FIELD_NORMAL;
    huff_counts->pack_type=0;

    /* Check for zero-filled records (in this column), or zero records. */
    if (huff_counts->zero_fields || ! records)
    {
      my_off_t old_space_count;
      /*
        If there are only zero filled records (in this column),
        or no records at all, we are done.
      */
      if (huff_counts->zero_fields == records)
      {
	huff_counts->field_type= FIELD_ZERO;
	huff_counts->bytes_packed=0;
	huff_counts->counts[0]=0;
	goto found_pack;
      }
      /* Remeber the number of significant spaces. */
      old_space_count=huff_counts->counts[' '];
      /* Add all leading and trailing spaces. */
      huff_counts->counts[' ']+= (huff_counts->tot_end_space +
                                  huff_counts->tot_pre_space +
                                  huff_counts->empty_fields *
                                  huff_counts->field_length);
      /* Check, what the compressed length of this would be. */
      old_length=calc_packed_length(huff_counts,0)+records/8;
      /* Get the number of zero bytes. */
      length=huff_counts->zero_fields*huff_counts->field_length;
      /* Add it to the counts. */
      huff_counts->counts[0]+=length;
      /* Check, what the compressed length of this would be. */
      new_length=calc_packed_length(huff_counts,0);
      /* If the compression without the zeroes would be shorter, we are done. */
      if (old_length < new_length && huff_counts->field_length > 1)
      {
	huff_counts->field_type=FIELD_SKIP_ZERO;
	huff_counts->counts[0]-=length;
	huff_counts->bytes_packed=old_length- records/8;
	goto found_pack;
      }
      /* Remove the insignificant spaces, but keep the zeroes. */
      huff_counts->counts[' ']=old_space_count;
    }
    /* Check, what the compressed length of this column would be. */
    huff_counts->bytes_packed=calc_packed_length(huff_counts,0);

    /*
      If there are enough empty records (in this column),
      treating them specially may pay off.
    */
    if (huff_counts->empty_fields)
    {
      if (huff_counts->field_length > 2 &&
	  huff_counts->empty_fields + (records - huff_counts->empty_fields)*
	  (1+max_bit(max(huff_counts->max_pre_space,
			 huff_counts->max_end_space))) <
	  records * max_bit(huff_counts->field_length))
      {
	huff_counts->pack_type |= PACK_TYPE_SPACE_FIELDS;
      }
      else
      {
	length=huff_counts->empty_fields*huff_counts->field_length;
	if (huff_counts->tot_end_space || ! huff_counts->tot_pre_space)
	{
	  huff_counts->tot_end_space+=length;
	  huff_counts->max_end_space=huff_counts->field_length;
	  if (huff_counts->field_length < 8)
	    huff_counts->end_space[huff_counts->field_length]+=
	      huff_counts->empty_fields;
	}
	if (huff_counts->tot_pre_space)
	{
	  huff_counts->tot_pre_space+=length;
	  huff_counts->max_pre_space=huff_counts->field_length;
	  if (huff_counts->field_length < 8)
	    huff_counts->pre_space[huff_counts->field_length]+=
	      huff_counts->empty_fields;
	}
      }
    }

    /*
      If there are enough trailing spaces (in this column),
      treating them specially may pay off.
    */
    if (huff_counts->tot_end_space)
    {
      huff_counts->counts[' ']+=huff_counts->tot_pre_space;
      if (test_space_compress(huff_counts,records,huff_counts->max_end_space,
			      huff_counts->end_space,
			      huff_counts->tot_end_space,FIELD_SKIP_ENDSPACE))
	goto found_pack;
      huff_counts->counts[' ']-=huff_counts->tot_pre_space;
    }

    /*
      If there are enough leading spaces (in this column),
      treating them specially may pay off.
    */
    if (huff_counts->tot_pre_space)
    {
      if (test_space_compress(huff_counts,records,huff_counts->max_pre_space,
			      huff_counts->pre_space,
			      huff_counts->tot_pre_space,FIELD_SKIP_PRESPACE))
	goto found_pack;
    }

  found_pack:			/* Found field-packing */

    /* Test if we can use zero-fill */

    if (huff_counts->max_zero_fill &&
	(huff_counts->field_type == FIELD_NORMAL ||
	 huff_counts->field_type == FIELD_SKIP_ZERO))
    {
      huff_counts->counts[0]-=huff_counts->max_zero_fill*
	(huff_counts->field_type == FIELD_SKIP_ZERO ?
	 records - huff_counts->zero_fields : records);
      huff_counts->pack_type|=PACK_TYPE_ZERO_FILL;
      huff_counts->bytes_packed=calc_packed_length(huff_counts,0);
    }

    /* Test if intervall-field is better */

    if (huff_counts->tree_buff)
    {
      HUFF_TREE tree;

      DBUG_EXECUTE_IF("forceintervall",
                      huff_counts->bytes_packed= ~ (my_off_t) 0;);
      tree.element_buffer=0;
      if (!make_huff_tree(&tree,huff_counts) &&
	  tree.bytes_packed+tree.tree_pack_length < huff_counts->bytes_packed)
      {
	if (tree.elements == 1)
	  huff_counts->field_type=FIELD_CONSTANT;
	else
	  huff_counts->field_type=FIELD_INTERVALL;
	huff_counts->pack_type=0;
      }
      else
      {
	my_free((uchar*) huff_counts->tree_buff,MYF(0));
	delete_tree(&huff_counts->int_tree);
	huff_counts->tree_buff=0;
      }
      if (tree.element_buffer)
	my_free((uchar*) tree.element_buffer,MYF(0));
    }
    if (huff_counts->pack_type & PACK_TYPE_SPACE_FIELDS)
      space_fields++;
    if (huff_counts->pack_type & PACK_TYPE_ZERO_FILL)
      fill_zero_fields++;
    field_count[huff_counts->field_type]++;
  }
  DBUG_PRINT("info", ("normal:    %3d  empty-space:     %3d  "
                      "empty-zero:       %3d  empty-fill: %3d",
                      field_count[FIELD_NORMAL],space_fields,
                      field_count[FIELD_SKIP_ZERO],fill_zero_fields));
  DBUG_PRINT("info", ("pre-space: %3d  end-space:       %3d  "
                      "intervall-fields: %3d  zero:       %3d",
                      field_count[FIELD_SKIP_PRESPACE],
                      field_count[FIELD_SKIP_ENDSPACE],
                      field_count[FIELD_INTERVALL],
                      field_count[FIELD_ZERO]));
  if (verbose)
    VOID(printf("\nnormal:    %3d  empty-space:     %3d  "
                "empty-zero:       %3d  empty-fill: %3d\n"
                "pre-space: %3d  end-space:       %3d  "
                "intervall-fields: %3d  zero:       %3d\n",
                field_count[FIELD_NORMAL],space_fields,
                field_count[FIELD_SKIP_ZERO],fill_zero_fields,
                field_count[FIELD_SKIP_PRESPACE],
                field_count[FIELD_SKIP_ENDSPACE],
                field_count[FIELD_INTERVALL],
                field_count[FIELD_ZERO]));
  DBUG_VOID_RETURN;
}

	/* Test if we can use space-compression and empty-field-compression */

static int
test_space_compress(HUFF_COUNTS *huff_counts, my_off_t records,
		    uint max_space_length, my_off_t *space_counts,
		    my_off_t tot_space_count, enum en_fieldtype field_type)
{
  int min_pos;
  uint length_bits,i;
  my_off_t space_count,min_space_count,min_pack,new_length,skip;

  length_bits=max_bit(max_space_length);

		/* Default no end_space-packing */
  space_count=huff_counts->counts[(uint) ' '];
  min_space_count= (huff_counts->counts[(uint) ' ']+= tot_space_count);
  min_pack=calc_packed_length(huff_counts,0);
  min_pos= -2;
  huff_counts->counts[(uint) ' ']=space_count;

	/* Test with allways space-count */
  new_length=huff_counts->bytes_packed+length_bits*records/8;
  if (new_length+1 < min_pack)
  {
    min_pos= -1;
    min_pack=new_length;
    min_space_count=space_count;
  }
	/* Test with length-flag */
  for (skip=0L, i=0 ; i < 8 ; i++)
  {
    if (space_counts[i])
    {
      if (i)
	huff_counts->counts[(uint) ' ']+=space_counts[i];
      skip+=huff_counts->pre_space[i];
      new_length=calc_packed_length(huff_counts,0)+
	(records+(records-skip)*(1+length_bits))/8;
      if (new_length < min_pack)
      {
	min_pos=(int) i;
	min_pack=new_length;
	min_space_count=huff_counts->counts[(uint) ' '];
      }
    }
  }

  huff_counts->counts[(uint) ' ']=min_space_count;
  huff_counts->bytes_packed=min_pack;
  switch (min_pos) {
  case -2:
    return(0);				/* No space-compress */
  case -1:				/* Always space-count */
    huff_counts->field_type=field_type;
    huff_counts->min_space=0;
    huff_counts->length_bits=max_bit(max_space_length);
    break;
  default:
    huff_counts->field_type=field_type;
    huff_counts->min_space=(uint) min_pos;
    huff_counts->pack_type|=PACK_TYPE_SELECTED;
    huff_counts->length_bits=max_bit(max_space_length);
    break;
  }
  return(1);				/* Using space-compress */
}


	/* Make a huff_tree of each huff_count */

static HUFF_TREE* make_huff_trees(HUFF_COUNTS *huff_counts, uint trees)
{
  uint tree;
  HUFF_TREE *huff_tree;
  DBUG_ENTER("make_huff_trees");

  if (!(huff_tree=(HUFF_TREE*) my_malloc(trees*sizeof(HUFF_TREE),
					 MYF(MY_WME | MY_ZEROFILL))))
    DBUG_RETURN(0);

  for (tree=0 ; tree < trees ; tree++)
  {
    if (make_huff_tree(huff_tree+tree,huff_counts+tree))
    {
      while (tree--)
	my_free((uchar*) huff_tree[tree].element_buffer,MYF(0));
      my_free((uchar*) huff_tree,MYF(0));
      DBUG_RETURN(0);
    }
  }
  DBUG_RETURN(huff_tree);
}

/*
  Build a Huffman tree.

  SYNOPSIS
    make_huff_tree()
    huff_tree                   The Huffman tree.
    huff_counts                 The counts.

  DESCRIPTION
    Build a Huffman tree according to huff_counts->counts or
    huff_counts->tree_buff. tree_buff, if non-NULL contains up to
    tree_buff_length of distinct column values. In that case, whole
    values can be Huffman encoded instead of single bytes.

  RETURN
    0           OK
    != 0        Error
*/

static int make_huff_tree(HUFF_TREE *huff_tree, HUFF_COUNTS *huff_counts)
{
  uint i,found,bits_packed,first,last;
  my_off_t bytes_packed;
  HUFF_ELEMENT *a,*b,*new_huff_el;

  first=last=0;
  if (huff_counts->tree_buff)
  {
    /* Calculate the number of distinct values in tree_buff. */
    found= (uint) (huff_counts->tree_pos - huff_counts->tree_buff) /
      huff_counts->field_length;
    first=0; last=found-1;
  }
  else
  {
    /* Count the number of byte codes found in the column. */
    for (i=found=0 ; i < 256 ; i++)
    {
      if (huff_counts->counts[i])
      {
	if (! found++)
	  first=i;
	last=i;
      }
    }
    if (found < 2)
      found=2;
  }

  /* When using 'tree_buff' we can have more that 256 values. */
  if (queue.max_elements < found)
  {
    delete_queue(&queue);
    if (init_queue(&queue,found,0,0,compare_huff_elements,0))
      return -1;
  }

  /* Allocate or reallocate an element buffer for the Huffman tree. */
  if (!huff_tree->element_buffer)
  {
    if (!(huff_tree->element_buffer=
	 (HUFF_ELEMENT*) my_malloc(found*2*sizeof(HUFF_ELEMENT),MYF(MY_WME))))
      return 1;
  }
  else
  {
    HUFF_ELEMENT *temp;
    if (!(temp=
	  (HUFF_ELEMENT*) my_realloc((uchar*) huff_tree->element_buffer,
				     found*2*sizeof(HUFF_ELEMENT),
				     MYF(MY_WME))))
      return 1;
    huff_tree->element_buffer=temp;
  }

  huff_counts->tree=huff_tree;
  huff_tree->counts=huff_counts;
  huff_tree->min_chr=first;
  huff_tree->max_chr=last;
  huff_tree->char_bits=max_bit(last-first);
  huff_tree->offset_bits=max_bit(found-1)+1;

  if (huff_counts->tree_buff)
  {
    huff_tree->elements=0;
    huff_tree->tree_pack_length=(1+15+16+5+5+
				 (huff_tree->char_bits+1)*found+
				 (huff_tree->offset_bits+1)*
				 (found-2)+7)/8 +
				   (uint) (huff_tree->counts->tree_pos-
					   huff_tree->counts->tree_buff);
    /*
      Put a HUFF_ELEMENT into the queue for every distinct column value.

      tree_walk() calls save_counts_in_queue() for every element in
      'int_tree'. This takes elements from the target trees element
      buffer and places references to them into the buffer of the
      priority queue. We insert in column value order, but the order is
      in fact irrelevant here. We will establish the correct order
      later.
    */
    tree_walk(&huff_counts->int_tree,
	      (int (*)(void*, element_count,void*)) save_counts_in_queue,
	      (uchar*) huff_tree, left_root_right);
  }
  else
  {
    huff_tree->elements=found;
    huff_tree->tree_pack_length=(9+9+5+5+
				 (huff_tree->char_bits+1)*found+
				 (huff_tree->offset_bits+1)*
				 (found-2)+7)/8;
    /*
      Put a HUFF_ELEMENT into the queue for every byte code found in the column.

      The elements are taken from the target trees element buffer.
      Instead of using queue_insert(), we just place references to the
      elements into the buffer of the priority queue. We insert in byte
      value order, but the order is in fact irrelevant here. We will
      establish the correct order later.
    */
    for (i=first, found=0 ; i <= last ; i++)
    {
      if (huff_counts->counts[i])
      {
	new_huff_el=huff_tree->element_buffer+(found++);
	new_huff_el->count=huff_counts->counts[i];
	new_huff_el->a.leaf.null=0;
	new_huff_el->a.leaf.element_nr=i;
	queue.root[found]=(uchar*) new_huff_el;
      }
    }
    /*
      If there is only a single byte value in this field in all records,
      add a second element with zero incidence. This is required to enter
      the loop, which builds the Huffman tree.
    */
    while (found < 2)
    {
      new_huff_el=huff_tree->element_buffer+(found++);
      new_huff_el->count=0;
      new_huff_el->a.leaf.null=0;
      if (last)
	new_huff_el->a.leaf.element_nr=huff_tree->min_chr=last-1;
      else
	new_huff_el->a.leaf.element_nr=huff_tree->max_chr=last+1;
      queue.root[found]=(uchar*) new_huff_el;
    }
  }

  /* Make a queue from the queue buffer. */
  queue.elements=found;

  /*
    Make a priority queue from the queue. Construct its index so that we
    have a partially ordered tree.
  */
  for (i=found/2 ; i > 0 ; i--)
    _downheap(&queue,i);

  /* The Huffman algorithm. */
  bytes_packed=0; bits_packed=0;
  for (i=1 ; i < found ; i++)
  {
    /*
      Pop the top element from the queue (the one with the least incidence).
      Popping from a priority queue includes a re-ordering of the queue,
      to get the next least incidence element to the top.
    */
    a=(HUFF_ELEMENT*) queue_remove(&queue,0);
    /*
      Copy the next least incidence element. The queue implementation
      reserves root[0] for temporary purposes. root[1] is the top.
    */
    b=(HUFF_ELEMENT*) queue.root[1];
    /* Get a new element from the element buffer. */
    new_huff_el=huff_tree->element_buffer+found+i;
    /* The new element gets the sum of the two least incidence elements. */
    new_huff_el->count=a->count+b->count;
    /*
      The Huffman algorithm assigns another bit to the code for a byte
      every time that bytes incidence is combined (directly or indirectly)
      to a new element as one of the two least incidence elements.
      This means that one more bit per incidence of that byte is required
      in the resulting file. So we add the new combined incidence as the
      number of bits by which the result grows.
    */
    bits_packed+=(uint) (new_huff_el->count & 7);
    bytes_packed+=new_huff_el->count/8;
    /* The new element points to its children, lesser in left.  */
    new_huff_el->a.nod.left=a;
    new_huff_el->a.nod.right=b;
    /*
      Replace the copied top element by the new element and re-order the
      queue.
    */
    queue.root[1]=(uchar*) new_huff_el;
    queue_replaced(&queue);
  }
  huff_tree->root=(HUFF_ELEMENT*) queue.root[1];
  huff_tree->bytes_packed=bytes_packed+(bits_packed+7)/8;
  return 0;
}

static int compare_tree(void* cmp_arg __attribute__((unused)),
			register const uchar *s, register const uchar *t)
{
  uint length;
  for (length=global_count->field_length; length-- ;)
    if (*s++ != *t++)
      return (int) s[-1] - (int) t[-1];
  return 0;
}

/*
  Organize distinct column values and their incidences into a priority queue.

  SYNOPSIS
    save_counts_in_queue()
    key                         The column value.
    count                       The incidence of this value.
    tree                        The Huffman tree to be built later.

  DESCRIPTION
    We use the element buffer of the targeted tree. The distinct column
    values are organized in a priority queue first. The Huffman
    algorithm will later organize the elements into a Huffman tree. For
    the time being, we just place references to the elements into the
    queue buffer. The buffer will later be organized into a priority
    queue.

  RETURN
    0
 */

static int save_counts_in_queue(uchar *key, element_count count,
				HUFF_TREE *tree)
{
  HUFF_ELEMENT *new_huff_el;

  new_huff_el=tree->element_buffer+(tree->elements++);
  new_huff_el->count=count;
  new_huff_el->a.leaf.null=0;
  new_huff_el->a.leaf.element_nr= (uint) (key- tree->counts->tree_buff) /
    tree->counts->field_length;
  queue.root[tree->elements]=(uchar*) new_huff_el;
  return 0;
}


/*
  Calculate length of file if given counts should be used.

  SYNOPSIS
    calc_packed_length()
    huff_counts                 The counts for a column of the table(s).
    add_tree_lenght             If the decode tree length should be added.

  DESCRIPTION
    We need to follow the Huffman algorithm until we know, how many bits
    are required for each byte code. But we do not need the resulting
    Huffman tree. Hence, we can leave out some steps which are essential
    in make_huff_tree().

  RETURN
    Number of bytes required to compress this table column.
*/

static my_off_t calc_packed_length(HUFF_COUNTS *huff_counts,
				   uint add_tree_lenght)
{
  uint i,found,bits_packed,first,last;
  my_off_t bytes_packed;
  HUFF_ELEMENT element_buffer[256];
  DBUG_ENTER("calc_packed_length");

  /* 
    WARNING: We use a small hack for efficiency: Instead of placing
    references to HUFF_ELEMENTs into the queue, we just insert
    references to the counts of the byte codes which appeared in this
    table column. During the Huffman algorithm they are successively
    replaced by references to HUFF_ELEMENTs. This works, because
    HUFF_ELEMENTs have the incidence count at their beginning.
    Regardless, wether the queue array contains references to counts of
    type my_off_t or references to HUFF_ELEMENTs which have the count of
    type my_off_t at their beginning, it always points to a count of the
    same type.

    Instead of using queue_insert(), we just copy the references into
    the buffer of the priority queue. We insert in byte value order, but
    the order is in fact irrelevant here. We will establish the correct
    order later.
  */
  first=last=0;
  for (i=found=0 ; i < 256 ; i++)
  {
    if (huff_counts->counts[i])
    {
      if (! found++)
	first=i;
      last=i;
      /* We start with root[1], which is the queues top element. */
      queue.root[found]=(uchar*) &huff_counts->counts[i];
    }
  }
  if (!found)
    DBUG_RETURN(0);			/* Empty tree */
  /*
    If there is only a single byte value in this field in all records,
    add a second element with zero incidence. This is required to enter
    the loop, which follows the Huffman algorithm.
  */
  if (found < 2)
    queue.root[++found]=(uchar*) &huff_counts->counts[last ? 0 : 1];

  /* Make a queue from the queue buffer. */
  queue.elements=found;

  bytes_packed=0; bits_packed=0;
  /* Add the length of the coding table, which would become part of the file. */
  if (add_tree_lenght)
    bytes_packed=(8+9+5+5+(max_bit(last-first)+1)*found+
		  (max_bit(found-1)+1+1)*(found-2) +7)/8;

  /*
    Make a priority queue from the queue. Construct its index so that we
    have a partially ordered tree.
  */
  for (i=(found+1)/2 ; i > 0 ; i--)
    _downheap(&queue,i);

  /* The Huffman algorithm. */
  for (i=0 ; i < found-1 ; i++)
  {
    my_off_t        *a;
    my_off_t        *b;
    HUFF_ELEMENT    *new_huff_el;

    /*
      Pop the top element from the queue (the one with the least
      incidence). Popping from a priority queue includes a re-ordering
      of the queue, to get the next least incidence element to the top.
    */
    a= (my_off_t*) queue_remove(&queue, 0);
    /*
      Copy the next least incidence element. The queue implementation
      reserves root[0] for temporary purposes. root[1] is the top.
    */
    b= (my_off_t*) queue.root[1];
    /* Create a new element in a local (automatic) buffer. */
    new_huff_el= element_buffer + i;
    /* The new element gets the sum of the two least incidence elements. */
    new_huff_el->count= *a + *b;
    /*
      The Huffman algorithm assigns another bit to the code for a byte
      every time that bytes incidence is combined (directly or indirectly)
      to a new element as one of the two least incidence elements.
      This means that one more bit per incidence of that byte is required
      in the resulting file. So we add the new combined incidence as the
      number of bits by which the result grows.
    */
    bits_packed+=(uint) (new_huff_el->count & 7);
    bytes_packed+=new_huff_el->count/8;
    /*
      Replace the copied top element by the new element and re-order the
      queue. This successively replaces the references to counts by
      references to HUFF_ELEMENTs.
    */
    queue.root[1]=(uchar*) new_huff_el;
    queue_replaced(&queue);
  }
  DBUG_RETURN(bytes_packed+(bits_packed+7)/8);
}


	/* Remove trees that don't give any compression */

static uint join_same_trees(HUFF_COUNTS *huff_counts, uint trees)
{
  uint k,tree_number;
  HUFF_COUNTS count,*i,*j,*last_count;

  last_count=huff_counts+trees;
  for (tree_number=0, i=huff_counts ; i < last_count ; i++)
  {
    if (!i->tree->tree_number)
    {
      i->tree->tree_number= ++tree_number;
      if (i->tree_buff)
	continue;			/* Don't join intervall */
      for (j=i+1 ; j < last_count ; j++)
      {
	if (! j->tree->tree_number && ! j->tree_buff)
	{
	  for (k=0 ; k < 256 ; k++)
	    count.counts[k]=i->counts[k]+j->counts[k];
	  if (calc_packed_length(&count,1) <=
	      i->tree->bytes_packed + j->tree->bytes_packed+
	      i->tree->tree_pack_length+j->tree->tree_pack_length+
	      ALLOWED_JOIN_DIFF)
	  {
	    memcpy_fixed((uchar*) i->counts,(uchar*) count.counts,
			 sizeof(count.counts[0])*256);
	    my_free((uchar*) j->tree->element_buffer,MYF(0));
	    j->tree->element_buffer=0;
	    j->tree=i->tree;
	    bmove((uchar*) i->counts,(uchar*) count.counts,
		  sizeof(count.counts[0])*256);
	    if (make_huff_tree(i->tree,i))
	      return (uint) -1;
	  }
	}
      }
    }
  }
  DBUG_PRINT("info", ("Original trees:  %d  After join: %d",
                      trees, tree_number));
  if (verbose)
    VOID(printf("Original trees:  %d  After join: %d\n", trees, tree_number));
  return tree_number;			/* Return trees left */
}


/*
  Fill in huff_tree encode tables.

  SYNOPSIS
    make_huff_decode_table()
    huff_tree               An array of HUFF_TREE which are to be encoded.
    trees                   The number of HUFF_TREE in the array.

  RETURN
    0           success
    != 0        error
*/

static int make_huff_decode_table(HUFF_TREE *huff_tree, uint trees)
{
  uint elements;
  for ( ; trees-- ; huff_tree++)
  {
    if (huff_tree->tree_number > 0)
    {
      elements=huff_tree->counts->tree_buff ? huff_tree->elements : 256;
      if (!(huff_tree->code =
            (ulonglong*) my_malloc(elements*
                                   (sizeof(ulonglong) + sizeof(uchar)),
                                   MYF(MY_WME | MY_ZEROFILL))))
	return 1;
      huff_tree->code_len=(uchar*) (huff_tree->code+elements);
      make_traverse_code_tree(huff_tree, huff_tree->root,
                              8 * sizeof(ulonglong), LL(0));
    }
  }
  return 0;
}


static void make_traverse_code_tree(HUFF_TREE *huff_tree,
				    HUFF_ELEMENT *element,
				    uint size, ulonglong code)
{
  uint chr;
  if (!element->a.leaf.null)
  {
    chr=element->a.leaf.element_nr;
    huff_tree->code_len[chr]= (uchar) (8 * sizeof(ulonglong) - size);
    huff_tree->code[chr]= (code >> size);
    if (huff_tree->height < 8 * sizeof(ulonglong) - size)
        huff_tree->height= 8 * sizeof(ulonglong) - size;
  }
  else
  {
    size--;
    make_traverse_code_tree(huff_tree,element->a.nod.left,size,code);
    make_traverse_code_tree(huff_tree, element->a.nod.right, size,
			    code + (((ulonglong) 1) << size));
  }
  return;
}


/*
  Convert a value into binary digits.

  SYNOPSIS
    bindigits()
    value                       The value.
    length                      The number of low order bits to convert.

  NOTE
    The result string is in static storage. It is reused on every call.
    So you cannot use it twice in one expression.

  RETURN
    A pointer to a static NUL-terminated string.
 */

static char *bindigits(ulonglong value, uint bits)
{
  static char digits[72];
  char *ptr= digits;
  uint idx= bits;

  DBUG_ASSERT(idx < sizeof(digits));
  while (idx)
    *(ptr++)= '0' + ((char) (value >> (--idx)) & (char) 1);
  *ptr= '\0';
  return digits;
}


/*
  Convert a value into hexadecimal digits.

  SYNOPSIS
    hexdigits()
    value                       The value.

  NOTE
    The result string is in static storage. It is reused on every call.
    So you cannot use it twice in one expression.

  RETURN
    A pointer to a static NUL-terminated string.
 */

static char *hexdigits(ulonglong value)
{
  static char digits[20];
  char *ptr= digits;
  uint idx= 2 * sizeof(value); /* Two hex digits per byte. */

  DBUG_ASSERT(idx < sizeof(digits));
  while (idx)
  {
    if ((*(ptr++)= '0' + ((char) (value >> (4 * (--idx))) & (char) 0xf)) > '9')
      *(ptr - 1)+= 'a' - '9' - 1;
  }
  *ptr= '\0';
  return digits;
}


	/* Write header to new packed data file */

static int write_header(PACK_MRG_INFO *mrg,uint head_length,uint trees,
			my_off_t tot_elements,my_off_t filelength)
{
  uchar *buff= (uchar*) file_buffer.pos;

  bzero(buff,HEAD_LENGTH);
  memcpy_fixed(buff,myisam_pack_file_magic,4);
  int4store(buff+4,head_length);
  int4store(buff+8, mrg->min_pack_length);
  int4store(buff+12,mrg->max_pack_length);
  int4store(buff+16,tot_elements);
  int4store(buff+20,intervall_length);
  int2store(buff+24,trees);
  buff[26]=(char) mrg->ref_length;
	/* Save record pointer length */
  buff[27]= (uchar) mi_get_pointer_length((ulonglong) filelength,2);
  if (test_only)
    return 0;
  VOID(my_seek(file_buffer.file,0L,MY_SEEK_SET,MYF(0)));
  return my_write(file_buffer.file,(const uchar *) file_buffer.pos,HEAD_LENGTH,
		  MYF(MY_WME | MY_NABP | MY_WAIT_IF_FULL)) != 0;
}

	/* Write fieldinfo to new packed file */

static void write_field_info(HUFF_COUNTS *counts, uint fields, uint trees)
{
  reg1 uint i;
  uint huff_tree_bits;
  huff_tree_bits=max_bit(trees ? trees-1 : 0);

  DBUG_PRINT("info", (" "));
  DBUG_PRINT("info", ("column types:"));
  DBUG_PRINT("info", ("FIELD_NORMAL          0"));
  DBUG_PRINT("info", ("FIELD_SKIP_ENDSPACE   1"));
  DBUG_PRINT("info", ("FIELD_SKIP_PRESPACE   2"));
  DBUG_PRINT("info", ("FIELD_SKIP_ZERO       3"));
  DBUG_PRINT("info", ("FIELD_BLOB            4"));
  DBUG_PRINT("info", ("FIELD_CONSTANT        5"));
  DBUG_PRINT("info", ("FIELD_INTERVALL       6"));
  DBUG_PRINT("info", ("FIELD_ZERO            7"));
  DBUG_PRINT("info", ("FIELD_VARCHAR         8"));
  DBUG_PRINT("info", ("FIELD_CHECK           9"));
  DBUG_PRINT("info", (" "));
  DBUG_PRINT("info", ("pack type as a set of flags:"));
  DBUG_PRINT("info", ("PACK_TYPE_SELECTED      1"));
  DBUG_PRINT("info", ("PACK_TYPE_SPACE_FIELDS  2"));
  DBUG_PRINT("info", ("PACK_TYPE_ZERO_FILL     4"));
  DBUG_PRINT("info", (" "));
  if (verbose >= 2)
  {
    VOID(printf("\n"));
    VOID(printf("column types:\n"));
    VOID(printf("FIELD_NORMAL          0\n"));
    VOID(printf("FIELD_SKIP_ENDSPACE   1\n"));
    VOID(printf("FIELD_SKIP_PRESPACE   2\n"));
    VOID(printf("FIELD_SKIP_ZERO       3\n"));
    VOID(printf("FIELD_BLOB            4\n"));
    VOID(printf("FIELD_CONSTANT        5\n"));
    VOID(printf("FIELD_INTERVALL       6\n"));
    VOID(printf("FIELD_ZERO            7\n"));
    VOID(printf("FIELD_VARCHAR         8\n"));
    VOID(printf("FIELD_CHECK           9\n"));
    VOID(printf("\n"));
    VOID(printf("pack type as a set of flags:\n"));
    VOID(printf("PACK_TYPE_SELECTED      1\n"));
    VOID(printf("PACK_TYPE_SPACE_FIELDS  2\n"));
    VOID(printf("PACK_TYPE_ZERO_FILL     4\n"));
    VOID(printf("\n"));
  }
  for (i=0 ; i++ < fields ; counts++)
  {
    write_bits((ulonglong) (int) counts->field_type, 5);
    write_bits(counts->pack_type,6);
    if (counts->pack_type & PACK_TYPE_ZERO_FILL)
      write_bits(counts->max_zero_fill,5);
    else
      write_bits(counts->length_bits,5);
    write_bits((ulonglong) counts->tree->tree_number - 1, huff_tree_bits);
    DBUG_PRINT("info", ("column: %3u  type: %2u  pack: %2u  zero: %4u  "
                        "lbits: %2u  tree: %2u  length: %4u",
                        i , counts->field_type, counts->pack_type,
                        counts->max_zero_fill, counts->length_bits,
                        counts->tree->tree_number, counts->field_length));
    if (verbose >= 2)
      VOID(printf("column: %3u  type: %2u  pack: %2u  zero: %4u  lbits: %2u  "
                  "tree: %2u  length: %4u\n", i , counts->field_type,
                  counts->pack_type, counts->max_zero_fill, counts->length_bits,
                  counts->tree->tree_number, counts->field_length));
  }
  flush_bits();
  return;
}

	/* Write all huff_trees to new datafile. Return tot count of
	   elements in all trees
	   Returns 0 on error */

static my_off_t write_huff_tree(HUFF_TREE *huff_tree, uint trees)
{
  uint i,int_length;
  uint tree_no;
  uint codes;
  uint errors= 0;
  uint *packed_tree,*offset,length;
  my_off_t elements;

  /* Find the highest number of elements in the trees. */
  for (i=length=0 ; i < trees ; i++)
    if (huff_tree[i].tree_number > 0 && huff_tree[i].elements > length)
      length=huff_tree[i].elements;
  /*
    Allocate a buffer for packing a decode tree. Two numbers per element
    (left child and right child).
  */
  if (!(packed_tree=(uint*) my_alloca(sizeof(uint)*length*2)))
  {
    my_error(EE_OUTOFMEMORY,MYF(ME_BELL),sizeof(uint)*length*2);
    return 0;
  }

  DBUG_PRINT("info", (" "));
  if (verbose >= 2)
    VOID(printf("\n"));
  tree_no= 0;
  intervall_length=0;
  for (elements=0; trees-- ; huff_tree++)
  {
    /* Skip columns that have been joined with other columns. */
    if (huff_tree->tree_number == 0)
      continue;				/* Deleted tree */
    tree_no++;
    DBUG_PRINT("info", (" "));
    if (verbose >= 3)
      VOID(printf("\n"));
    /* Count the total number of elements (byte codes or column values). */
    elements+=huff_tree->elements;
    huff_tree->max_offset=2;
    /* Build a tree of offsets and codes for decoding in 'packed_tree'. */
    if (huff_tree->elements <= 1)
      offset=packed_tree;
    else
      offset=make_offset_code_tree(huff_tree,huff_tree->root,packed_tree);

    /* This should be the same as 'length' above. */
    huff_tree->offset_bits=max_bit(huff_tree->max_offset);

    /*
      Since we check this during collecting the distinct column values,
      this should never happen.
    */
    if (huff_tree->max_offset >= IS_OFFSET)
    {				/* This should be impossible */
      VOID(fprintf(stderr, "Tree offset got too big: %d, aborted\n",
                   huff_tree->max_offset));
      my_afree((uchar*) packed_tree);
      return 0;
    }

    DBUG_PRINT("info", ("pos: %lu  elements: %u  tree-elements: %lu  "
                        "char_bits: %u\n",
                        (ulong) (file_buffer.pos - file_buffer.buffer),
                        huff_tree->elements, (ulong) (offset - packed_tree),
                        huff_tree->char_bits));
    if (!huff_tree->counts->tree_buff)
    {
      /* We do a byte compression on this column. Mark with bit 0. */
      write_bits(0,1);
      write_bits(huff_tree->min_chr,8);
      write_bits(huff_tree->elements,9);
      write_bits(huff_tree->char_bits,5);
      write_bits(huff_tree->offset_bits,5);
      int_length=0;
    }
    else
    {
      int_length=(uint) (huff_tree->counts->tree_pos -
			 huff_tree->counts->tree_buff);
      /* We have distinct column values for this column. Mark with bit 1. */
      write_bits(1,1);
      write_bits(huff_tree->elements,15);
      write_bits(int_length,16);
      write_bits(huff_tree->char_bits,5);
      write_bits(huff_tree->offset_bits,5);
      intervall_length+=int_length;
    }
    DBUG_PRINT("info", ("tree: %2u  elements: %4u  char_bits: %2u  "
                        "offset_bits: %2u  %s: %5u  codelen: %2u",
                        tree_no, huff_tree->elements, huff_tree->char_bits,
                        huff_tree->offset_bits, huff_tree->counts->tree_buff ?
                        "bufflen" : "min_chr", huff_tree->counts->tree_buff ?
                        int_length : huff_tree->min_chr, huff_tree->height));
    if (verbose >= 2)
      VOID(printf("tree: %2u  elements: %4u  char_bits: %2u  offset_bits: %2u  "
                  "%s: %5u  codelen: %2u\n", tree_no, huff_tree->elements,
                  huff_tree->char_bits, huff_tree->offset_bits,
                  huff_tree->counts->tree_buff ? "bufflen" : "min_chr",
                  huff_tree->counts->tree_buff ? int_length :
                  huff_tree->min_chr, huff_tree->height));

    /* Check that the code tree length matches the element count. */
    length=(uint) (offset-packed_tree);
    if (length != huff_tree->elements*2-2)
    {
      VOID(fprintf(stderr, "error: Huff-tree-length: %d != calc_length: %d\n",
                   length, huff_tree->elements * 2 - 2));
      errors++;
      break;
    }

    for (i=0 ; i < length ; i++)
    {
      if (packed_tree[i] & IS_OFFSET)
	write_bits(packed_tree[i] - IS_OFFSET+ (1 << huff_tree->offset_bits),
		   huff_tree->offset_bits+1);
      else
	write_bits(packed_tree[i]-huff_tree->min_chr,huff_tree->char_bits+1);
      DBUG_PRINT("info", ("tree[0x%04x]: %s0x%04x",
                          i, (packed_tree[i] & IS_OFFSET) ?
                          " -> " : "", (packed_tree[i] & IS_OFFSET) ?
                          packed_tree[i] - IS_OFFSET + i : packed_tree[i]));
      if (verbose >= 3)
        VOID(printf("tree[0x%04x]: %s0x%04x\n",
                    i, (packed_tree[i] & IS_OFFSET) ? " -> " : "",
                    (packed_tree[i] & IS_OFFSET) ?
                    packed_tree[i] - IS_OFFSET + i : packed_tree[i]));
    }
    flush_bits();

    /*
      Display coding tables and check their correctness.
    */
    codes= huff_tree->counts->tree_buff ? huff_tree->elements : 256;
    for (i= 0; i < codes; i++)
    {
      ulonglong code;
      uint bits;
      uint len;
      uint idx;

      if (! (len= huff_tree->code_len[i]))
        continue;
      DBUG_PRINT("info", ("code[0x%04x]:      0x%s  bits: %2u  bin: %s", i,
                          hexdigits(huff_tree->code[i]), huff_tree->code_len[i],
                          bindigits(huff_tree->code[i],
                                    huff_tree->code_len[i])));
      if (verbose >= 3)
        VOID(printf("code[0x%04x]:      0x%s  bits: %2u  bin: %s\n", i,
                    hexdigits(huff_tree->code[i]), huff_tree->code_len[i],
                    bindigits(huff_tree->code[i], huff_tree->code_len[i])));

      /* Check that the encode table decodes correctly. */
      code= 0;
      bits= 0;
      idx= 0;
      DBUG_EXECUTE_IF("forcechkerr1", len--;);
      DBUG_EXECUTE_IF("forcechkerr2", bits= 8 * sizeof(code););
      DBUG_EXECUTE_IF("forcechkerr3", idx= length;);
      for (;;)
      {
        if (! len)
        {
          VOID(fflush(stdout));
          VOID(fprintf(stderr, "error: code 0x%s with %u bits not found\n",
                       hexdigits(huff_tree->code[i]), huff_tree->code_len[i]));
          errors++;
          break;
        }
        code<<= 1;
        code|= (huff_tree->code[i] >> (--len)) & 1;
        bits++;
        if (bits > 8 * sizeof(code))
        {
          VOID(fflush(stdout));
          VOID(fprintf(stderr, "error: Huffman code too long: %u/%u\n",
                       bits, (uint) (8 * sizeof(code))));
          errors++;
          break;
        }
        idx+= (uint) code & 1;
        if (idx >= length)
        {
          VOID(fflush(stdout));
          VOID(fprintf(stderr, "error: illegal tree offset: %u/%u\n",
                       idx, length));
          errors++;
          break;
        }
        if (packed_tree[idx] & IS_OFFSET)
          idx+= packed_tree[idx] & ~IS_OFFSET;
        else
          break; /* Hit a leaf. This contains the result value. */
      }
      if (errors)
        break;

      DBUG_EXECUTE_IF("forcechkerr4", packed_tree[idx]++;);
      if (packed_tree[idx] != i)
      {
        VOID(fflush(stdout));
        VOID(fprintf(stderr, "error: decoded value 0x%04x  should be: 0x%04x\n",
                     packed_tree[idx], i));
        errors++;
        break;
      }
    } /*end for (codes)*/
    if (errors)
      break;

    /* Write column values in case of distinct column value compression. */
    if (huff_tree->counts->tree_buff)
    {
      for (i=0 ; i < int_length ; i++)
      {
 	write_bits((ulonglong) (uchar) huff_tree->counts->tree_buff[i], 8);
        DBUG_PRINT("info", ("column_values[0x%04x]: 0x%02x",
                            i, (uchar) huff_tree->counts->tree_buff[i]));
        if (verbose >= 3)
          VOID(printf("column_values[0x%04x]: 0x%02x\n",
                      i, (uchar) huff_tree->counts->tree_buff[i]));
      }
    }
    flush_bits();
  }
  DBUG_PRINT("info", (" "));
  if (verbose >= 2)
    VOID(printf("\n"));
  my_afree((uchar*) packed_tree);
  if (errors)
  {
    VOID(fprintf(stderr, "Error: Generated decode trees are corrupt. Stop.\n"));
    return 0;
  }
  return elements;
}


static uint *make_offset_code_tree(HUFF_TREE *huff_tree, HUFF_ELEMENT *element,
				   uint *offset)
{
  uint *prev_offset;

  prev_offset= offset;
  /*
    'a.leaf.null' takes the same place as 'a.nod.left'. If this is null,
    then there is no left child and, hence no right child either. This
    is a property of a binary tree. An element is either a node with two
    childs, or a leaf without childs.

    The current element is always a node with two childs. Go left first.
  */
  if (!element->a.nod.left->a.leaf.null)
  {
    /* Store the byte code or the index of the column value. */
    prev_offset[0] =(uint) element->a.nod.left->a.leaf.element_nr;
    offset+=2;
  }
  else
  {
    /*
      Recursively traverse the tree to the left. Mark it as an offset to
      another tree node (in contrast to a byte code or column value index).
    */
    prev_offset[0]= IS_OFFSET+2;
    offset=make_offset_code_tree(huff_tree,element->a.nod.left,offset+2);
  }

  /* Now, check the right child. */
  if (!element->a.nod.right->a.leaf.null)
  {
    /* Store the byte code or the index of the column value. */
    prev_offset[1]=element->a.nod.right->a.leaf.element_nr;
    return offset;
  }
  else
  {
    /*
      Recursively traverse the tree to the right. Mark it as an offset to
      another tree node (in contrast to a byte code or column value index).
    */
    uint temp=(uint) (offset-prev_offset-1);
    prev_offset[1]= IS_OFFSET+ temp;
    if (huff_tree->max_offset < temp)
      huff_tree->max_offset = temp;
    return make_offset_code_tree(huff_tree,element->a.nod.right,offset);
  }
}

	/* Get number of bits neaded to represent value */

static uint max_bit(register uint value)
{
  reg2 uint power=1;

  while ((value>>=1))
    power++;
  return (power);
}


static int compress_isam_file(PACK_MRG_INFO *mrg, HUFF_COUNTS *huff_counts)
{
  int error;
  uint i,max_calc_length,pack_ref_length,min_record_length,max_record_length,
    intervall,field_length,max_pack_length,pack_blob_length;
  my_off_t record_count;
  char llbuf[32];
  ulong length,pack_length;
  uchar *record,*pos,*end_pos,*record_pos,*start_pos;
  HUFF_COUNTS *count,*end_count;
  HUFF_TREE *tree;
  MI_INFO *isam_file=mrg->file[0];
  uint pack_version= (uint) isam_file->s->pack.version;
  DBUG_ENTER("compress_isam_file");

  /* Allocate a buffer for the records (excluding blobs). */
  if (!(record=(uchar*) my_alloca(isam_file->s->base.reclength)))
    return -1;

  end_count=huff_counts+isam_file->s->base.fields;
  min_record_length= (uint) ~0;
  max_record_length=0;

  /*
    Calculate the maximum number of bits required to pack the records.
    Remember to understand 'max_zero_fill' as 'min_zero_fill'.
    The tree height determines the maximum number of bits per value.
    Some fields skip leading or trailing spaces or zeroes. The skipped
    number of bytes is encoded by 'length_bits' bits.
    Empty blobs and varchar are encoded with a single 1 bit. Other blobs
    and varchar get a leading 0 bit.
  */
  for (i=max_calc_length=0 ; i < isam_file->s->base.fields ; i++)
  {
    if (!(huff_counts[i].pack_type & PACK_TYPE_ZERO_FILL))
      huff_counts[i].max_zero_fill=0;
    if (huff_counts[i].field_type == FIELD_CONSTANT ||
	huff_counts[i].field_type == FIELD_ZERO ||
	huff_counts[i].field_type == FIELD_CHECK)
      continue;
    if (huff_counts[i].field_type == FIELD_INTERVALL)
      max_calc_length+=huff_counts[i].tree->height;
    else if (huff_counts[i].field_type == FIELD_BLOB ||
	     huff_counts[i].field_type == FIELD_VARCHAR)
      max_calc_length+=huff_counts[i].tree->height*huff_counts[i].max_length + huff_counts[i].length_bits +1;
    else
      max_calc_length+=
	(huff_counts[i].field_length - huff_counts[i].max_zero_fill)*
	  huff_counts[i].tree->height+huff_counts[i].length_bits;
  }
  max_calc_length= (max_calc_length + 7) / 8;
  pack_ref_length= calc_pack_length(pack_version, max_calc_length);
  record_count=0;
  /* 'max_blob_length' is the max length of all blobs of a record. */
  pack_blob_length= isam_file->s->base.blobs ?
                    calc_pack_length(pack_version, mrg->max_blob_length) : 0;
  max_pack_length=pack_ref_length+pack_blob_length;

  DBUG_PRINT("fields", ("==="));
  mrg_reset(mrg);
  while ((error=mrg_rrnd(mrg,record)) != HA_ERR_END_OF_FILE)
  {
    ulong tot_blob_length=0;
    if (! error)
    {
      if (flush_buffer((ulong) max_calc_length + (ulong) max_pack_length))
	break;
      record_pos= (uchar*) file_buffer.pos;
      file_buffer.pos+=max_pack_length;
      for (start_pos=record, count= huff_counts; count < end_count ; count++)
      {
	end_pos=start_pos+(field_length=count->field_length);
	tree=count->tree;

        DBUG_PRINT("fields", ("column: %3lu  type: %2u  pack: %2u  zero: %4u  "
                              "lbits: %2u  tree: %2u  length: %4u",
                              (ulong) (count - huff_counts + 1),
                              count->field_type,
                              count->pack_type, count->max_zero_fill,
                              count->length_bits, count->tree->tree_number,
                              count->field_length));

        /* Check if the column contains spaces only. */
	if (count->pack_type & PACK_TYPE_SPACE_FIELDS)
	{
	  for (pos=start_pos ; *pos == ' ' && pos < end_pos; pos++) ;
	  if (pos == end_pos)
	  {
            DBUG_PRINT("fields",
                       ("PACK_TYPE_SPACE_FIELDS spaces only, bits:  1"));
            DBUG_PRINT("fields", ("---"));
	    write_bits(1,1);
	    start_pos=end_pos;
	    continue;
	  }
          DBUG_PRINT("fields",
                     ("PACK_TYPE_SPACE_FIELDS not only spaces, bits:  1"));
	  write_bits(0,1);
	}
	end_pos-=count->max_zero_fill;
	field_length-=count->max_zero_fill;

	switch (count->field_type) {
	case FIELD_SKIP_ZERO:
	  if (!memcmp((uchar*) start_pos,zero_string,field_length))
	  {
            DBUG_PRINT("fields", ("FIELD_SKIP_ZERO zeroes only, bits:  1"));
	    write_bits(1,1);
	    start_pos=end_pos;
	    break;
	  }
          DBUG_PRINT("fields", ("FIELD_SKIP_ZERO not only zeroes, bits:  1"));
	  write_bits(0,1);
	  /* Fall through */
	case FIELD_NORMAL:
          DBUG_PRINT("fields", ("FIELD_NORMAL %lu bytes",
                                (ulong) (end_pos - start_pos)));
	  for ( ; start_pos < end_pos ; start_pos++)
          {
            DBUG_PRINT("fields",
                       ("value: 0x%02x  code: 0x%s  bits: %2u  bin: %s",
                        (uchar) *start_pos,
                        hexdigits(tree->code[(uchar) *start_pos]),
                        (uint) tree->code_len[(uchar) *start_pos],
                        bindigits(tree->code[(uchar) *start_pos],
                                  (uint) tree->code_len[(uchar) *start_pos])));
	    write_bits(tree->code[(uchar) *start_pos],
		       (uint) tree->code_len[(uchar) *start_pos]);
          }
	  break;
	case FIELD_SKIP_ENDSPACE:
	  for (pos=end_pos ; pos > start_pos && pos[-1] == ' ' ; pos--) ;
	  length= (ulong) (end_pos - pos);
	  if (count->pack_type & PACK_TYPE_SELECTED)
	  {
	    if (length > count->min_space)
	    {
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_ENDSPACE more than min_space, bits:  1"));
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_ENDSPACE skip %lu/%u bytes, bits: %2u",
                          length, field_length, count->length_bits));
	      write_bits(1,1);
	      write_bits(length,count->length_bits);
	    }
	    else
	    {
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_ENDSPACE not more than min_space, "
                          "bits:  1"));
	      write_bits(0,1);
	      pos=end_pos;
	    }
	  }
	  else
          {
            DBUG_PRINT("fields",
                       ("FIELD_SKIP_ENDSPACE skip %lu/%u bytes, bits: %2u",
                        length, field_length, count->length_bits));
	    write_bits(length,count->length_bits);
          }
          /* Encode all significant bytes. */
          DBUG_PRINT("fields", ("FIELD_SKIP_ENDSPACE %lu bytes",
                                (ulong) (pos - start_pos)));
	  for ( ; start_pos < pos ; start_pos++)
          {
            DBUG_PRINT("fields",
                       ("value: 0x%02x  code: 0x%s  bits: %2u  bin: %s",
                        (uchar) *start_pos,
                        hexdigits(tree->code[(uchar) *start_pos]),
                        (uint) tree->code_len[(uchar) *start_pos],
                        bindigits(tree->code[(uchar) *start_pos],
                                  (uint) tree->code_len[(uchar) *start_pos])));
	    write_bits(tree->code[(uchar) *start_pos],
		       (uint) tree->code_len[(uchar) *start_pos]);
          }
	  start_pos=end_pos;
	  break;
	case FIELD_SKIP_PRESPACE:
	  for (pos=start_pos ; pos < end_pos && pos[0] == ' ' ; pos++) ;
          length= (ulong) (pos - start_pos);
	  if (count->pack_type & PACK_TYPE_SELECTED)
	  {
	    if (length > count->min_space)
	    {
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_PRESPACE more than min_space, bits:  1"));
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_PRESPACE skip %lu/%u bytes, bits: %2u",
                          length, field_length, count->length_bits));
	      write_bits(1,1);
	      write_bits(length,count->length_bits);
	    }
	    else
	    {
              DBUG_PRINT("fields",
                         ("FIELD_SKIP_PRESPACE not more than min_space, "
                          "bits:  1"));
	      pos=start_pos;
	      write_bits(0,1);
	    }
	  }
	  else
          {
            DBUG_PRINT("fields",
                       ("FIELD_SKIP_PRESPACE skip %lu/%u bytes, bits: %2u",
                        length, field_length, count->length_bits));
	    write_bits(length,count->length_bits);
          }
          /* Encode all significant bytes. */
          DBUG_PRINT("fields", ("FIELD_SKIP_PRESPACE %lu bytes",
                                (ulong) (end_pos - start_pos)));
	  for (start_pos=pos ; start_pos < end_pos ; start_pos++)
          {
            DBUG_PRINT("fields",
                       ("value: 0x%02x  code: 0x%s  bits: %2u  bin: %s",
                        (uchar) *start_pos,
                        hexdigits(tree->code[(uchar) *start_pos]),
                        (uint) tree->code_len[(uchar) *start_pos],
                        bindigits(tree->code[(uchar) *start_pos],
                                  (uint) tree->code_len[(uchar) *start_pos])));
	    write_bits(tree->code[(uchar) *start_pos],
		       (uint) tree->code_len[(uchar) *start_pos]);
          }
	  break;
	case FIELD_CONSTANT:
	case FIELD_ZERO:
	case FIELD_CHECK:
          DBUG_PRINT("fields", ("FIELD_CONSTANT/ZERO/CHECK"));
	  start_pos=end_pos;
	  break;
	case FIELD_INTERVALL:
	  global_count=count;
	  pos=(uchar*) tree_search(&count->int_tree, start_pos,
				  count->int_tree.custom_arg);
	  intervall=(uint) (pos - count->tree_buff)/field_length;
          DBUG_PRINT("fields", ("FIELD_INTERVALL"));
          DBUG_PRINT("fields", ("index: %4u code: 0x%s  bits: %2u",
                                intervall, hexdigits(tree->code[intervall]),
                                (uint) tree->code_len[intervall]));
	  write_bits(tree->code[intervall],(uint) tree->code_len[intervall]);
	  start_pos=end_pos;
	  break;
	case FIELD_BLOB:
	{
	  ulong blob_length=_mi_calc_blob_length(field_length-
						 portable_sizeof_char_ptr,
						 start_pos);
          /* Empty blobs are encoded with a single 1 bit. */
	  if (!blob_length)
	  {
            DBUG_PRINT("fields", ("FIELD_BLOB empty, bits:  1"));
            write_bits(1,1);
	  }
	  else
	  {
	    uchar *blob,*blob_end;
            DBUG_PRINT("fields", ("FIELD_BLOB not empty, bits:  1"));
	    write_bits(0,1);
            /* Write the blob length. */
            DBUG_PRINT("fields", ("FIELD_BLOB %lu bytes, bits: %2u",
                                  blob_length, count->length_bits));
	    write_bits(blob_length,count->length_bits);
	    memcpy_fixed(&blob,end_pos-portable_sizeof_char_ptr,
			 sizeof(char*));
	    blob_end=blob+blob_length;
            /* Encode the blob bytes. */
	    for ( ; blob < blob_end ; blob++)
            {
              DBUG_PRINT("fields",
                         ("value: 0x%02x  code: 0x%s  bits: %2u  bin: %s",
                          (uchar) *blob, hexdigits(tree->code[(uchar) *blob]),
                          (uint) tree->code_len[(uchar) *blob],
                          bindigits(tree->code[(uchar) *start_pos],
                                    (uint)tree->code_len[(uchar) *start_pos])));
	      write_bits(tree->code[(uchar) *blob],
			 (uint) tree->code_len[(uchar) *blob]);
            }
	    tot_blob_length+=blob_length;
	  }
	  start_pos= end_pos;
	  break;
	}
	case FIELD_VARCHAR:
	{
          uint var_pack_length= HA_VARCHAR_PACKLENGTH(count->field_length-1);
          ulong col_length= (var_pack_length == 1 ?
                             (uint) *(uchar*) start_pos :
                             uint2korr(start_pos));
          /* Empty varchar are encoded with a single 1 bit. */
	  if (!col_length)
	  {
            DBUG_PRINT("fields", ("FIELD_VARCHAR empty, bits:  1"));
	    write_bits(1,1);			/* Empty varchar */
	  }
	  else
	  {
	    uchar *end= start_pos + var_pack_length + col_length;
            DBUG_PRINT("fields", ("FIELD_VARCHAR not empty, bits:  1"));
	    write_bits(0,1);
            /* Write the varchar length. */
            DBUG_PRINT("fields", ("FIELD_VARCHAR %lu bytes, bits: %2u",
                                  col_length, count->length_bits));
	    write_bits(col_length,count->length_bits);
            /* Encode the varchar bytes. */
	    for (start_pos+= var_pack_length ; start_pos < end ; start_pos++)
            {
              DBUG_PRINT("fields",
                         ("value: 0x%02x  code: 0x%s  bits: %2u  bin: %s",
                          (uchar) *start_pos,
                          hexdigits(tree->code[(uchar) *start_pos]),
                          (uint) tree->code_len[(uchar) *start_pos],
                          bindigits(tree->code[(uchar) *start_pos],
                                    (uint)tree->code_len[(uchar) *start_pos])));
	      write_bits(tree->code[(uchar) *start_pos],
			 (uint) tree->code_len[(uchar) *start_pos]);
            }
	  }
	  start_pos= end_pos;
	  break;
	}
	case FIELD_LAST:
        case FIELD_enum_val_count:
	  abort();				/* Impossible */
	}
	start_pos+=count->max_zero_fill;
        DBUG_PRINT("fields", ("---"));
      }
      flush_bits();
      length=(ulong) ((uchar*) file_buffer.pos - record_pos) - max_pack_length;
      pack_length= save_pack_length(pack_version, record_pos, length);
      if (pack_blob_length)
	pack_length+= save_pack_length(pack_version, record_pos + pack_length,
	                               tot_blob_length);
      DBUG_PRINT("fields", ("record: %lu  length: %lu  blob-length: %lu  "
                            "length-bytes: %lu", (ulong) record_count, length,
                            tot_blob_length, pack_length));
      DBUG_PRINT("fields", ("==="));

      /* Correct file buffer if the header was smaller */
      if (pack_length != max_pack_length)
      {
	bmove(record_pos+pack_length,record_pos+max_pack_length,length);
	file_buffer.pos-= (max_pack_length-pack_length);
      }
      if (length < (ulong) min_record_length)
	min_record_length=(uint) length;
      if (length > (ulong) max_record_length)
	max_record_length=(uint) length;
      record_count++;
      if (write_loop && record_count % WRITE_COUNT == 0)
      {
	VOID(printf("%lu\r", (ulong) record_count));
        VOID(fflush(stdout));
      }
    }
    else if (error != HA_ERR_RECORD_DELETED)
      break;
  }
  if (error == HA_ERR_END_OF_FILE)
    error=0;
  else
  {
    VOID(fprintf(stderr, "%s: Got error %d reading records\n",
                 my_progname, error));
  }
  if (verbose >= 2)
    VOID(printf("wrote %s records.\n", llstr((longlong) record_count, llbuf)));

  my_afree((uchar*) record);
  mrg->ref_length=max_pack_length;
  mrg->min_pack_length=max_record_length ? min_record_length : 0;
  mrg->max_pack_length=max_record_length;
  DBUG_RETURN(error || error_on_write || flush_buffer(~(ulong) 0));
}


static char *make_new_name(char *new_name, char *old_name)
{
  return fn_format(new_name,old_name,"",DATA_TMP_EXT,2+4);
}

static char *make_old_name(char *new_name, char *old_name)
{
  return fn_format(new_name,old_name,"",OLD_EXT,2+4);
}

	/* rutines for bit writing buffer */

static void init_file_buffer(File file, pbool read_buffer)
{
  file_buffer.file=file;
  file_buffer.buffer= (uchar*) my_malloc(ALIGN_SIZE(RECORD_CACHE_SIZE),
					 MYF(MY_WME));
  file_buffer.end=file_buffer.buffer+ALIGN_SIZE(RECORD_CACHE_SIZE)-8;
  file_buffer.pos_in_file=0;
  error_on_write=0;
  if (read_buffer)
  {

    file_buffer.pos=file_buffer.end;
    file_buffer.bits=0;
  }
  else
  {
    file_buffer.pos=file_buffer.buffer;
    file_buffer.bits=BITS_SAVED;
  }
  file_buffer.bitbucket= 0;
}


static int flush_buffer(ulong neaded_length)
{
  ulong length;

  /*
    file_buffer.end is 8 bytes lower than the real end of the buffer.
    This is done so that the end-of-buffer condition does not need to be
    checked for every byte (see write_bits()). Consequently,
    file_buffer.pos can become greater than file_buffer.end. The
    algorithms in the other functions ensure that there will never be
    more than 8 bytes written to the buffer without an end-of-buffer
    check. So the buffer cannot be overrun. But we need to check for the
    near-to-buffer-end condition to avoid a negative result, which is
    casted to unsigned and thus becomes giant.
  */
  if ((file_buffer.pos < file_buffer.end) &&
      ((ulong) (file_buffer.end - file_buffer.pos) > neaded_length))
    return 0;
  length=(ulong) (file_buffer.pos-file_buffer.buffer);
  file_buffer.pos=file_buffer.buffer;
  file_buffer.pos_in_file+=length;
  if (test_only)
    return 0;
  if (error_on_write|| my_write(file_buffer.file,
				(const uchar*) file_buffer.buffer,
				length,
				MYF(MY_WME | MY_NABP | MY_WAIT_IF_FULL)))
  {
    error_on_write=1;
    return 1;
  }

  if (neaded_length != ~(ulong) 0 &&
      (ulong) (file_buffer.end-file_buffer.buffer) < neaded_length)
  {
    char *tmp;
    neaded_length+=256;				/* some margin */
    tmp= my_realloc((char*) file_buffer.buffer, neaded_length,MYF(MY_WME));
    if (!tmp)
      return 1;
    file_buffer.pos= ((uchar*) tmp +
                      (ulong) (file_buffer.pos - file_buffer.buffer));
    file_buffer.buffer= (uchar*) tmp;
    file_buffer.end= (uchar*) (tmp+neaded_length-8);
  }
  return 0;
}


static void end_file_buffer(void)
{
  my_free((uchar*) file_buffer.buffer,MYF(0));
}

	/* output `bits` low bits of `value' */

static void write_bits(register ulonglong value, register uint bits)
{
  DBUG_ASSERT(((bits < 8 * sizeof(value)) && ! (value >> bits)) ||
              (bits == 8 * sizeof(value)));

  if ((file_buffer.bits-= (int) bits) >= 0)
  {
    file_buffer.bitbucket|= value << file_buffer.bits;
  }
  else
  {
    reg3 ulonglong bit_buffer;
    bits= (uint) -file_buffer.bits;
    bit_buffer= (file_buffer.bitbucket |
                 ((bits != 8 * sizeof(value)) ? (value >> bits) : 0));
#if BITS_SAVED == 64
    *file_buffer.pos++= (uchar) (bit_buffer >> 56);
    *file_buffer.pos++= (uchar) (bit_buffer >> 48);
    *file_buffer.pos++= (uchar) (bit_buffer >> 40);
    *file_buffer.pos++= (uchar) (bit_buffer >> 32);
#endif
    *file_buffer.pos++= (uchar) (bit_buffer >> 24);
    *file_buffer.pos++= (uchar) (bit_buffer >> 16);
    *file_buffer.pos++= (uchar) (bit_buffer >> 8);
    *file_buffer.pos++= (uchar) (bit_buffer);

    if (bits != 8 * sizeof(value))
      value&= (((ulonglong) 1) << bits) - 1;
    if (file_buffer.pos >= file_buffer.end)
      VOID(flush_buffer(~ (ulong) 0));
    file_buffer.bits=(int) (BITS_SAVED - bits);
    file_buffer.bitbucket= value << (BITS_SAVED - bits);
  }
  return;
}

	/* Flush bits in bit_buffer to buffer */

static void flush_bits(void)
{
  int bits;
  ulonglong bit_buffer;

  bits= file_buffer.bits & ~7;
  bit_buffer= file_buffer.bitbucket >> bits;
  bits= BITS_SAVED - bits;
  while (bits > 0)
  {
    bits-= 8;
    *file_buffer.pos++= (uchar) (bit_buffer >> bits);
  }
  if (file_buffer.pos >= file_buffer.end)
    VOID(flush_buffer(~ (ulong) 0));
  file_buffer.bits= BITS_SAVED;
  file_buffer.bitbucket= 0;
}


/****************************************************************************
** functions to handle the joined files
****************************************************************************/

static int save_state(MI_INFO *isam_file,PACK_MRG_INFO *mrg,my_off_t new_length,
		      ha_checksum crc)
{
  MYISAM_SHARE *share=isam_file->s;
  uint options=mi_uint2korr(share->state.header.options);
  uint key;
  DBUG_ENTER("save_state");

  options|= HA_OPTION_COMPRESS_RECORD | HA_OPTION_READ_ONLY_DATA;
  mi_int2store(share->state.header.options,options);

  share->state.state.data_file_length=new_length;
  share->state.state.del=0;
  share->state.state.empty=0;
  share->state.dellink= HA_OFFSET_ERROR;
  share->state.split=(ha_rows) mrg->records;
  share->state.version=(ulong) time((time_t*) 0);
  if (! mi_is_all_keys_active(share->state.key_map, share->base.keys))
  {
    /*
      Some indexes are disabled, cannot use current key_file_length value
      as an estimate of upper bound of index file size. Use packed data file 
      size instead.
    */
    share->state.state.key_file_length= new_length;
  }
  /*
    If there are no disabled indexes, keep key_file_length value from 
    original file so "myisamchk -rq" can use this value (this is necessary 
    because index size cannot be easily calculated for fulltext keys)
  */
  mi_clear_all_keys_active(share->state.key_map);
  for (key=0 ; key < share->base.keys ; key++)
    share->state.key_root[key]= HA_OFFSET_ERROR;
  for (key=0 ; key < share->state.header.max_block_size_index ; key++)
    share->state.key_del[key]= HA_OFFSET_ERROR;
  isam_file->state->checksum=crc;       /* Save crc here */
  share->changed=1;			/* Force write of header */
  share->state.open_count=0;
  share->global_changed=0;
  VOID(my_chsize(share->kfile, share->base.keystart, 0, MYF(0)));
  if (share->base.keys)
    isamchk_neaded=1;
  DBUG_RETURN(mi_state_info_write(share->kfile,&share->state,1+2));
}


static int save_state_mrg(File file,PACK_MRG_INFO *mrg,my_off_t new_length,
			  ha_checksum crc)
{
  MI_STATE_INFO state;
  MI_INFO *isam_file=mrg->file[0];
  uint options;
  DBUG_ENTER("save_state_mrg");

  state= isam_file->s->state;
  options= (mi_uint2korr(state.header.options) | HA_OPTION_COMPRESS_RECORD |
	    HA_OPTION_READ_ONLY_DATA);
  mi_int2store(state.header.options,options);
  state.state.data_file_length=new_length;
  state.state.del=0;
  state.state.empty=0;
  state.state.records=state.split=(ha_rows) mrg->records;
  /* See comment above in save_state about key_file_length handling. */
  if (mrg->src_file_has_indexes_disabled)
  {
    isam_file->s->state.state.key_file_length=
      max(isam_file->s->state.state.key_file_length, new_length);
  }
  state.dellink= HA_OFFSET_ERROR;
  state.version=(ulong) time((time_t*) 0);
  mi_clear_all_keys_active(state.key_map);
  state.state.checksum=crc;
  if (isam_file->s->base.keys)
    isamchk_neaded=1;
  state.changed=STATE_CHANGED | STATE_NOT_ANALYZED; /* Force check of table */
  DBUG_RETURN (mi_state_info_write(file,&state,1+2));
}


/* reset for mrg_rrnd */

static void mrg_reset(PACK_MRG_INFO *mrg)
{
  if (mrg->current)
  {
    mi_extra(*mrg->current, HA_EXTRA_NO_CACHE, 0);
    mrg->current=0;
  }
}

static int mrg_rrnd(PACK_MRG_INFO *info,uchar *buf)
{
  int error;
  MI_INFO *isam_info;
  my_off_t filepos;

  if (!info->current)
  {
    isam_info= *(info->current=info->file);
    info->end=info->current+info->count;
    mi_reset(isam_info);
    mi_extra(isam_info, HA_EXTRA_CACHE, 0);
    filepos=isam_info->s->pack.header_length;
  }
  else
  {
    isam_info= *info->current;
    filepos= isam_info->nextpos;
  }

  for (;;)
  {
    isam_info->update&= HA_STATE_CHANGED;
    if (!(error=(*isam_info->s->read_rnd)(isam_info,(uchar*) buf,
					  filepos, 1)) ||
	error != HA_ERR_END_OF_FILE)
      return (error);
    mi_extra(isam_info,HA_EXTRA_NO_CACHE, 0);
    if (info->current+1 == info->end)
      return(HA_ERR_END_OF_FILE);
    info->current++;
    isam_info= *info->current;
    filepos=isam_info->s->pack.header_length;
    mi_reset(isam_info);
    mi_extra(isam_info,HA_EXTRA_CACHE, 0);
  }
}


static int mrg_close(PACK_MRG_INFO *mrg)
{
  uint i;
  int error=0;
  for (i=0 ; i < mrg->count ; i++)
    error|=mi_close(mrg->file[i]);
  if (mrg->free_file)
    my_free((uchar*) mrg->file,MYF(0));
  return error;
}


#if !defined(DBUG_OFF)
/*
  Fake the counts to get big Huffman codes.

  SYNOPSIS
    fakebigcodes()
    huff_counts                 A pointer to the counts array.
    end_count                   A pointer past the counts array.

  DESCRIPTION

    Huffman coding works by removing the two least frequent values from
    the list of values and add a new value with the sum of their
    incidences in a loop until only one value is left. Every time a
    value is reused for a new value, it gets one more bit for its
    encoding. Hence, the least frequent values get the longest codes.

    To get a maximum code length for a value, two of the values must
    have an incidence of 1. As their sum is 2, the next infrequent value
    must have at least an incidence of 2, then 4, 8, 16 and so on. This
    means that one needs 2**n bytes (values) for a code length of n
    bits. However, using more distinct values forces the use of longer
    codes, or reaching the code length with less total bytes (values).

    To get 64(32)-bit codes, I sort the counts by decreasing incidence.
    I assign counts of 1 to the two most frequent values, a count of 2
    for the next one, then 4, 8, and so on until 2**64-1(2**30-1). All
    the remaining values get 1. That way every possible byte has an
    assigned code, though not all codes are used if not all byte values
    are present in the column.

    This strategy would work with distinct column values too, but
    requires that at least 64(32) values are present. To make things
    easier here, I cancel all distinct column values and force byte
    compression for all columns.

  RETURN
    void
*/

static void fakebigcodes(HUFF_COUNTS *huff_counts, HUFF_COUNTS *end_count)
{
  HUFF_COUNTS   *count;
  my_off_t      *cur_count_p;
  my_off_t      *end_count_p;
  my_off_t      **cur_sort_p;
  my_off_t      **end_sort_p;
  my_off_t      *sort_counts[256];
  my_off_t      total;
  DBUG_ENTER("fakebigcodes");

  for (count= huff_counts; count < end_count; count++)
  {
    /*
      Remove distinct column values.
    */
    if (huff_counts->tree_buff)
    {
      my_free((uchar*) huff_counts->tree_buff, MYF(0));
      delete_tree(&huff_counts->int_tree);
      huff_counts->tree_buff= NULL;
      DBUG_PRINT("fakebigcodes", ("freed distinct column values"));
    }

    /*
      Sort counts by decreasing incidence.
    */
    cur_count_p= count->counts;
    end_count_p= cur_count_p + 256;
    cur_sort_p= sort_counts;
    while (cur_count_p < end_count_p)
      *(cur_sort_p++)= cur_count_p++;
    (void) my_qsort(sort_counts, 256, sizeof(my_off_t*), (qsort_cmp) fakecmp);

    /*
      Assign faked counts.
    */
    cur_sort_p= sort_counts;
#if SIZEOF_LONG_LONG > 4
    end_sort_p= sort_counts + 8 * sizeof(ulonglong) - 1;
#else
    end_sort_p= sort_counts + 8 * sizeof(ulonglong) - 2;
#endif
    /* Most frequent value gets a faked count of 1. */
    **(cur_sort_p++)= 1;
    total= 1;
    while (cur_sort_p < end_sort_p)
    {
      **(cur_sort_p++)= total;
      total<<= 1;
    }
    /* Set the last value. */
    **(cur_sort_p++)= --total;
    /*
      Set the remaining counts.
    */
    end_sort_p= sort_counts + 256;
    while (cur_sort_p < end_sort_p)
      **(cur_sort_p++)= 1;
  }
  DBUG_VOID_RETURN;
}


/*
  Compare two counts for reverse sorting.

  SYNOPSIS
    fakecmp()
    count1              One count.
    count2              Another count.

  RETURN
    1                   count1  < count2
    0                   count1 == count2
    -1                  count1 >  count2
*/

static int fakecmp(my_off_t **count1, my_off_t **count2)
{
  return ((**count1 < **count2) ? 1 :
          (**count1 > **count2) ? -1 : 0);
}
#endif