~ubuntu-branches/ubuntu/natty/python-cogent/natty

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
Data Manipulation using ``Table``
=================================

.. sectionauthor:: Gavin Huttley

..
    Copyright 2007-2009, The Cogent Project
    Credits Gavin Huttley, Felix Schill
    License, GPL
    version, 1.3.0.dev
    Maintainer, Gavin Huttley
    Email, gavin.huttley@anu.edu.au
    Status, Production

The toolkit has a ``Table`` object that can be used for manipulating tabular data. It's properties can be considered like an ordered 2 dimensional dictionary or tuple with flexible output format capabilities of use for exporting data for import into external applications. Importantly, via the restructured text format one can generate html or latex formatted tables. The ``table`` module is located within ``cogent.util``. The ``LoadTable`` convenience function is provided as a top-level ``cogent`` import.

Table creation
--------------

Tables can be created directly using the Table object itself, or a convenience function that handles loading from files. We import both here:

.. doctest::
    
    >>> from cogent import LoadTable
    >>> from cogent.util.table import Table

First, if you try and create a ``Table`` without any data, it raises a ``RuntimeError``.

.. doctest::
    
    >>> t = Table()
    Traceback (most recent call last):
    RuntimeError: header and rows must be provided to Table
    >>> t = Table(header=[], rows=[])
    Traceback (most recent call last):
    RuntimeError: header and rows must be provided to Table

Let's create a very simple, rather nonsensical, table first. To create a table requires a header series, and a 2D series (either of type ``tuple``, ``list``, ``dict``).

.. doctest::
    
    >>> column_headings = ['Journal', 'Impact']

The string "Journal" will become the first column heading, "Impact" the second column heading. The data are,

.. doctest::
    
    >>> rows = [['INT J PARASITOL', 2.9],
    ... ['J MED ENTOMOL', 1.4],
    ... ['Med Vet Entomol', 1.0],
    ... ['INSECT MOL BIOL', 2.85],
    ... ['J AM MOSQUITO CONTR', 0.811],
    ... ['MOL PHYLOGENET EVOL', 2.8],
    ... ['HEREDITY', 1.99e+0],
    ... ['AM J TROP MED HYG', 2.105],
    ... ['MIL MED', 0.605],
    ... ['MED J AUSTRALIA', 1.736]]

We create the simplest of tables.

.. doctest::
    
    >>> t = Table(header = column_headings, rows = rows)
    >>> print t
    =============================
                Journal    Impact
    -----------------------------
        INT J PARASITOL    2.9000
          J MED ENTOMOL    1.4000
        Med Vet Entomol    1.0000
        INSECT MOL BIOL    2.8500
    J AM MOSQUITO CONTR    0.8110
    MOL PHYLOGENET EVOL    2.8000
               HEREDITY    1.9900
      AM J TROP MED HYG    2.1050
                MIL MED    0.6050
        MED J AUSTRALIA    1.7360
    -----------------------------

The format above is referred to as 'simple' format in the documentation. Notice that the numbers in this table have 4 decimal places, despite the fact the original data were largely strings and had ``max`` of 3 decimal places precision. ``Table`` converts string representations of numbers to their appropriate form when you do ``str(table)`` or print the table.

We have several things we might want to specify when creating a table: the precision and or format of floating point numbers (integer argument - ``digits``), the spacing between columns (integer argument or actual string of whitespace - ``space``), title (argument - ``title``), and legend (argument - ``legend``). Lets modify some of these and provide a title and legend.

.. doctest::
    
    >>> t = Table(column_headings, rows, title='Journal impact factors', legend='From ISI',
    ...     digits=2, space='        ')
    >>> print t
    Journal impact factors
    =================================
                Journal        Impact
    ---------------------------------
        INT J PARASITOL          2.90
          J MED ENTOMOL          1.40
        Med Vet Entomol          1.00
        INSECT MOL BIOL          2.85
    J AM MOSQUITO CONTR          0.81
    MOL PHYLOGENET EVOL          2.80
               HEREDITY          1.99
      AM J TROP MED HYG          2.10
                MIL MED          0.60
        MED J AUSTRALIA          1.74
    ---------------------------------
    From ISI

The Table class cannot handle arbitrary python objects, unless they are passed in as strings. Note in this case we now directly pass in the column headings list and the handling of missing data can be explicitly specified..

.. doctest::
    
    >>> t2 = Table(['abcd', 'data'], [[str(range(1,6)), '0'],
    ...                               ['x', 5.0], ['y', None]],
    ...           missing_data='*')
    >>> print t2
    =========================
               abcd      data
    -------------------------
    [1, 2, 3, 4, 5]         0
                  x    5.0000
                  y         *
    -------------------------

Table column headings can be assessed from the ``table.Header`` property

.. doctest::
    
    >>> assert t2.Header == ['abcd', 'data']

and this is immutable (cannot be changed).

.. doctest::
    
    >>> t2.Header[1] = 'Data'
    Traceback (most recent call last):
    RuntimeError: Table Header is immutable, use withNewHeader

If you want to change the Header, use the ``withNewHeader`` method. This can be done one column at a time, or as a batch. The returned Table is identical aside from the modified column labels.

.. doctest::
    
    >>> mod_header = t2.withNewHeader('abcd', 'ABCD')
    >>> assert mod_header.Header == ['ABCD', 'data']
    >>> mod_header = t2.withNewHeader(['abcd', 'data'], ['ABCD', 'DATA'])
    >>> print mod_header
    =========================
               ABCD      DATA
    -------------------------
    [1, 2, 3, 4, 5]         0
                  x    5.0000
                  y         *
    -------------------------

Tables may also be created from 2-dimensional dictionaries. In this case, special capabilities are provided to enforce printing rows in a particular order.

.. doctest::
    
    >>> d2D={'edge.parent': {'NineBande': 'root', 'edge.1': 'root',
    ... 'DogFaced': 'root', 'Human': 'edge.0', 'edge.0': 'edge.1',
    ... 'Mouse': 'edge.1', 'HowlerMon': 'edge.0'}, 'x': {'NineBande': 1.0,
    ... 'edge.1': 1.0, 'DogFaced': 1.0, 'Human': 1.0, 'edge.0': 1.0,
    ... 'Mouse': 1.0, 'HowlerMon': 1.0}, 'length': {'NineBande': 4.0,
    ... 'edge.1': 4.0, 'DogFaced': 4.0, 'Human': 4.0, 'edge.0': 4.0,
    ... 'Mouse': 4.0, 'HowlerMon': 4.0}, 'y': {'NineBande': 3.0, 'edge.1': 3.0,
    ... 'DogFaced': 3.0, 'Human': 3.0, 'edge.0': 3.0, 'Mouse': 3.0,
    ... 'HowlerMon': 3.0}, 'z': {'NineBande': 6.0, 'edge.1': 6.0,
    ... 'DogFaced': 6.0, 'Human': 6.0, 'edge.0': 6.0, 'Mouse': 6.0,
    ... 'HowlerMon': 6.0},
    ... 'edge.name': ['Human', 'HowlerMon', 'Mouse', 'NineBande', 'DogFaced',
    ... 'edge.0', 'edge.1']}
    >>> row_order = d2D['edge.name']
    >>> d2D['edge.name'] = dict(zip(row_order, row_order))
    >>> t3 = Table(['edge.name', 'edge.parent', 'length', 'x', 'y', 'z'], d2D,
    ... row_order = row_order, missing_data='*', space=8, max_width = 50,
    ... row_ids = True, title = 'My Title',
    ... legend = 'Legend: this is a nonsense example.')
    >>> print t3
    My Title
    ==========================================
    edge.name        edge.parent        length
    ------------------------------------------
        Human             edge.0        4.0000
    HowlerMon             edge.0        4.0000
        Mouse             edge.1        4.0000
    NineBande               root        4.0000
     DogFaced               root        4.0000
       edge.0             edge.1        4.0000
       edge.1               root        4.0000
    ------------------------------------------
    <BLANKLINE>
    continued: My Title
    =====================================
    edge.name             x             y
    -------------------------------------
        Human        1.0000        3.0000
    HowlerMon        1.0000        3.0000
        Mouse        1.0000        3.0000
    NineBande        1.0000        3.0000
     DogFaced        1.0000        3.0000
       edge.0        1.0000        3.0000
       edge.1        1.0000        3.0000
    -------------------------------------
    <BLANKLINE>
    continued: My Title
    =======================
    edge.name             z
    -----------------------
        Human        6.0000
    HowlerMon        6.0000
        Mouse        6.0000
    NineBande        6.0000
     DogFaced        6.0000
       edge.0        6.0000
       edge.1        6.0000
    -----------------------
    <BLANKLINE>
    Legend: this is a nonsense example.

In the above we specify a maximum width of the table, and also specify row identifiers (using ``row_ids``, the integer corresponding to the column at which data begin, preceding columns are taken as the identifiers). This has the effect of forcing the table to wrap when the simple text format is used, but wrapping does not occur for any other format. The ``row_ids`` are keys for slicing the table by row, and as identifiers are presented in each wrapped sub-table.

We can also customise the formatting of individual columns.

.. doctest::
    
    >>> rows = (('NP_003077_hs_mm_rn_dna', 'Con', 2.5386013224378985),
    ... ('NP_004893_hs_mm_rn_dna', 'Con', 0.12135142635634111e+06),
    ... ('NP_005079_hs_mm_rn_dna', 'Con', 0.95165949788861326e+07),
    ... ('NP_005500_hs_mm_rn_dna', 'Con', 0.73827030202664901e-07),
    ... ('NP_055852_hs_mm_rn_dna', 'Con', 1.0933217708952725e+07))

We first create a table and show the default formatting behaviour for ``Table``.

.. doctest::
    
    >>> t46 = Table(['Gene', 'Type', 'LR'], rows)
    >>> print t46
    ===============================================
                      Gene    Type               LR
    -----------------------------------------------
    NP_003077_hs_mm_rn_dna     Con           2.5386
    NP_004893_hs_mm_rn_dna     Con      121351.4264
    NP_005079_hs_mm_rn_dna     Con     9516594.9789
    NP_005500_hs_mm_rn_dna     Con           0.0000
    NP_055852_hs_mm_rn_dna     Con    10933217.7090
    -----------------------------------------------

We then format the ``LR`` column to use a scientific number format.

.. doctest::
    
    >>> t46 = Table(['Gene', 'Type', 'LR'], rows)
    >>> t46.setColumnFormat('LR', "%.4e")
    >>> print t46
    ============================================
                      Gene    Type            LR
    --------------------------------------------
    NP_003077_hs_mm_rn_dna     Con    2.5386e+00
    NP_004893_hs_mm_rn_dna     Con    1.2135e+05
    NP_005079_hs_mm_rn_dna     Con    9.5166e+06
    NP_005500_hs_mm_rn_dna     Con    7.3827e-08
    NP_055852_hs_mm_rn_dna     Con    1.0933e+07
    --------------------------------------------

It is safe to directly modify certain attributes, such as the title, legend and white space separating columns, which we do for the ``t46``.

.. doctest::
    
    >>> t46.Title = "A new title"
    >>> t46.Legend = "A new legend"
    >>> t46.Space = '  '
    >>> print t46
    A new title
    ========================================
                      Gene  Type          LR
    ----------------------------------------
    NP_003077_hs_mm_rn_dna   Con  2.5386e+00
    NP_004893_hs_mm_rn_dna   Con  1.2135e+05
    NP_005079_hs_mm_rn_dna   Con  9.5166e+06
    NP_005500_hs_mm_rn_dna   Con  7.3827e-08
    NP_055852_hs_mm_rn_dna   Con  1.0933e+07
    ----------------------------------------
    A new legend

We can provide settings for multiple columns.

.. doctest::
    
    >>> t3 = Table(['edge.name', 'edge.parent', 'length', 'x', 'y', 'z'], d2D,
    ... row_order = row_order)
    >>> t3.setColumnFormat('x', "%.1e")
    >>> t3.setColumnFormat('y', "%.2f")
    >>> print t3
    ===============================================================
    edge.name    edge.parent    length          x       y         z
    ---------------------------------------------------------------
        Human         edge.0    4.0000    1.0e+00    3.00    6.0000
    HowlerMon         edge.0    4.0000    1.0e+00    3.00    6.0000
        Mouse         edge.1    4.0000    1.0e+00    3.00    6.0000
    NineBande           root    4.0000    1.0e+00    3.00    6.0000
     DogFaced           root    4.0000    1.0e+00    3.00    6.0000
       edge.0         edge.1    4.0000    1.0e+00    3.00    6.0000
       edge.1           root    4.0000    1.0e+00    3.00    6.0000
    ---------------------------------------------------------------

In some cases, the contents of a column can be of different types. In this instance, rather than passing a column template we pass a reference to a function that will handle this complexity. To illustrate this we will define a function that formats floating point numbers, but returns everything else as is.

.. doctest::
    
    >>> def formatcol(value):
    ...     if isinstance(value, float):
    ...         val = "%.2f" % value
    ...     else:
    ...         val = str(value)
    ...     return val

We apply this to a table with mixed string, integer and floating point data.

.. doctest::
    
    >>> t6 = Table(['ColHead'], [['a'], [1], [0.3], ['cc']],
    ... column_templates = dict(ColHead=formatcol))
    >>> print t6
    =======
    ColHead
    -------
          a
          1
       0.30
         cc
    -------

Table output
------------

Table can output in multiple formats, including restructured text or 'rest' and delimited. These can be obtained using the ``tostring`` method and ``format`` argument as follows. Using table ``t`` from above,

.. doctest::
    
    >>> print t.tostring(format='rest')
    +------------------------------+
    |    Journal impact factors    |
    +---------------------+--------+
    |             Journal | Impact |
    +=====================+========+
    |     INT J PARASITOL |   2.90 |
    +---------------------+--------+
    |       J MED ENTOMOL |   1.40 |
    +---------------------+--------+
    |     Med Vet Entomol |   1.00 |
    +---------------------+--------+
    |     INSECT MOL BIOL |   2.85 |
    +---------------------+--------+
    | J AM MOSQUITO CONTR |   0.81 |
    +---------------------+--------+
    | MOL PHYLOGENET EVOL |   2.80 |
    +---------------------+--------+
    |            HEREDITY |   1.99 |
    +---------------------+--------+
    |   AM J TROP MED HYG |   2.10 |
    +---------------------+--------+
    |             MIL MED |   0.60 |
    +---------------------+--------+
    |     MED J AUSTRALIA |   1.74 |
    +---------------------+--------+
    | From ISI                     |
    +------------------------------+

Arguments such as ``space`` have no effect in this case. The table may also be written to file in any of the available formats (latex, simple text, html, pickle) or using a custom separator (such as a comma or tab). This makes it convenient to get data into other applications (such as R or a spreadsheet program).

Here is the latex format, note how the title and legend are joined into the latex table caption. We also provide optional arguments for the column alignment (fist column left aligned, second column right aligned and remaining columns centred) and a label for table referencing.

.. doctest::
    
    >>> print t3.tostring(format='tex', justify="lrcccc", label="table:example")
    \begin{longtable}[htp!]{ l r c c c c }
    \hline
    \bf{edge.name} & \bf{edge.parent} & \bf{length} & \bf{x} & \bf{y} & \bf{z} \\
    \hline
    \hline
        Human &      edge.0 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    HowlerMon &      edge.0 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
        Mouse &      edge.1 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    NineBande &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
     DogFaced &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
       edge.0 &      edge.1 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
       edge.1 &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    \hline
    \label{table:example}
    \end{longtable}

More complex latex table justifying is also possible. Specifying the width of individual columns requires passing in a series (list or tuple) of justification commands. In the following we introduce the command for specific columns widths.

.. doctest::
    
    >>> print t3.tostring(format='tex', justify=["l","p{3cm}","c","c","c","c"])
    \begin{longtable}[htp!]{ l p{3cm} c c c c }
    \hline
    \bf{edge.name} & \bf{edge.parent} & \bf{length} & \bf{x} & \bf{y} & \bf{z} \\
    \hline
    \hline
        Human &      edge.0 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    HowlerMon &      edge.0 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
        Mouse &      edge.1 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    NineBande &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
     DogFaced &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
       edge.0 &      edge.1 & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
       edge.1 &        root & 4.0000 & 1.0e+00 & 3.00 & 6.0000 \\
    \hline
    \end{longtable}
    >>> print t3.tostring(sep=',')
    edge.name,edge.parent,length,      x,   y,     z
        Human,     edge.0,4.0000,1.0e+00,3.00,6.0000
    HowlerMon,     edge.0,4.0000,1.0e+00,3.00,6.0000
        Mouse,     edge.1,4.0000,1.0e+00,3.00,6.0000
    NineBande,       root,4.0000,1.0e+00,3.00,6.0000
     DogFaced,       root,4.0000,1.0e+00,3.00,6.0000
       edge.0,     edge.1,4.0000,1.0e+00,3.00,6.0000
       edge.1,       root,4.0000,1.0e+00,3.00,6.0000

You can specify any standard text character that will work with your desired target. Useful separators are tabs ('\\t'), or pipes ('\|'). If ``Table`` encounters any of these characters within a cell, it wraps the cell in quotes -- a standard approach to facilitate import by other applications. We will illustrate this with ``t2``.

.. doctest::
    
    >>> print t2.tostring(sep=', ')
               abcd,   data
    "[1, 2, 3, 4, 5]",      0
                  x, 5.0000
                  y,      *

Note that I introduced an extra space after the column just to make the result more readable in this example.

Test the writing of phylip distance matrix format.

.. doctest::
    
    >>> rows = [['a', '', 0.088337278874079342, 0.18848582712597683,
    ...  0.44084000179091454], ['c', 0.088337278874079342, '',
    ...  0.088337278874079342, 0.44083999937417828], ['b', 0.18848582712597683,
    ...  0.088337278874079342, '', 0.44084000179090932], ['e',
    ...  0.44084000179091454, 0.44083999937417828, 0.44084000179090932, '']]
    >>> header = ['seq1/2', 'a', 'c', 'b', 'e']
    >>> dist = Table(rows = rows, header = header,
    ...  row_ids = True)
    >>> print dist.tostring(format = 'phylip')
       4
    a           0.0000  0.0883  0.1885  0.4408
    c           0.0883  0.0000  0.0883  0.4408
    b           0.1885  0.0883  0.0000  0.4408
    e           0.4408  0.4408  0.4408  0.0000

The ``tostring`` method also provides generic html generation via the restructured text format. The ``toRichHtmlTable`` method can be used to generate the html table element by itself, with greater control over formatting. Specifically, users can provide custom callback functions to the ``row_cell_func`` and ``header_cell_func`` arguments to control in detail the formatting of table elements, or use the simpler dictionary based ``element_formatters`` approach. We use the above ``dist`` table to provide a specific callback that will set the background color for diagonal cells. We first write a function that takes the cell value and coordinates, returning the html formmatted text.

.. doctest::
    
    >>> def format_cell(value, row_num, col_num):
    ...     bgcolor=['', ' bgcolor="#0055ff"'][value=='']
    ...     return '<td%s>%s</td>' % (bgcolor, value)

We then call the method, without this argument, then with it.

.. doctest::
    
    >>> straight_html = dist.toRichHtmlTable()
    >>> print straight_html
    <table><tr><th>seq1/2</th><th>a...
    >>> rich_html = dist.toRichHtmlTable(row_cell_func=format_cell,
    ...                                  compact=False)
    >>> print rich_html
    <table>
    <tr>
    <th>seq1/2</th>
    <th>a</th>
    <th>c</th>
    <th>b</th>
    <th>e</th>
    </tr>
    <tr>
    <td>a</td>
    <td bgcolor="#0055ff"></td>
    <td>0.0883</td>...

Saving a table for reloading
----------------------------

Saving a table object to file for later reloading can be done using the standard ``writeToFile`` method and ``filename`` argument to the ``Table`` constructor, specifying any of the formats supported by ``tostring``. The table loading will recreate a table from raw data located at ``filename``. To illustrate this, we first write out the table ``t3`` in ``pickle`` format and then the table ``t2`` in a csv (comma separated values format).

.. doctest::
    :options: +NORMALIZE_WHITESPACE
    
    >>> t3 = Table(['edge.name', 'edge.parent', 'length', 'x', 'y', 'z'], d2D,
    ... row_order = row_order, missing_data='*', space=8, max_width = 50,
    ... row_ids = True, title = 'My Title',
    ... legend = 'Legend: this is a nonsense example.')
    >>> t3.writeToFile("t3.pickle")
    >>> t3_loaded = LoadTable(filename = "t3.pickle")
    >>> print t3_loaded
    My Title
    ==========================================
    edge.name        edge.parent        length
    ------------------------------------------
        Human             edge.0        4.0000
    HowlerMon             edge.0        4.0000
        Mouse             edge.1        4.0000
    NineBande               root        4.0000
     DogFaced               root        4.0000
       edge.0             edge.1        4.0000
       edge.1               root        4.0000
    ------------------------------------------
    <BLANKLINE>
    continued: My Title
    =====================================
    edge.name             x             y
    -------------------------------------
        Human        1.0000        3.0000
    HowlerMon        1.0000        3.0000
        Mouse        1.0000        3.0000
    NineBande        1.0000        3.0000
     DogFaced        1.0000        3.0000
       edge.0        1.0000        3.0000
       edge.1        1.0000        3.0000
    -------------------------------------
    <BLANKLINE>
    continued: My Title
    =======================
    edge.name             z
    -----------------------
        Human        6.0000
    HowlerMon        6.0000
        Mouse        6.0000
    NineBande        6.0000
     DogFaced        6.0000
       edge.0        6.0000
       edge.1        6.0000
    -----------------------
    <BLANKLINE>
    Legend: this is a nonsense example.
    >>> t2 = Table(['abcd', 'data'], [[str(range(1,6)), '0'], ['x', 5.0],
    ... ['y', None]], missing_data='*', title = 'A \ntitle')
    >>> t2.writeToFile('t2.csv', sep=',')
    >>> t2_loaded = LoadTable(filename = 't2.csv', header = True, with_title = True,
    ...  sep = ',')
    >>> print t2_loaded
    A 
    title
    =========================
               abcd      data
    -------------------------
    [1, 2, 3, 4, 5]         0
                  x    5.0000
                  y          
    -------------------------

Note the ``missing_data`` attribute is not saved in the delimited format, but is in the ``pickle`` format. In the next case, I'm going to override the digits format on reloading of the table.

.. doctest::
    :options: +NORMALIZE_WHITESPACE
    
    >>> t2 = Table(['abcd', 'data'], [[str(range(1,6)), '0'], ['x', 5.0],
    ... ['y', None]], missing_data='*', title = 'A \ntitle',
    ... legend = "And\na legend too")
    >>> t2.writeToFile('t2.csv', sep=',')
    >>> t2_loaded = LoadTable(filename = 't2.csv', header = True,
    ... with_title = True, with_legend = True, sep = ',', digits = 2)
    >>> print t2_loaded
    A 
    title
    =======================
               abcd    data
    -----------------------
    [1, 2, 3, 4, 5]       0
                  x    5.00
                  y        
    -----------------------
    And
    a legend too

A few things to note about the delimited file saving: formatting arguments are lost in saving to a delimited format; the ``header`` argument specifies whether the first line of the file should be treated as the header; the ``with_title`` and ``with_legend`` arguments are necessary if the file contains them, otherwise they become the header or part of the table. Importantly, if you wish to preserve numerical precision use the ``pickle`` format.

``cPickle`` can load a useful object from the pickled ``Table`` by itself, without needing to know anything about the ``Table`` class.

.. doctest::
    
    >>> import cPickle
    >>> f = file("t3.pickle")
    >>> pickled = cPickle.load(f)
    >>> f.close()
    >>> pickled.keys()
    ['digits', 'row_ids', 'rows', 'title', 'space', 'max_width', 'header',...
    >>> pickled['rows'][0]
    ['Human', 'edge.0', 4.0, 1.0, 3.0, 6.0]

We can read in a delimited format using a custom reader, which we'll now import. We convert columns 2-5 to floats by specifying a field convertor. We then create a reader, specifying the data (below a list but can be a file) properties. Note that if no convertor is provided all data are returned as strings. We can also provide this reader to the ``Table`` constructor for a more direct way of opening such files. In this case, ``Table`` assumes there is a header row and nothing else.

.. doctest::
    
    >>> from cogent.parse.table import ConvertFields, SeparatorFormatParser
    >>> t3.Title = t3.Legend = None
    >>> comma_sep = t3.tostring(sep=",").splitlines()
    >>> print comma_sep
    ['edge.name,edge.parent,length,     x,     y,     z', '    Human,    ...
    >>> converter = ConvertFields([(2,float), (3,float), (4,float), (5, float)])
    >>> reader = SeparatorFormatParser(with_header=True,converter=converter,
    ...      sep=",")
    >>> comma_sep = [line for line in reader(comma_sep)]
    >>> print comma_sep
    [['edge.name', 'edge.parent', 'length', 'x', 'y', 'z'], ['Human',...
    >>> t3.writeToFile("t3.tab", sep="\t")
    >>> reader = SeparatorFormatParser(with_header=True,converter=converter,
    ...      sep="\t")
    >>> t3a = LoadTable(filename="t3.tab", reader=reader, title="new title",
    ...       space=2)
    ...         
    >>> print t3a
    new title
    ======================================================
    edge.name  edge.parent  length       x       y       z
    ------------------------------------------------------
        Human       edge.0  4.0000  1.0000  3.0000  6.0000
    HowlerMon       edge.0  4.0000  1.0000  3.0000  6.0000
        Mouse       edge.1  4.0000  1.0000  3.0000  6.0000
    NineBande         root  4.0000  1.0000  3.0000  6.0000
     DogFaced         root  4.0000  1.0000  3.0000  6.0000
       edge.0       edge.1  4.0000  1.0000  3.0000  6.0000
       edge.1         root  4.0000  1.0000  3.0000  6.0000
    ------------------------------------------------------

We can use the ``SeparatorFormatParser`` to ignore reading certain lines by using a callback function. We illustrate this using the above data, skipping any rows with ``edge.name`` starting with ``edge``.

.. doctest::
    
    >>> def ignore_internal_nodes(line):
    ...     return line[0].startswith('edge')
    ...     
    >>> reader = SeparatorFormatParser(with_header=True,converter=converter,
    ...      sep="\t", ignore=ignore_internal_nodes)
    ...     
    >>> tips = LoadTable(filename="t3.tab", reader=reader, digits=1, space=2)
    >>> print tips
    =============================================
    edge.name  edge.parent  length    x    y    z
    ---------------------------------------------
        Human       edge.0     4.0  1.0  3.0  6.0
    HowlerMon       edge.0     4.0  1.0  3.0  6.0
        Mouse       edge.1     4.0  1.0  3.0  6.0
    NineBande         root     4.0  1.0  3.0  6.0
     DogFaced         root     4.0  1.0  3.0  6.0
    ---------------------------------------------

In the above example, the data type in a column is static, e.g. all values in ``x`` are floats. Rather than providing a custom reader, you can get the ``Table`` to construct such a reader based on the first data row using the ``static_column_types`` argument.

.. doctest::
    
    >>> t3a = LoadTable(filename="t3.tab", static_column_types=True, digits=1,
    ...                 sep='\t')
    >>> print t3a
    =======================================================
    edge.name    edge.parent    length      x      y      z
    -------------------------------------------------------
        Human         edge.0       4.0    1.0    3.0    6.0
    HowlerMon         edge.0       4.0    1.0    3.0    6.0
        Mouse         edge.1       4.0    1.0    3.0    6.0
    NineBande           root       4.0    1.0    3.0    6.0
     DogFaced           root       4.0    1.0    3.0    6.0
       edge.0         edge.1       4.0    1.0    3.0    6.0
       edge.1           root       4.0    1.0    3.0    6.0
    -------------------------------------------------------

If you invoke the ``static_column_types`` argument and the column data are not static, you'll get a ``ValueError``. We show this by first creating a simple table with mixed data types in a column, write to file and then try to load with  ``static_column_types=True``.

.. doctest::
    
    >>> t3b = LoadTable(header=['A', 'B'], rows=[[1,1], ['a', 2]], sep=2)
    >>> print t3b
    ======
    A    B
    ------
    1    1
    a    2
    ------
    >>> t3b.writeToFile('test3b.txt', sep='\t')
    >>> t3b = LoadTable('test3b.txt', sep = '\t', static_column_types=True)
    Traceback (most recent call last):
    ValueError: invalid literal for int() with base 10: 'a'

We also test the reader function for a tab delimited format with missing data at the end.

.. doctest::
    
    >>> data = ['ab\tcd\t', 'ab\tcd\tef']
    >>> tab_reader = SeparatorFormatParser(sep='\t')
    >>> for line in tab_reader(data):
    ...     assert len(line) == 3, line

We can likewise specify a writer, using a custom field formatter and provide this to the ``Table`` directly for writing. We first illustrate how the writer works to generate output. We then use it to escape some text fields in quotes. In order to read that back in, we define a custom reader that strips these quotes off.

.. doctest::
    
    >>> from cogent.format.table import FormatFields, SeparatorFormatWriter
    >>> formatter = FormatFields([(0,'"%s"'), (1,'"%s"')])
    >>> writer = SeparatorFormatWriter(formatter=formatter, sep=" | ")
    >>> for formatted in writer(comma_sep, has_header=True):
    ...      print formatted
    edge.name | edge.parent | length | x | y | z
    "Human" | "edge.0" | 4.0 | 1.0 | 3.0 | 6.0
    "HowlerMon" | "edge.0" | 4.0 | 1.0 | 3.0 | 6.0
    "Mouse" | "edge.1" | 4.0 | 1.0 | 3.0 | 6.0
    "NineBande" | "root" | 4.0 | 1.0 | 3.0 | 6.0
    "DogFaced" | "root" | 4.0 | 1.0 | 3.0 | 6.0
    "edge.0" | "edge.1" | 4.0 | 1.0 | 3.0 | 6.0
    "edge.1" | "root" | 4.0 | 1.0 | 3.0 | 6.0
    >>> t3.writeToFile(filename="t3.tab", writer=writer)
    >>> strip = lambda x: x.replace('"', '')
    >>> converter = ConvertFields([(0,strip), (1, strip)])
    >>> reader = SeparatorFormatParser(with_header=True, converter=converter,
    ...       sep="|", strip_wspace=True)
    >>> t3a = LoadTable(filename="t3.tab", reader=reader, title="new title",
    ...       space=2)
    >>> print t3a
    new title
    =============================================
    edge.name  edge.parent  length    x    y    z
    ---------------------------------------------
        Human       edge.0     4.0  1.0  3.0  6.0
    HowlerMon       edge.0     4.0  1.0  3.0  6.0
        Mouse       edge.1     4.0  1.0  3.0  6.0
    NineBande         root     4.0  1.0  3.0  6.0
     DogFaced         root     4.0  1.0  3.0  6.0
       edge.0       edge.1     4.0  1.0  3.0  6.0
       edge.1         root     4.0  1.0  3.0  6.0
    ---------------------------------------------

.. note:: There are performance issues for large files. Pickling has proven very slow for saving very large files and introduces significant file size bloat. A simple delimited format is much more efficient both storage wise and, if you use a custom reader (or specify ``static_column_types=True``), to generate and read. A custom reader was approximately 6 fold faster than the standard delimited file reader.

Table slicing and iteration
---------------------------

The Table class is capable of slicing by row, range of rows, column or range of columns headings or used to identify a single cell. Slicing using the method ``getColumns`` can also be used to reorder columns. In the case of columns, either the string headings or their position integers can be used. For rows, if ``row_ids`` was specified as ``True`` the 0'th cell in each row can also be used.

.. doctest::
    
    >>> t4 = Table(['edge.name', 'edge.parent', 'length', 'x', 'y', 'z'], d2D,
    ... row_order = row_order, row_ids = True, title = 'My Title')

We subset ``t4`` by column and reorder them.

.. doctest::
    
    >>> new = t4.getColumns(['z', 'y'])
    >>> print new
    My Title
    =============================
    edge.name         z         y
    -----------------------------
        Human    6.0000    3.0000
    HowlerMon    6.0000    3.0000
        Mouse    6.0000    3.0000
    NineBande    6.0000    3.0000
     DogFaced    6.0000    3.0000
       edge.0    6.0000    3.0000
       edge.1    6.0000    3.0000
    -----------------------------

We use the column position indexes to do get the same table.

.. doctest::
    
    >>> new = t4.getColumns([5, 4])
    >>> print new
    My Title
    =============================
    edge.name         z         y
    -----------------------------
        Human    6.0000    3.0000
    HowlerMon    6.0000    3.0000
        Mouse    6.0000    3.0000
    NineBande    6.0000    3.0000
     DogFaced    6.0000    3.0000
       edge.0    6.0000    3.0000
       edge.1    6.0000    3.0000
    -----------------------------

We can also using more general slicing, by both rows and columns. The following returns all rows from 4 on, and columns up to (but excluding) 'y':

.. doctest::
    
    >>> k = t4[4:, :'y']
    >>> print k
    My Title
    ============================================
    edge.name    edge.parent    length         x
    --------------------------------------------
     DogFaced           root    4.0000    1.0000
       edge.0         edge.1    4.0000    1.0000
       edge.1           root    4.0000    1.0000
    --------------------------------------------

We can explicitly reference individual cells, in this case using both row and column keys.

.. doctest::
    
    >>> val = t4['HowlerMon', 'y']
    >>> print val
    3.0

We slice a single row,

.. doctest::
    
    >>> new = t4[3]
    >>> print new
    My Title
    ================================================================
    edge.name    edge.parent    length         x         y         z
    ----------------------------------------------------------------
    NineBande           root    4.0000    1.0000    3.0000    6.0000
    ----------------------------------------------------------------

and range of rows.

.. doctest::
    
    >>> new = t4[3:6]
    >>> print new
    My Title
    ================================================================
    edge.name    edge.parent    length         x         y         z
    ----------------------------------------------------------------
    NineBande           root    4.0000    1.0000    3.0000    6.0000
     DogFaced           root    4.0000    1.0000    3.0000    6.0000
       edge.0         edge.1    4.0000    1.0000    3.0000    6.0000
    ----------------------------------------------------------------

You can get disjoint rows.

.. doctest::
    
    >>> print t4.getDisjointRows(['Human', 'Mouse', 'DogFaced'])
    My Title
    ================================================================
    edge.name    edge.parent    length         x         y         z
    ----------------------------------------------------------------
        Human         edge.0    4.0000    1.0000    3.0000    6.0000
        Mouse         edge.1    4.0000    1.0000    3.0000    6.0000
     DogFaced           root    4.0000    1.0000    3.0000    6.0000
    ----------------------------------------------------------------

You can iterate over the table one row at a time and slice the rows. We illustrate this for slicing a single column,

.. doctest::
    
    >>> for row in t:
    ...     print row['Journal']
    INT J PARASITOL
    J MED ENTOMOL
    Med Vet Entomol
    INSECT MOL BIOL
    J AM MOSQUITO CONTR
    MOL PHYLOGENET EVOL
    HEREDITY
    AM J TROP MED HYG
    MIL MED
    MED J AUSTRALIA

and for multiple columns.

.. doctest::
    
    >>> for row in t:
    ...     print row['Journal'], row['Impact']
    INT J PARASITOL 2.9
    J MED ENTOMOL 1.4
    Med Vet Entomol 1.0
    INSECT MOL BIOL 2.85
    J AM MOSQUITO CONTR 0.811
    MOL PHYLOGENET EVOL 2.8
    HEREDITY 1.99
    AM J TROP MED HYG 2.105
    MIL MED 0.605
    MED J AUSTRALIA 1.736

The numerical slice equivalent to the first case above would be ``row[0]``, to the second case either ``row[:]``, ``row[:2]``.

Filtering tables - selecting subsets of rows/columns
----------------------------------------------------

We want to be able to slice a table, based on some condition(s), to produce a new subset table. For instance, we construct a table with type and probability values.

.. doctest::
    
    >>> header = ['Gene', 'type', 'LR', 'df', 'Prob']
    >>> rows = (('NP_003077_hs_mm_rn_dna', 'Con', 2.5386, 1, 0.1111),
    ...         ('NP_004893_hs_mm_rn_dna', 'Con', 0.1214, 1, 0.7276),
    ...         ('NP_005079_hs_mm_rn_dna', 'Con', 0.9517, 1, 0.3293),
    ...         ('NP_005500_hs_mm_rn_dna', 'Con', 0.7383, 1, 0.3902),
    ...         ('NP_055852_hs_mm_rn_dna', 'Con', 0.0000, 1, 0.9997),
    ...         ('NP_057012_hs_mm_rn_dna', 'Unco', 34.3081, 1, 0.0000),
    ...         ('NP_061130_hs_mm_rn_dna', 'Unco', 3.7986, 1, 0.0513),
    ...         ('NP_065168_hs_mm_rn_dna', 'Con', 89.9766, 1, 0.0000),
    ...         ('NP_065396_hs_mm_rn_dna', 'Unco', 11.8912, 1, 0.0006),
    ...         ('NP_109590_hs_mm_rn_dna', 'Con', 0.2121, 1, 0.6451),
    ...         ('NP_116116_hs_mm_rn_dna', 'Unco', 9.7474, 1, 0.0018))
    >>> t5 = Table(header, rows)
    >>> print t5
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    ---------------------------------------------------------

We then seek to obtain only those rows that contain probabilities < 0.05. We use valid python code within a string. **Note:** Make sure your column headings could be valid python variable names or the string based approach will fail (you could use an external function instead, see below).

.. doctest::
    
    >>> sub_table1 = t5.filtered(callback = "Prob < 0.05")
    >>> print sub_table1
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    ---------------------------------------------------------

Using the above table we test the function to extract the raw data for a single column,

.. doctest::
    
    >>> raw = sub_table1.getRawData('LR')
    >>> raw
    [34.308100000000003, 89.976600000000005, 11.8912, 9.7474000000000007]

and from multiple columns.

.. doctest::
    
    >>> raw = sub_table1.getRawData(columns = ['LR', 'df', 'Prob'])
    >>> raw
    [[34.308100000000003, 1, 0.0], [89.976600000000005, 1, 0.0],...

We can also do filtering using an external function, in this case we use a ``lambda`` to obtain only those rows of type 'Unco' that contain probabilities < 0.05, modifying our callback function.

.. doctest::
    
    >>> func = lambda (ty, pr): ty == 'Unco' and pr < 0.05
    >>> sub_table2 = t5.filtered(columns = ('type', 'Prob'), callback = func)
    >>> print sub_table2
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    ---------------------------------------------------------

This can also be done using the string approach.

.. doctest::
    
    >>> sub_table2 = t5.filtered(callback = "type == 'Unco' and Prob < 0.05")
    >>> print sub_table2
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    ---------------------------------------------------------

We can also filter table columns using ``filteredByColumn``. Say we only want the numerical columns, we can write a callback that returns ``False`` if some numerical operation fails, ``True`` otherwise.

.. doctest::
    
    >>> def is_numeric(values):
    ...     try:
    ...         sum(values)
    ...     except TypeError:
    ...         return False
    ...     return True
    >>> print t5.filteredByColumn(callback=is_numeric)
    =======================
         LR    df      Prob
    -----------------------
     2.5386     1    0.1111
     0.1214     1    0.7276
     0.9517     1    0.3293
     0.7383     1    0.3902
     0.0000     1    0.9997
    34.3081     1    0.0000
     3.7986     1    0.0513
    89.9766     1    0.0000
    11.8912     1    0.0006
     0.2121     1    0.6451
     9.7474     1    0.0018
    -----------------------

Appending tables
----------------

Tables may also be appended to each other, to make larger tables. We'll construct two simple tables to illustrate this.

.. doctest::
    
    >>> geneA = Table(['edge.name', 'edge.parent', 'z'], [['Human','root',
    ... 6.0],['Mouse','root', 6.0], ['Rat','root', 6.0]],
    ... title='Gene A')
    >>> geneB = Table(['edge.name', 'edge.parent', 'z'], [['Human','root',
    ... 7.0],['Mouse','root', 7.0], ['Rat','root', 7.0]],
    ... title='Gene B')
    >>> print geneB
    Gene B
    ==================================
    edge.name    edge.parent         z
    ----------------------------------
        Human           root    7.0000
        Mouse           root    7.0000
          Rat           root    7.0000
    ----------------------------------

we now use the ``appended`` Table method to create a new table, specifying that we want a new column created (by passing the ``new_column`` argument a heading) in which the table titles will be placed.

.. doctest::
    
    >>> new = geneA.appended('Gene', geneB, title='Appended tables')
    >>> print new
    Appended tables
    ============================================
      Gene    edge.name    edge.parent         z
    --------------------------------------------
    Gene A        Human           root    6.0000
    Gene A        Mouse           root    6.0000
    Gene A          Rat           root    6.0000
    Gene B        Human           root    7.0000
    Gene B        Mouse           root    7.0000
    Gene B          Rat           root    7.0000
    --------------------------------------------

We repeat this without adding a new column.

.. doctest::
    
    >>> new = geneA.appended(None, geneB, title="Appended, no new column")
    >>> print new
    Appended, no new column
    ==================================
    edge.name    edge.parent         z
    ----------------------------------
        Human           root    6.0000
        Mouse           root    6.0000
          Rat           root    6.0000
        Human           root    7.0000
        Mouse           root    7.0000
          Rat           root    7.0000
    ----------------------------------

Miscellaneous
-------------

Tables have a ``Shape`` attribute, which specifies *x* (number of columns) and *y* (number of rows). The attribute is a tuple and we illustrate it for the above ``sub_table`` tables. Combined with the ``filtered`` method, this attribute can tell you how many rows satisfy a specific condition.

.. doctest::
    
    >>> t5.Shape
    (11, 5)
    >>> sub_table1.Shape
    (4, 5)
    >>> sub_table2.Shape
    (3, 5)

For instance, 3 of the 11 rows in ``t`` were significant and belonged to the ``Unco`` type.

For completeness, we generate a table with no rows and assess its shape.

.. doctest::
    
    >>> func = lambda (ty, pr): ty == 'Unco' and pr > 0.1
    >>> sub_table3 = t5.filtered(columns = ('type', 'Prob'), callback = func)
    >>> sub_table3.Shape
    (0, 5)

The distinct values can be obtained for a single column,

.. doctest::
    
    >>> distinct = new.getDistinctValues("edge.name")
    >>> assert distinct == set(['Rat', 'Mouse', 'Human'])

or multiple columns

.. doctest::
    
    >>> distinct = new.getDistinctValues(["edge.parent", "z"])
    >>> assert distinct == set([('root', 6.0), ('root', 7.0)]), distinct

We can compute column sums. Assuming only numerical values in a column.

.. doctest::
    
    >>> assert new.summed('z') == 39., new.summed('z')

We construct an example with mixed numerical and non-numerical data. We now compute the column sum with mixed non-numerical/numerical data.

.. doctest::
    :options: +NORMALIZE_WHITESPACE
    
    >>> mix = LoadTable(header=['A', 'B'], rows=[[0,''],[1,2],[3,4]])
    >>> print mix
    ======
    A    B
    ------
    0     
    1    2
    3    4
    ------
    >>> mix.summed('B', strict=False)
    6

We also compute row sums for the pure numerical and mixed non-numerical/numerical rows. For summing across rows we must specify the actual row index as an ``int``.

.. doctest::
    
    >>> mix.summed(0, col_sum=False, strict=False)
    0
    >>> mix.summed(1, col_sum=False)
    3

We can compute the totals for all columns or rows too.

.. doctest::
    
    >>> mix.summed(strict=False)
    [4, 6]
    >>> mix.summed(col_sum=False, strict=False)
    [0, 3, 7]

It is not currently possible to do a subset of columns/rows. We show this for rows here.

.. doctest::
    
    >>> mix.summed([0, 2], col_sum=False, strict=False)
    Traceback (most recent call last):
    RuntimeError: unknown indices type: [0, 2]

We test these for a strictly numerical table.

.. doctest::
    
    >>> non_mix = LoadTable(header=['A', 'B'], rows=[[0,1],[1,2],[3,4]])
    >>> non_mix.summed()
    [4, 7]
    >>> non_mix.summed(col_sum=False)
    [1, 3, 7]

We can normalise a numerical table by row,

.. doctest::
    
    >>> print non_mix.normalized(by_row=True)
    ================
         A         B
    ----------------
    0.0000    1.0000
    0.3333    0.6667
    0.4286    0.5714
    ----------------

or by column, such that the row/column sums are 1.

.. doctest::
    
    >>> print non_mix.normalized(by_row=False)
    ================
         A         B
    ----------------
    0.0000    0.1429
    0.2500    0.2857
    0.7500    0.5714
    ----------------

We normalize by an arbitrary function (maximum value) by row,

.. doctest::
    
    >>> print non_mix.normalized(by_row=True, denominator_func=max)
    ================
         A         B
    ----------------
    0.0000    1.0000
    0.5000    1.0000
    0.7500    1.0000
    ----------------

by column.

.. doctest::
    
    >>> print non_mix.normalized(by_row=False, denominator_func=max)
    ================
         A         B
    ----------------
    0.0000    0.2500
    0.3333    0.5000
    1.0000    1.0000
    ----------------

Extending tables
----------------

In some cases it is desirable to compute an additional column from existing column values. This is done using the ``withNewColumn`` method. We'll use t4 from above, adding two of the columns to create an additional column.

.. doctest::
    
    >>> t7 = t4.withNewColumn('Sum', callback="z+x", digits=2)
    >>> print t7
    My Title
    ==================================================================
    edge.name    edge.parent    length       x       y       z     Sum
    ------------------------------------------------------------------
        Human         edge.0      4.00    1.00    3.00    6.00    7.00
    HowlerMon         edge.0      4.00    1.00    3.00    6.00    7.00
        Mouse         edge.1      4.00    1.00    3.00    6.00    7.00
    NineBande           root      4.00    1.00    3.00    6.00    7.00
     DogFaced           root      4.00    1.00    3.00    6.00    7.00
       edge.0         edge.1      4.00    1.00    3.00    6.00    7.00
       edge.1           root      4.00    1.00    3.00    6.00    7.00
    ------------------------------------------------------------------

We test this with an externally defined function.

.. doctest::
    
    >>> func = lambda (x, y): x * y
    >>> t7 = t4.withNewColumn('Sum', callback=func, columns=("y","z"),
    ... digits=2)
    >>> print t7
    My Title
    ===================================================================
    edge.name    edge.parent    length       x       y       z      Sum
    -------------------------------------------------------------------
        Human         edge.0      4.00    1.00    3.00    6.00    18.00
    HowlerMon         edge.0      4.00    1.00    3.00    6.00    18.00
        Mouse         edge.1      4.00    1.00    3.00    6.00    18.00
    NineBande           root      4.00    1.00    3.00    6.00    18.00
     DogFaced           root      4.00    1.00    3.00    6.00    18.00
       edge.0         edge.1      4.00    1.00    3.00    6.00    18.00
       edge.1           root      4.00    1.00    3.00    6.00    18.00
    -------------------------------------------------------------------
    >>> func = lambda x: x**3
    >>> t7 = t4.withNewColumn('Sum', callback=func, columns="y", digits=2)
    >>> print t7
    My Title
    ===================================================================
    edge.name    edge.parent    length       x       y       z      Sum
    -------------------------------------------------------------------
        Human         edge.0      4.00    1.00    3.00    6.00    27.00
    HowlerMon         edge.0      4.00    1.00    3.00    6.00    27.00
        Mouse         edge.1      4.00    1.00    3.00    6.00    27.00
    NineBande           root      4.00    1.00    3.00    6.00    27.00
     DogFaced           root      4.00    1.00    3.00    6.00    27.00
       edge.0         edge.1      4.00    1.00    3.00    6.00    27.00
       edge.1           root      4.00    1.00    3.00    6.00    27.00
    -------------------------------------------------------------------

Sorting tables
--------------

We want a table sorted according to values in a column.

.. doctest::
    
    >>> sorted = t5.sorted(columns = 'LR')
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    ---------------------------------------------------------

We want a table sorted according to values in a subset of columns, note the order of columns determines the sort order.

.. doctest::
    
    >>> sorted = t5.sorted(columns=('LR', 'type'))
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    ---------------------------------------------------------

We now do a sort based on 2 columns.

.. doctest::
    
    >>> sorted = t5.sorted(columns=('type', 'LR'))
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    ---------------------------------------------------------

Reverse sort a single column

.. doctest::
    
    >>> sorted = t5.sorted('LR', reverse = 'LR')
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    ---------------------------------------------------------

Reverse sort one column but not another

.. doctest::
    
    >>> sorted = t5.sorted(columns=('type', 'LR'), reverse = 'LR')
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    ---------------------------------------------------------

Reverse sort both columns.

.. doctest::
    
    >>> sorted = t5.sorted(columns=('type', 'LR'), reverse = ('type', 'LR'))
    >>> print sorted
    =========================================================
                      Gene    type         LR    df      Prob
    ---------------------------------------------------------
    NP_057012_hs_mm_rn_dna    Unco    34.3081     1    0.0000
    NP_065396_hs_mm_rn_dna    Unco    11.8912     1    0.0006
    NP_116116_hs_mm_rn_dna    Unco     9.7474     1    0.0018
    NP_061130_hs_mm_rn_dna    Unco     3.7986     1    0.0513
    NP_065168_hs_mm_rn_dna     Con    89.9766     1    0.0000
    NP_003077_hs_mm_rn_dna     Con     2.5386     1    0.1111
    NP_005079_hs_mm_rn_dna     Con     0.9517     1    0.3293
    NP_005500_hs_mm_rn_dna     Con     0.7383     1    0.3902
    NP_109590_hs_mm_rn_dna     Con     0.2121     1    0.6451
    NP_004893_hs_mm_rn_dna     Con     0.1214     1    0.7276
    NP_055852_hs_mm_rn_dna     Con     0.0000     1    0.9997
    ---------------------------------------------------------

Joining Tables
--------------

The Table object is capable of joins or merging of records in two tables. There are two fundamental types of joins -- inner and outer -- with there being different sub-types. We demonstrate these first constructing some simple tables.

.. doctest::
    
    >>> a=Table(header=["index", "col2","col3"],
    ...         rows=[[1,2,3],[2,3,1],[2,6,5]], title="A")
    >>> print a
    A
    =====================
    index    col2    col3
    ---------------------
        1       2       3
        2       3       1
        2       6       5
    ---------------------
    >>> b=Table(header=["index", "col2","col3"],
    ...         rows=[[1,2,3],[2,2,1],[3,6,3]], title="B")
    >>> print b
    B
    =====================
    index    col2    col3
    ---------------------
        1       2       3
        2       2       1
        3       6       3
    ---------------------
    >>> c=Table(header=["index","col_c2"],rows=[[1,2],[3,2],[3,5]],title="C")
    >>> print c
    C
    ===============
    index    col_c2
    ---------------
        1         2
        3         2
        3         5
    ---------------

For a natural inner join, only 1 copy of columns with the same name are retained. So we expect the headings to be identical between the table ``a``/``b`` and the result of ``a.joined(b)`` or ``b.joined(a)``.

.. doctest::
    
    >>> assert a.joined(b).Header == b.Header
    >>> assert b.joined(a).Header == a.Header

For a standard inner join, the joined table should contain all columns from ``a`` and ``b`` excepting the index column(s). Simply providing a column name (or index) selects this behaviour. Note that in this case, column names from the second table are made unique by prefixing them with that tables title. If the provided tables do not have a title, a ``RuntimeError`` is raised.

.. doctest::
    
    >>> b.Title = None
    >>> try:
    ...     a.joined(b)
    ... except RuntimeError:
    ...     pass
    >>> b.Title = 'B'
    >>> assert a.joined(b, "index").Header == ["index", "col2", "col3",
    ...                                        "B_col2", "B_col3"]
    ...                                         

Note that the table title's were used to prefix the column headings from the second table. We further test this using table ``c`` which has different dimensions.

.. doctest::
    
    >>> assert a.joined(c,"index").Header == ["index","col2","col3",
    ...                                       "C_col_c2"]

It's also possible to specify index columns using numerical values, the results of which should be the same.

.. doctest::
    
    >>> assert a.joined(b,[0, 2]).getRawData() ==\
    ...                          a.joined(b,["index","col3"]).getRawData()

Additionally, it's possible to provide two series of indices for the two tables. Here, they have identical values.

.. doctest::
    
    >>> assert a.joined(b, ["index", "col3"],["index", "col3"]).getRawData()\
    ...         == a.joined(b,["index","col3"]).getRawData()

The results of a standard join between tables ``a`` and ``b`` are

.. doctest::
    
    >>> print a.joined(b, ["index"], title='A&B')
    A&B
    =========================================
    index    col2    col3    B_col2    B_col3
    -----------------------------------------
        1       2       3         2         3
        2       3       1         2         1
        2       6       5         2         1
    -----------------------------------------

We demo the table specific indices.

.. doctest::
    
    >>> print a.joined(c, ["col2"], ["index"], title='A&C by "col2/index"')
    A&C by "col2/index"
    =================================
    index    col2    col3    C_col_c2
    ---------------------------------
        2       3       1           2
        2       3       1           5
    ---------------------------------

Tables ``a`` and ``c`` share a single row with the same value in the ``index`` column, hence a join by that index should return a table with just that row.

.. doctest::
    
    >>> print a.joined(c, "index", title='A&C by "index"')
    A&C by "index"
    =================================
    index    col2    col3    C_col_c2
    ---------------------------------
        1       2       3           2
    ---------------------------------

A natural join of tables ``a`` and ``b`` results in a table with only rows that were identical between the two parents.

.. doctest::
    
    >>> print a.joined(b, title='A&B Natural Join')
    A&B Natural Join
    =====================
    index    col2    col3
    ---------------------
        1       2       3
    ---------------------

We test the outer join by defining an additional table with different dimensions, and conducting a join specifying ``inner_join=False``.

.. doctest::
    
    >>> d=Table(header=["index", "col_c2"], rows=[[5,42],[6,23]], title="D")
    >>> print d
    D
    ===============
    index    col_c2
    ---------------
        5        42
        6        23
    ---------------
    >>> print c.joined(d,inner_join=False, title='C&D Outer join')
    C&D Outer join
    ======================================
    index    col_c2    D_index    D_col_c2
    --------------------------------------
        1         2          5          42
        1         2          6          23
        3         2          5          42
        3         2          6          23
        3         5          5          42
        3         5          6          23
    --------------------------------------

We establish the ``joined`` method works for mixtures of character and numerical data, setting some indices and some cell values to be strings.

.. doctest::
    
    >>> a=Table(header=["index", "col2","col3"],
    ...         rows=[[1,2,"3"],["2",3,1],[2,6,5]], title="A")
    >>> b=Table(header=["index", "col2","col3"],
    ...         rows=[[1,2,"3"],["2",2,1],[3,6,3]], title="B")
    >>> assert a.joined(b, ["index", "col3"],["index", "col3"]).getRawData()\
    ...         == a.joined(b,["index","col3"]).getRawData()

We test that the ``joined`` method works when the column index orders differ.

.. doctest::
    
    >>> t1_header = ['a', 'b']
    >>> t1_rows = [(1,2),(3,4)]
    >>> t2_header = ['b', 'c']
    >>> t2_rows = [(3,6),(4,8)]
    >>> t1 = Table(header = t1_header, rows = t1_rows, title='t1')
    >>> t2 = Table(header = t2_header, rows = t2_rows, title='t2')
    >>> t3 = t1.joined(t2, columns_self = ["b"], columns_other = ["b"])
    >>> print t3
    ==============
    a    b    t2_c
    --------------
    3    4       8
    --------------

We then establish that a join with no values does not cause a failure, just returns an empty ``Table``.

.. doctest::
    
    >>> t4_header = ['b', 'c']
    >>> t4_rows = [(5,6),(7,8)]
    >>> t4 = LoadTable(header = t4_header, rows = t4_rows)
    >>> t4.Title = 't4'
    >>> t5 = t1.joined(t4, columns_self = ["b"], columns_other = ["b"])

Transposing a table
-------------------

Tables can be transposed.

.. doctest::
    
    >>> from cogent import LoadTable
    >>> title='#Full OTU Counts'
    >>> header = ['#OTU ID', '14SK041', '14SK802']
    >>> rows = [[-2920, '332', 294], 
    ...         [-1606, '302', 229], 
    ...         [-393, 141, 125], 
    ...         [-2109, 138, 120], 
    ...         [-5439, 104, 117], 
    ...         [-1834, 70, 75], 
    ...         [-18588, 65, 47], 
    ...         [-1350, 60, 113], 
    ...         [-2160, 57, 52], 
    ...         [-11632, 47, 36]]
    >>> table = LoadTable(header=header,rows=rows,title=title)
    >>> print table
    #Full OTU Counts
    =============================
    #OTU ID    14SK041    14SK802
    -----------------------------
      -2920        332        294
      -1606        302        229
       -393        141        125
      -2109        138        120
      -5439        104        117
      -1834         70         75
     -18588         65         47
      -1350         60        113
      -2160         57         52
     -11632         47         36
    -----------------------------

We now transpose this. We require a new column heading for header data and an identifier for which existing column will become the header (default is index 0).

.. doctest::
    
    >>> tp = table.transposed(new_column_name='sample',
    ...             select_as_header='#OTU ID', space=2)
    ...             
    >>> print tp
    ==============================================================================
     sample  -2920  -1606  -393  -2109  -5439  -1834  -18588  -1350  -2160  -11632
    ------------------------------------------------------------------------------
    14SK041    332    302   141    138    104     70      65     60     57      47
    14SK802    294    229   125    120    117     75      47    113     52      36
    ------------------------------------------------------------------------------

We test transposition with default value is the same.

.. doctest::
    
    >>> tp = table.transposed(new_column_name='sample', space=2)
    ...             
    >>> print tp
    ==============================================================================
     sample  -2920  -1606  -393  -2109  -5439  -1834  -18588  -1350  -2160  -11632
    ------------------------------------------------------------------------------
    14SK041    332    302   141    138    104     70      65     60     57      47
    14SK802    294    229   125    120    117     75      47    113     52      36
    ------------------------------------------------------------------------------

We test transposition selecting a different column to become the header.

.. doctest::
    
    >>> tp = table.transposed(new_column_name='sample',
    ...             select_as_header='14SK802', space=2)
    ...             
    >>> print tp
    ==============================================================================
     sample    294    229   125    120    117     75      47    113     52      36
    ------------------------------------------------------------------------------
    #OTU ID  -2920  -1606  -393  -2109  -5439  -1834  -18588  -1350  -2160  -11632
    14SK041    332    302   141    138    104     70      65     60     57      47
    ------------------------------------------------------------------------------

Counting rows
-------------

We can count the number of rows for which a condition holds. This method uses the same arguments as ``filtered`` but returns an integer result only.

.. doctest::
    
    >>> print c.count("col_c2 == 2")
    2
    >>> print c.joined(d,inner_join=False).count("index==3 and D_index==5")
    2

Testing a sub-component
-----------------------

Before using ``Table``, we exercise some formatting code:

.. doctest::
    
    >>> from cogent.format.table import formattedCells, phylipMatrix, latex

We check we can format an arbitrary 2D list, without a header, using the ``formattedCells`` function directly.

.. doctest::
    
    >>> data = [[230, 'acdef', 1.3], [6, 'cc', 1.9876]]
    >>> head = ['one', 'two', 'three']
    >>> header, formatted = formattedCells(data, header = head)
    >>> print formatted
    [['230', 'acdef', '1.3000'], ['  6', '   cc', '1.9876']]
    >>> print header
    ['one', '  two', ' three']

We directly test the latex formatting.

.. doctest::
    
    >>> print latex(formatted, header, justify='lrl', caption='A legend',
    ...             label="table:test")
    \begin{longtable}[htp!]{ l r l }
    \hline
    \bf{one} & \bf{two} & \bf{three} \\
    \hline
    \hline
    230 & acdef & 1.3000 \\
      6 &    cc & 1.9876 \\
    \hline
    \caption{A legend}
    \label{table:test}
    \end{longtable}

..
    Import the ``os`` module so some file cleanup can be done at the end. To check the contents of those files, just delete the following prior to running the test. The try/except clause below is aimed at case where ``junk.pdf`` wasn't created due to ``reportlab`` not being present.

.. doctest::
    :hide:
    
    >>> import os
    >>> to_delete = ['t3.pickle', 't2.csv', 't3.tab', 'test3b.txt']
    >>> for f in to_delete:
    ...     try:
    ...         os.remove(f)
    ...     except OSError:
    ...         pass