~ubuntu-branches/ubuntu/oneiric/postgresql-9.1/oneiric-security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
/*-------------------------------------------------------------------------
 *
 * equivclass.c
 *	  Routines for managing EquivalenceClasses
 *
 * See src/backend/optimizer/README for discussion of EquivalenceClasses.
 *
 *
 * Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/path/equivclass.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/skey.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/prep.h"
#include "optimizer/var.h"
#include "utils/lsyscache.h"


static EquivalenceMember *add_eq_member(EquivalenceClass *ec,
			  Expr *expr, Relids relids, Relids nullable_relids,
			  bool is_child, Oid datatype);
static void generate_base_implied_equalities_const(PlannerInfo *root,
									   EquivalenceClass *ec);
static void generate_base_implied_equalities_no_const(PlannerInfo *root,
										  EquivalenceClass *ec);
static void generate_base_implied_equalities_broken(PlannerInfo *root,
										EquivalenceClass *ec);
static List *generate_join_implied_equalities_normal(PlannerInfo *root,
										EquivalenceClass *ec,
										RelOptInfo *joinrel,
										RelOptInfo *outer_rel,
										RelOptInfo *inner_rel);
static List *generate_join_implied_equalities_broken(PlannerInfo *root,
										EquivalenceClass *ec,
										RelOptInfo *joinrel,
										RelOptInfo *outer_rel,
										RelOptInfo *inner_rel);
static Oid select_equality_operator(EquivalenceClass *ec,
						 Oid lefttype, Oid righttype);
static RestrictInfo *create_join_clause(PlannerInfo *root,
				   EquivalenceClass *ec, Oid opno,
				   EquivalenceMember *leftem,
				   EquivalenceMember *rightem,
				   EquivalenceClass *parent_ec);
static bool reconsider_outer_join_clause(PlannerInfo *root,
							 RestrictInfo *rinfo,
							 bool outer_on_left);
static bool reconsider_full_join_clause(PlannerInfo *root,
							RestrictInfo *rinfo);


/*
 * process_equivalence
 *	  The given clause has a mergejoinable operator and can be applied without
 *	  any delay by an outer join, so its two sides can be considered equal
 *	  anywhere they are both computable; moreover that equality can be
 *	  extended transitively.  Record this knowledge in the EquivalenceClass
 *	  data structure.  Returns TRUE if successful, FALSE if not (in which
 *	  case caller should treat the clause as ordinary, not an equivalence).
 *
 * If below_outer_join is true, then the clause was found below the nullable
 * side of an outer join, so its sides might validly be both NULL rather than
 * strictly equal.	We can still deduce equalities in such cases, but we take
 * care to mark an EquivalenceClass if it came from any such clauses.  Also,
 * we have to check that both sides are either pseudo-constants or strict
 * functions of Vars, else they might not both go to NULL above the outer
 * join.  (This is the reason why we need a failure return.  It's more
 * convenient to check this case here than at the call sites...)
 *
 * On success return, we have also initialized the clause's left_ec/right_ec
 * fields to point to the EquivalenceClass representing it.  This saves lookup
 * effort later.
 *
 * Note: constructing merged EquivalenceClasses is a standard UNION-FIND
 * problem, for which there exist better data structures than simple lists.
 * If this code ever proves to be a bottleneck then it could be sped up ---
 * but for now, simple is beautiful.
 *
 * Note: this is only called during planner startup, not during GEQO
 * exploration, so we need not worry about whether we're in the right
 * memory context.
 */
bool
process_equivalence(PlannerInfo *root, RestrictInfo *restrictinfo,
					bool below_outer_join)
{
	Expr	   *clause = restrictinfo->clause;
	Oid			opno,
				collation,
				item1_type,
				item2_type;
	Expr	   *item1;
	Expr	   *item2;
	Relids		item1_relids,
				item2_relids,
				item1_nullable_relids,
				item2_nullable_relids;
	List	   *opfamilies;
	EquivalenceClass *ec1,
			   *ec2;
	EquivalenceMember *em1,
			   *em2;
	ListCell   *lc1;

	/* Should not already be marked as having generated an eclass */
	Assert(restrictinfo->left_ec == NULL);
	Assert(restrictinfo->right_ec == NULL);

	/* Extract info from given clause */
	Assert(is_opclause(clause));
	opno = ((OpExpr *) clause)->opno;
	collation = ((OpExpr *) clause)->inputcollid;
	item1 = (Expr *) get_leftop(clause);
	item2 = (Expr *) get_rightop(clause);
	item1_relids = restrictinfo->left_relids;
	item2_relids = restrictinfo->right_relids;

	/*
	 * Ensure both input expressions expose the desired collation (their types
	 * should be OK already); see comments for canonicalize_ec_expression.
	 */
	item1 = canonicalize_ec_expression(item1,
									   exprType((Node *) item1),
									   collation);
	item2 = canonicalize_ec_expression(item2,
									   exprType((Node *) item2),
									   collation);

	/*
	 * Reject clauses of the form X=X.	These are not as redundant as they
	 * might seem at first glance: assuming the operator is strict, this is
	 * really an expensive way to write X IS NOT NULL.	So we must not risk
	 * just losing the clause, which would be possible if there is already a
	 * single-element EquivalenceClass containing X.  The case is not common
	 * enough to be worth contorting the EC machinery for, so just reject the
	 * clause and let it be processed as a normal restriction clause.
	 */
	if (equal(item1, item2))
		return false;			/* X=X is not a useful equivalence */

	/*
	 * If below outer join, check for strictness, else reject.
	 */
	if (below_outer_join)
	{
		if (!bms_is_empty(item1_relids) &&
			contain_nonstrict_functions((Node *) item1))
			return false;		/* LHS is non-strict but not constant */
		if (!bms_is_empty(item2_relids) &&
			contain_nonstrict_functions((Node *) item2))
			return false;		/* RHS is non-strict but not constant */
	}

	/* Calculate nullable-relid sets for each side of the clause */
	item1_nullable_relids = bms_intersect(item1_relids,
										  restrictinfo->nullable_relids);
	item2_nullable_relids = bms_intersect(item2_relids,
										  restrictinfo->nullable_relids);

	/*
	 * We use the declared input types of the operator, not exprType() of the
	 * inputs, as the nominal datatypes for opfamily lookup.  This presumes
	 * that btree operators are always registered with amoplefttype and
	 * amoprighttype equal to their declared input types.  We will need this
	 * info anyway to build EquivalenceMember nodes, and by extracting it now
	 * we can use type comparisons to short-circuit some equal() tests.
	 */
	op_input_types(opno, &item1_type, &item2_type);

	opfamilies = restrictinfo->mergeopfamilies;

	/*
	 * Sweep through the existing EquivalenceClasses looking for matches to
	 * item1 and item2.  These are the possible outcomes:
	 *
	 * 1. We find both in the same EC.	The equivalence is already known, so
	 * there's nothing to do.
	 *
	 * 2. We find both in different ECs.  Merge the two ECs together.
	 *
	 * 3. We find just one.  Add the other to its EC.
	 *
	 * 4. We find neither.	Make a new, two-entry EC.
	 *
	 * Note: since all ECs are built through this process or the similar
	 * search in get_eclass_for_sort_expr(), it's impossible that we'd match
	 * an item in more than one existing nonvolatile EC.  So it's okay to stop
	 * at the first match.
	 */
	ec1 = ec2 = NULL;
	em1 = em2 = NULL;
	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		ListCell   *lc2;

		/* Never match to a volatile EC */
		if (cur_ec->ec_has_volatile)
			continue;

		/*
		 * The collation has to match; check this first since it's cheaper
		 * than the opfamily comparison.
		 */
		if (collation != cur_ec->ec_collation)
			continue;

		/*
		 * A "match" requires matching sets of btree opfamilies.  Use of
		 * equal() for this test has implications discussed in the comments
		 * for get_mergejoin_opfamilies().
		 */
		if (!equal(opfamilies, cur_ec->ec_opfamilies))
			continue;

		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			Assert(!cur_em->em_is_child);		/* no children yet */

			/*
			 * If below an outer join, don't match constants: they're not as
			 * constant as they look.
			 */
			if ((below_outer_join || cur_ec->ec_below_outer_join) &&
				cur_em->em_is_const)
				continue;

			if (!ec1 &&
				item1_type == cur_em->em_datatype &&
				equal(item1, cur_em->em_expr))
			{
				ec1 = cur_ec;
				em1 = cur_em;
				if (ec2)
					break;
			}

			if (!ec2 &&
				item2_type == cur_em->em_datatype &&
				equal(item2, cur_em->em_expr))
			{
				ec2 = cur_ec;
				em2 = cur_em;
				if (ec1)
					break;
			}
		}

		if (ec1 && ec2)
			break;
	}

	/* Sweep finished, what did we find? */

	if (ec1 && ec2)
	{
		/* If case 1, nothing to do, except add to sources */
		if (ec1 == ec2)
		{
			ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
			ec1->ec_below_outer_join |= below_outer_join;
			/* mark the RI as associated with this eclass */
			restrictinfo->left_ec = ec1;
			restrictinfo->right_ec = ec1;
			/* mark the RI as usable with this pair of EMs */
			restrictinfo->left_em = em1;
			restrictinfo->right_em = em2;
			return true;
		}

		/*
		 * Case 2: need to merge ec1 and ec2.  We add ec2's items to ec1, then
		 * set ec2's ec_merged link to point to ec1 and remove ec2 from the
		 * eq_classes list.  We cannot simply delete ec2 because that could
		 * leave dangling pointers in existing PathKeys.  We leave it behind
		 * with a link so that the merged EC can be found.
		 */
		ec1->ec_members = list_concat(ec1->ec_members, ec2->ec_members);
		ec1->ec_sources = list_concat(ec1->ec_sources, ec2->ec_sources);
		ec1->ec_derives = list_concat(ec1->ec_derives, ec2->ec_derives);
		ec1->ec_relids = bms_join(ec1->ec_relids, ec2->ec_relids);
		ec1->ec_has_const |= ec2->ec_has_const;
		/* can't need to set has_volatile */
		ec1->ec_below_outer_join |= ec2->ec_below_outer_join;
		ec2->ec_merged = ec1;
		root->eq_classes = list_delete_ptr(root->eq_classes, ec2);
		/* just to avoid debugging confusion w/ dangling pointers: */
		ec2->ec_members = NIL;
		ec2->ec_sources = NIL;
		ec2->ec_derives = NIL;
		ec2->ec_relids = NULL;
		ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
		ec1->ec_below_outer_join |= below_outer_join;
		/* mark the RI as associated with this eclass */
		restrictinfo->left_ec = ec1;
		restrictinfo->right_ec = ec1;
		/* mark the RI as usable with this pair of EMs */
		restrictinfo->left_em = em1;
		restrictinfo->right_em = em2;
	}
	else if (ec1)
	{
		/* Case 3: add item2 to ec1 */
		em2 = add_eq_member(ec1, item2, item2_relids, item2_nullable_relids,
							false, item2_type);
		ec1->ec_sources = lappend(ec1->ec_sources, restrictinfo);
		ec1->ec_below_outer_join |= below_outer_join;
		/* mark the RI as associated with this eclass */
		restrictinfo->left_ec = ec1;
		restrictinfo->right_ec = ec1;
		/* mark the RI as usable with this pair of EMs */
		restrictinfo->left_em = em1;
		restrictinfo->right_em = em2;
	}
	else if (ec2)
	{
		/* Case 3: add item1 to ec2 */
		em1 = add_eq_member(ec2, item1, item1_relids, item1_nullable_relids,
							false, item1_type);
		ec2->ec_sources = lappend(ec2->ec_sources, restrictinfo);
		ec2->ec_below_outer_join |= below_outer_join;
		/* mark the RI as associated with this eclass */
		restrictinfo->left_ec = ec2;
		restrictinfo->right_ec = ec2;
		/* mark the RI as usable with this pair of EMs */
		restrictinfo->left_em = em1;
		restrictinfo->right_em = em2;
	}
	else
	{
		/* Case 4: make a new, two-entry EC */
		EquivalenceClass *ec = makeNode(EquivalenceClass);

		ec->ec_opfamilies = opfamilies;
		ec->ec_collation = collation;
		ec->ec_members = NIL;
		ec->ec_sources = list_make1(restrictinfo);
		ec->ec_derives = NIL;
		ec->ec_relids = NULL;
		ec->ec_has_const = false;
		ec->ec_has_volatile = false;
		ec->ec_below_outer_join = below_outer_join;
		ec->ec_broken = false;
		ec->ec_sortref = 0;
		ec->ec_merged = NULL;
		em1 = add_eq_member(ec, item1, item1_relids, item1_nullable_relids,
							false, item1_type);
		em2 = add_eq_member(ec, item2, item2_relids, item2_nullable_relids,
							false, item2_type);

		root->eq_classes = lappend(root->eq_classes, ec);

		/* mark the RI as associated with this eclass */
		restrictinfo->left_ec = ec;
		restrictinfo->right_ec = ec;
		/* mark the RI as usable with this pair of EMs */
		restrictinfo->left_em = em1;
		restrictinfo->right_em = em2;
	}

	return true;
}

/*
 * canonicalize_ec_expression
 *
 * This function ensures that the expression exposes the expected type and
 * collation, so that it will be equal() to other equivalence-class expressions
 * that it ought to be equal() to.
 *
 * The rule for datatypes is that the exposed type should match what it would
 * be for an input to an operator of the EC's opfamilies; which is usually
 * the declared input type of the operator, but in the case of polymorphic
 * operators no relabeling is wanted (compare the behavior of parse_coerce.c).
 * Expressions coming in from quals will generally have the right type
 * already, but expressions coming from indexkeys may not (because they are
 * represented without any explicit relabel in pg_index), and the same problem
 * occurs for sort expressions (because the parser is likewise cavalier about
 * putting relabels on them).  Such cases will be binary-compatible with the
 * real operators, so adding a RelabelType is sufficient.
 *
 * Also, the expression's exposed collation must match the EC's collation.
 * This is important because in comparisons like "foo < bar COLLATE baz",
 * only one of the expressions has the correct exposed collation as we receive
 * it from the parser.	Forcing both of them to have it ensures that all
 * variant spellings of such a construct behave the same.  Again, we can
 * stick on a RelabelType to force the right exposed collation.  (It might
 * work to not label the collation at all in EC members, but this is risky
 * since some parts of the system expect exprCollation() to deliver the
 * right answer for a sort key.)
 *
 * Note this code assumes that the expression has already been through
 * eval_const_expressions, so there are no CollateExprs and no redundant
 * RelabelTypes.
 */
Expr *
canonicalize_ec_expression(Expr *expr, Oid req_type, Oid req_collation)
{
	Oid			expr_type = exprType((Node *) expr);

	/*
	 * For a polymorphic-input-type opclass, just keep the same exposed type.
	 */
	if (IsPolymorphicType(req_type))
		req_type = expr_type;

	/*
	 * No work if the expression exposes the right type/collation already.
	 */
	if (expr_type != req_type ||
		exprCollation((Node *) expr) != req_collation)
	{
		/*
		 * Strip any existing RelabelType, then add a new one if needed. This
		 * is to preserve the invariant of no redundant RelabelTypes.
		 *
		 * If we have to change the exposed type of the stripped expression,
		 * set typmod to -1 (since the new type may not have the same typmod
		 * interpretation).  If we only have to change collation, preserve the
		 * exposed typmod.
		 */
		while (expr && IsA(expr, RelabelType))
			expr = (Expr *) ((RelabelType *) expr)->arg;

		if (exprType((Node *) expr) != req_type)
			expr = (Expr *) makeRelabelType(expr,
											req_type,
											-1,
											req_collation,
											COERCE_DONTCARE);
		else if (exprCollation((Node *) expr) != req_collation)
			expr = (Expr *) makeRelabelType(expr,
											req_type,
											exprTypmod((Node *) expr),
											req_collation,
											COERCE_DONTCARE);
	}

	return expr;
}

/*
 * add_eq_member - build a new EquivalenceMember and add it to an EC
 */
static EquivalenceMember *
add_eq_member(EquivalenceClass *ec, Expr *expr, Relids relids,
			  Relids nullable_relids, bool is_child, Oid datatype)
{
	EquivalenceMember *em = makeNode(EquivalenceMember);

	em->em_expr = expr;
	em->em_relids = relids;
	em->em_nullable_relids = nullable_relids;
	em->em_is_const = false;
	em->em_is_child = is_child;
	em->em_datatype = datatype;

	if (bms_is_empty(relids))
	{
		/*
		 * No Vars, assume it's a pseudoconstant.  This is correct for entries
		 * generated from process_equivalence(), because a WHERE clause can't
		 * contain aggregates or SRFs, and non-volatility was checked before
		 * process_equivalence() ever got called.  But
		 * get_eclass_for_sort_expr() has to work harder.  We put the tests
		 * there not here to save cycles in the equivalence case.
		 */
		Assert(!is_child);
		em->em_is_const = true;
		ec->ec_has_const = true;
		/* it can't affect ec_relids */
	}
	else if (!is_child)			/* child members don't add to ec_relids */
	{
		ec->ec_relids = bms_add_members(ec->ec_relids, relids);
	}
	ec->ec_members = lappend(ec->ec_members, em);

	return em;
}


/*
 * get_eclass_for_sort_expr
 *	  Given an expression and opfamily/collation info, find an existing
 *	  equivalence class it is a member of; if none, optionally build a new
 *	  single-member EquivalenceClass for it.
 *
 * sortref is the SortGroupRef of the originating SortGroupClause, if any,
 * or zero if not.	(It should never be zero if the expression is volatile!)
 *
 * If rel is not NULL, it identifies a specific relation we're considering
 * a path for, and indicates that child EC members for that relation can be
 * considered.  Otherwise child members are ignored.  (Note: since child EC
 * members aren't guaranteed unique, a non-NULL value means that there could
 * be more than one EC that matches the expression; if so it's order-dependent
 * which one you get.  This is annoying but it only happens in corner cases,
 * so for now we live with just reporting the first match.  See also
 * generate_implied_equalities_for_indexcol and match_pathkeys_to_index.)
 *
 * If create_it is TRUE, we'll build a new EquivalenceClass when there is no
 * match.  If create_it is FALSE, we just return NULL when no match.
 *
 * This can be used safely both before and after EquivalenceClass merging;
 * since it never causes merging it does not invalidate any existing ECs
 * or PathKeys.  However, ECs added after path generation has begun are
 * of limited usefulness, so usually it's best to create them beforehand.
 *
 * Note: opfamilies must be chosen consistently with the way
 * process_equivalence() would do; that is, generated from a mergejoinable
 * equality operator.  Else we might fail to detect valid equivalences,
 * generating poor (but not incorrect) plans.
 */
EquivalenceClass *
get_eclass_for_sort_expr(PlannerInfo *root,
						 Expr *expr,
						 List *opfamilies,
						 Oid opcintype,
						 Oid collation,
						 Index sortref,
						 Relids rel,
						 bool create_it)
{
	EquivalenceClass *newec;
	EquivalenceMember *newem;
	ListCell   *lc1;
	MemoryContext oldcontext;

	/*
	 * Ensure the expression exposes the correct type and collation.
	 */
	expr = canonicalize_ec_expression(expr, opcintype, collation);

	/*
	 * Scan through the existing EquivalenceClasses for a match
	 */
	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		ListCell   *lc2;

		/*
		 * Never match to a volatile EC, except when we are looking at another
		 * reference to the same volatile SortGroupClause.
		 */
		if (cur_ec->ec_has_volatile &&
			(sortref == 0 || sortref != cur_ec->ec_sortref))
			continue;

		if (collation != cur_ec->ec_collation)
			continue;
		if (!equal(opfamilies, cur_ec->ec_opfamilies))
			continue;

		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			/*
			 * Ignore child members unless they match the request.
			 */
			if (cur_em->em_is_child &&
				!bms_equal(cur_em->em_relids, rel))
				continue;

			/*
			 * If below an outer join, don't match constants: they're not as
			 * constant as they look.
			 */
			if (cur_ec->ec_below_outer_join &&
				cur_em->em_is_const)
				continue;

			if (opcintype == cur_em->em_datatype &&
				equal(expr, cur_em->em_expr))
				return cur_ec;	/* Match! */
		}
	}

	/* No match; does caller want a NULL result? */
	if (!create_it)
		return NULL;

	/*
	 * OK, build a new single-member EC
	 *
	 * Here, we must be sure that we construct the EC in the right context.
	 */
	oldcontext = MemoryContextSwitchTo(root->planner_cxt);

	newec = makeNode(EquivalenceClass);
	newec->ec_opfamilies = list_copy(opfamilies);
	newec->ec_collation = collation;
	newec->ec_members = NIL;
	newec->ec_sources = NIL;
	newec->ec_derives = NIL;
	newec->ec_relids = NULL;
	newec->ec_has_const = false;
	newec->ec_has_volatile = contain_volatile_functions((Node *) expr);
	newec->ec_below_outer_join = false;
	newec->ec_broken = false;
	newec->ec_sortref = sortref;
	newec->ec_merged = NULL;

	if (newec->ec_has_volatile && sortref == 0) /* should not happen */
		elog(ERROR, "volatile EquivalenceClass has no sortref");

	newem = add_eq_member(newec, copyObject(expr), pull_varnos((Node *) expr),
						  NULL, false, opcintype);

	/*
	 * add_eq_member doesn't check for volatile functions, set-returning
	 * functions, aggregates, or window functions, but such could appear in
	 * sort expressions; so we have to check whether its const-marking was
	 * correct.
	 */
	if (newec->ec_has_const)
	{
		if (newec->ec_has_volatile ||
			expression_returns_set((Node *) expr) ||
			contain_agg_clause((Node *) expr) ||
			contain_window_function((Node *) expr))
		{
			newec->ec_has_const = false;
			newem->em_is_const = false;
		}
	}

	root->eq_classes = lappend(root->eq_classes, newec);

	MemoryContextSwitchTo(oldcontext);

	return newec;
}


/*
 * generate_base_implied_equalities
 *	  Generate any restriction clauses that we can deduce from equivalence
 *	  classes.
 *
 * When an EC contains pseudoconstants, our strategy is to generate
 * "member = const1" clauses where const1 is the first constant member, for
 * every other member (including other constants).	If we are able to do this
 * then we don't need any "var = var" comparisons because we've successfully
 * constrained all the vars at their points of creation.  If we fail to
 * generate any of these clauses due to lack of cross-type operators, we fall
 * back to the "ec_broken" strategy described below.  (XXX if there are
 * multiple constants of different types, it's possible that we might succeed
 * in forming all the required clauses if we started from a different const
 * member; but this seems a sufficiently hokey corner case to not be worth
 * spending lots of cycles on.)
 *
 * For ECs that contain no pseudoconstants, we generate derived clauses
 * "member1 = member2" for each pair of members belonging to the same base
 * relation (actually, if there are more than two for the same base relation,
 * we only need enough clauses to link each to each other).  This provides
 * the base case for the recursion: each row emitted by a base relation scan
 * will constrain all computable members of the EC to be equal.  As each
 * join path is formed, we'll add additional derived clauses on-the-fly
 * to maintain this invariant (see generate_join_implied_equalities).
 *
 * If the opfamilies used by the EC do not provide complete sets of cross-type
 * equality operators, it is possible that we will fail to generate a clause
 * that must be generated to maintain the invariant.  (An example: given
 * "WHERE a.x = b.y AND b.y = a.z", the scheme breaks down if we cannot
 * generate "a.x = a.z" as a restriction clause for A.)  In this case we mark
 * the EC "ec_broken" and fall back to regurgitating its original source
 * RestrictInfos at appropriate times.	We do not try to retract any derived
 * clauses already generated from the broken EC, so the resulting plan could
 * be poor due to bad selectivity estimates caused by redundant clauses.  But
 * the correct solution to that is to fix the opfamilies ...
 *
 * Equality clauses derived by this function are passed off to
 * process_implied_equality (in plan/initsplan.c) to be inserted into the
 * restrictinfo datastructures.  Note that this must be called after initial
 * scanning of the quals and before Path construction begins.
 *
 * We make no attempt to avoid generating duplicate RestrictInfos here: we
 * don't search ec_sources for matches, nor put the created RestrictInfos
 * into ec_derives.  Doing so would require some slightly ugly changes in
 * initsplan.c's API, and there's no real advantage, because the clauses
 * generated here can't duplicate anything we will generate for joins anyway.
 */
void
generate_base_implied_equalities(PlannerInfo *root)
{
	ListCell   *lc;
	Index		rti;

	foreach(lc, root->eq_classes)
	{
		EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc);

		Assert(ec->ec_merged == NULL);	/* else shouldn't be in list */
		Assert(!ec->ec_broken); /* not yet anyway... */

		/* Single-member ECs won't generate any deductions */
		if (list_length(ec->ec_members) <= 1)
			continue;

		if (ec->ec_has_const)
			generate_base_implied_equalities_const(root, ec);
		else
			generate_base_implied_equalities_no_const(root, ec);

		/* Recover if we failed to generate required derived clauses */
		if (ec->ec_broken)
			generate_base_implied_equalities_broken(root, ec);
	}

	/*
	 * This is also a handy place to mark base rels (which should all exist by
	 * now) with flags showing whether they have pending eclass joins.
	 */
	for (rti = 1; rti < root->simple_rel_array_size; rti++)
	{
		RelOptInfo *brel = root->simple_rel_array[rti];

		if (brel == NULL)
			continue;

		brel->has_eclass_joins = has_relevant_eclass_joinclause(root, brel);
	}
}

/*
 * generate_base_implied_equalities when EC contains pseudoconstant(s)
 */
static void
generate_base_implied_equalities_const(PlannerInfo *root,
									   EquivalenceClass *ec)
{
	EquivalenceMember *const_em = NULL;
	ListCell   *lc;

	/*
	 * In the trivial case where we just had one "var = const" clause, push
	 * the original clause back into the main planner machinery.  There is
	 * nothing to be gained by doing it differently, and we save the effort to
	 * re-build and re-analyze an equality clause that will be exactly
	 * equivalent to the old one.
	 */
	if (list_length(ec->ec_members) == 2 &&
		list_length(ec->ec_sources) == 1)
	{
		RestrictInfo *restrictinfo = (RestrictInfo *) linitial(ec->ec_sources);

		if (bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
		{
			distribute_restrictinfo_to_rels(root, restrictinfo);
			return;
		}
	}

	/*
	 * Find the constant member to use.  We prefer an actual constant to
	 * pseudo-constants (such as Params), because the constraint exclusion
	 * machinery might be able to exclude relations on the basis of generated
	 * "var = const" equalities, but "var = param" won't work for that.
	 */
	foreach(lc, ec->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);

		if (cur_em->em_is_const)
		{
			const_em = cur_em;
			if (IsA(cur_em->em_expr, Const))
				break;
		}
	}
	Assert(const_em != NULL);

	/* Generate a derived equality against each other member */
	foreach(lc, ec->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
		Oid			eq_op;

		Assert(!cur_em->em_is_child);	/* no children yet */
		if (cur_em == const_em)
			continue;
		eq_op = select_equality_operator(ec,
										 cur_em->em_datatype,
										 const_em->em_datatype);
		if (!OidIsValid(eq_op))
		{
			/* failed... */
			ec->ec_broken = true;
			break;
		}
		process_implied_equality(root, eq_op, ec->ec_collation,
								 cur_em->em_expr, const_em->em_expr,
								 bms_copy(ec->ec_relids),
								 bms_union(cur_em->em_nullable_relids,
										   const_em->em_nullable_relids),
								 ec->ec_below_outer_join,
								 cur_em->em_is_const);
	}
}

/*
 * generate_base_implied_equalities when EC contains no pseudoconstants
 */
static void
generate_base_implied_equalities_no_const(PlannerInfo *root,
										  EquivalenceClass *ec)
{
	EquivalenceMember **prev_ems;
	ListCell   *lc;

	/*
	 * We scan the EC members once and track the last-seen member for each
	 * base relation.  When we see another member of the same base relation,
	 * we generate "prev_mem = cur_mem".  This results in the minimum number
	 * of derived clauses, but it's possible that it will fail when a
	 * different ordering would succeed.  XXX FIXME: use a UNION-FIND
	 * algorithm similar to the way we build merged ECs.  (Use a list-of-lists
	 * for each rel.)
	 */
	prev_ems = (EquivalenceMember **)
		palloc0(root->simple_rel_array_size * sizeof(EquivalenceMember *));

	foreach(lc, ec->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
		int			relid;

		Assert(!cur_em->em_is_child);	/* no children yet */
		if (bms_membership(cur_em->em_relids) != BMS_SINGLETON)
			continue;
		relid = bms_singleton_member(cur_em->em_relids);
		Assert(relid < root->simple_rel_array_size);

		if (prev_ems[relid] != NULL)
		{
			EquivalenceMember *prev_em = prev_ems[relid];
			Oid			eq_op;

			eq_op = select_equality_operator(ec,
											 prev_em->em_datatype,
											 cur_em->em_datatype);
			if (!OidIsValid(eq_op))
			{
				/* failed... */
				ec->ec_broken = true;
				break;
			}
			process_implied_equality(root, eq_op, ec->ec_collation,
									 prev_em->em_expr, cur_em->em_expr,
									 bms_copy(ec->ec_relids),
									 bms_union(prev_em->em_nullable_relids,
											   cur_em->em_nullable_relids),
									 ec->ec_below_outer_join,
									 false);
		}
		prev_ems[relid] = cur_em;
	}

	pfree(prev_ems);

	/*
	 * We also have to make sure that all the Vars used in the member clauses
	 * will be available at any join node we might try to reference them at.
	 * For the moment we force all the Vars to be available at all join nodes
	 * for this eclass.  Perhaps this could be improved by doing some
	 * pre-analysis of which members we prefer to join, but it's no worse than
	 * what happened in the pre-8.3 code.
	 */
	foreach(lc, ec->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);
		List	   *vars = pull_var_clause((Node *) cur_em->em_expr,
										   PVC_RECURSE_AGGREGATES,
										   PVC_INCLUDE_PLACEHOLDERS);

		add_vars_to_targetlist(root, vars, ec->ec_relids, false);
		list_free(vars);
	}
}

/*
 * generate_base_implied_equalities cleanup after failure
 *
 * What we must do here is push any zero- or one-relation source RestrictInfos
 * of the EC back into the main restrictinfo datastructures.  Multi-relation
 * clauses will be regurgitated later by generate_join_implied_equalities().
 * (We do it this way to maintain continuity with the case that ec_broken
 * becomes set only after we've gone up a join level or two.)
 */
static void
generate_base_implied_equalities_broken(PlannerInfo *root,
										EquivalenceClass *ec)
{
	ListCell   *lc;

	foreach(lc, ec->ec_sources)
	{
		RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);

		if (bms_membership(restrictinfo->required_relids) != BMS_MULTIPLE)
			distribute_restrictinfo_to_rels(root, restrictinfo);
	}
}


/*
 * generate_join_implied_equalities
 *	  Generate any join clauses that we can deduce from equivalence classes.
 *
 * At a join node, we must enforce restriction clauses sufficient to ensure
 * that all equivalence-class members computable at that node are equal.
 * Since the set of clauses to enforce can vary depending on which subset
 * relations are the inputs, we have to compute this afresh for each join
 * path pair.  Hence a fresh List of RestrictInfo nodes is built and passed
 * back on each call.
 *
 * The results are sufficient for use in merge, hash, and plain nestloop join
 * methods.  We do not worry here about selecting clauses that are optimal
 * for use in a nestloop-with-inner-indexscan join, however.  indxpath.c makes
 * its own selections of clauses to use, and if the ones we pick here are
 * redundant with those, the extras will be eliminated in createplan.c.
 *
 * Because the same join clauses are likely to be needed multiple times as
 * we consider different join paths, we avoid generating multiple copies:
 * whenever we select a particular pair of EquivalenceMembers to join,
 * we check to see if the pair matches any original clause (in ec_sources)
 * or previously-built clause (in ec_derives).	This saves memory and allows
 * re-use of information cached in RestrictInfos.
 */
List *
generate_join_implied_equalities(PlannerInfo *root,
								 RelOptInfo *joinrel,
								 RelOptInfo *outer_rel,
								 RelOptInfo *inner_rel)
{
	List	   *result = NIL;
	ListCell   *lc;

	foreach(lc, root->eq_classes)
	{
		EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc);
		List	   *sublist = NIL;

		/* ECs containing consts do not need any further enforcement */
		if (ec->ec_has_const)
			continue;

		/* Single-member ECs won't generate any deductions */
		if (list_length(ec->ec_members) <= 1)
			continue;

		/* We can quickly ignore any that don't overlap the join, too */
		if (!bms_overlap(ec->ec_relids, joinrel->relids))
			continue;

		if (!ec->ec_broken)
			sublist = generate_join_implied_equalities_normal(root,
															  ec,
															  joinrel,
															  outer_rel,
															  inner_rel);

		/* Recover if we failed to generate required derived clauses */
		if (ec->ec_broken)
			sublist = generate_join_implied_equalities_broken(root,
															  ec,
															  joinrel,
															  outer_rel,
															  inner_rel);

		result = list_concat(result, sublist);
	}

	return result;
}

/*
 * generate_join_implied_equalities for a still-valid EC
 */
static List *
generate_join_implied_equalities_normal(PlannerInfo *root,
										EquivalenceClass *ec,
										RelOptInfo *joinrel,
										RelOptInfo *outer_rel,
										RelOptInfo *inner_rel)
{
	List	   *result = NIL;
	List	   *new_members = NIL;
	List	   *outer_members = NIL;
	List	   *inner_members = NIL;
	ListCell   *lc1;

	/*
	 * First, scan the EC to identify member values that are computable at the
	 * outer rel, at the inner rel, or at this relation but not in either
	 * input rel.  The outer-rel members should already be enforced equal,
	 * likewise for the inner-rel members.	We'll need to create clauses to
	 * enforce that any newly computable members are all equal to each other
	 * as well as to at least one input member, plus enforce at least one
	 * outer-rel member equal to at least one inner-rel member.
	 */
	foreach(lc1, ec->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc1);

		if (cur_em->em_is_child)
			continue;			/* ignore children here */
		if (!bms_is_subset(cur_em->em_relids, joinrel->relids))
			continue;			/* ignore --- not computable yet */

		if (bms_is_subset(cur_em->em_relids, outer_rel->relids))
			outer_members = lappend(outer_members, cur_em);
		else if (bms_is_subset(cur_em->em_relids, inner_rel->relids))
			inner_members = lappend(inner_members, cur_em);
		else
			new_members = lappend(new_members, cur_em);
	}

	/*
	 * First, select the joinclause if needed.	We can equate any one outer
	 * member to any one inner member, but we have to find a datatype
	 * combination for which an opfamily member operator exists.  If we have
	 * choices, we prefer simple Var members (possibly with RelabelType) since
	 * these are (a) cheapest to compute at runtime and (b) most likely to
	 * have useful statistics. Also, prefer operators that are also
	 * hashjoinable.
	 */
	if (outer_members && inner_members)
	{
		EquivalenceMember *best_outer_em = NULL;
		EquivalenceMember *best_inner_em = NULL;
		Oid			best_eq_op = InvalidOid;
		int			best_score = -1;
		RestrictInfo *rinfo;

		foreach(lc1, outer_members)
		{
			EquivalenceMember *outer_em = (EquivalenceMember *) lfirst(lc1);
			ListCell   *lc2;

			foreach(lc2, inner_members)
			{
				EquivalenceMember *inner_em = (EquivalenceMember *) lfirst(lc2);
				Oid			eq_op;
				int			score;

				eq_op = select_equality_operator(ec,
												 outer_em->em_datatype,
												 inner_em->em_datatype);
				if (!OidIsValid(eq_op))
					continue;
				score = 0;
				if (IsA(outer_em->em_expr, Var) ||
					(IsA(outer_em->em_expr, RelabelType) &&
					 IsA(((RelabelType *) outer_em->em_expr)->arg, Var)))
					score++;
				if (IsA(inner_em->em_expr, Var) ||
					(IsA(inner_em->em_expr, RelabelType) &&
					 IsA(((RelabelType *) inner_em->em_expr)->arg, Var)))
					score++;
				if (op_hashjoinable(eq_op,
									exprType((Node *) outer_em->em_expr)))
					score++;
				if (score > best_score)
				{
					best_outer_em = outer_em;
					best_inner_em = inner_em;
					best_eq_op = eq_op;
					best_score = score;
					if (best_score == 3)
						break;	/* no need to look further */
				}
			}
			if (best_score == 3)
				break;			/* no need to look further */
		}
		if (best_score < 0)
		{
			/* failed... */
			ec->ec_broken = true;
			return NIL;
		}

		/*
		 * Create clause, setting parent_ec to mark it as redundant with other
		 * joinclauses
		 */
		rinfo = create_join_clause(root, ec, best_eq_op,
								   best_outer_em, best_inner_em,
								   ec);

		result = lappend(result, rinfo);
	}

	/*
	 * Now deal with building restrictions for any expressions that involve
	 * Vars from both sides of the join.  We have to equate all of these to
	 * each other as well as to at least one old member (if any).
	 *
	 * XXX as in generate_base_implied_equalities_no_const, we could be a lot
	 * smarter here to avoid unnecessary failures in cross-type situations.
	 * For now, use the same left-to-right method used there.
	 */
	if (new_members)
	{
		List	   *old_members = list_concat(outer_members, inner_members);
		EquivalenceMember *prev_em = NULL;
		RestrictInfo *rinfo;

		/* For now, arbitrarily take the first old_member as the one to use */
		if (old_members)
			new_members = lappend(new_members, linitial(old_members));

		foreach(lc1, new_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc1);

			if (prev_em != NULL)
			{
				Oid			eq_op;

				eq_op = select_equality_operator(ec,
												 prev_em->em_datatype,
												 cur_em->em_datatype);
				if (!OidIsValid(eq_op))
				{
					/* failed... */
					ec->ec_broken = true;
					return NIL;
				}
				/* do NOT set parent_ec, this qual is not redundant! */
				rinfo = create_join_clause(root, ec, eq_op,
										   prev_em, cur_em,
										   NULL);

				result = lappend(result, rinfo);
			}
			prev_em = cur_em;
		}
	}

	return result;
}

/*
 * generate_join_implied_equalities cleanup after failure
 *
 * Return any original RestrictInfos that are enforceable at this join.
 */
static List *
generate_join_implied_equalities_broken(PlannerInfo *root,
										EquivalenceClass *ec,
										RelOptInfo *joinrel,
										RelOptInfo *outer_rel,
										RelOptInfo *inner_rel)
{
	List	   *result = NIL;
	ListCell   *lc;

	foreach(lc, ec->ec_sources)
	{
		RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(lc);

		if (bms_is_subset(restrictinfo->required_relids, joinrel->relids) &&
		  !bms_is_subset(restrictinfo->required_relids, outer_rel->relids) &&
			!bms_is_subset(restrictinfo->required_relids, inner_rel->relids))
			result = lappend(result, restrictinfo);
	}

	return result;
}


/*
 * select_equality_operator
 *	  Select a suitable equality operator for comparing two EC members
 *
 * Returns InvalidOid if no operator can be found for this datatype combination
 */
static Oid
select_equality_operator(EquivalenceClass *ec, Oid lefttype, Oid righttype)
{
	ListCell   *lc;

	foreach(lc, ec->ec_opfamilies)
	{
		Oid			opfamily = lfirst_oid(lc);
		Oid			opno;

		opno = get_opfamily_member(opfamily, lefttype, righttype,
								   BTEqualStrategyNumber);
		if (OidIsValid(opno))
			return opno;
	}
	return InvalidOid;
}


/*
 * create_join_clause
 *	  Find or make a RestrictInfo comparing the two given EC members
 *	  with the given operator.
 *
 * parent_ec is either equal to ec (if the clause is a potentially-redundant
 * join clause) or NULL (if not).  We have to treat this as part of the
 * match requirements --- it's possible that a clause comparing the same two
 * EMs is a join clause in one join path and a restriction clause in another.
 */
static RestrictInfo *
create_join_clause(PlannerInfo *root,
				   EquivalenceClass *ec, Oid opno,
				   EquivalenceMember *leftem,
				   EquivalenceMember *rightem,
				   EquivalenceClass *parent_ec)
{
	RestrictInfo *rinfo;
	ListCell   *lc;
	MemoryContext oldcontext;

	/*
	 * Search to see if we already built a RestrictInfo for this pair of
	 * EquivalenceMembers.	We can use either original source clauses or
	 * previously-derived clauses.	The check on opno is probably redundant,
	 * but be safe ...
	 */
	foreach(lc, ec->ec_sources)
	{
		rinfo = (RestrictInfo *) lfirst(lc);
		if (rinfo->left_em == leftem &&
			rinfo->right_em == rightem &&
			rinfo->parent_ec == parent_ec &&
			opno == ((OpExpr *) rinfo->clause)->opno)
			return rinfo;
	}

	foreach(lc, ec->ec_derives)
	{
		rinfo = (RestrictInfo *) lfirst(lc);
		if (rinfo->left_em == leftem &&
			rinfo->right_em == rightem &&
			rinfo->parent_ec == parent_ec &&
			opno == ((OpExpr *) rinfo->clause)->opno)
			return rinfo;
	}

	/*
	 * Not there, so build it, in planner context so we can re-use it. (Not
	 * important in normal planning, but definitely so in GEQO.)
	 */
	oldcontext = MemoryContextSwitchTo(root->planner_cxt);

	rinfo = build_implied_join_equality(opno,
										ec->ec_collation,
										leftem->em_expr,
										rightem->em_expr,
										bms_union(leftem->em_relids,
												  rightem->em_relids),
										bms_union(leftem->em_nullable_relids,
											   rightem->em_nullable_relids));

	/* Mark the clause as redundant, or not */
	rinfo->parent_ec = parent_ec;

	/*
	 * We know the correct values for left_ec/right_ec, ie this particular EC,
	 * so we can just set them directly instead of forcing another lookup.
	 */
	rinfo->left_ec = ec;
	rinfo->right_ec = ec;

	/* Mark it as usable with these EMs */
	rinfo->left_em = leftem;
	rinfo->right_em = rightem;
	/* and save it for possible re-use */
	ec->ec_derives = lappend(ec->ec_derives, rinfo);

	MemoryContextSwitchTo(oldcontext);

	return rinfo;
}


/*
 * reconsider_outer_join_clauses
 *	  Re-examine any outer-join clauses that were set aside by
 *	  distribute_qual_to_rels(), and see if we can derive any
 *	  EquivalenceClasses from them.  Then, if they were not made
 *	  redundant, push them out into the regular join-clause lists.
 *
 * When we have mergejoinable clauses A = B that are outer-join clauses,
 * we can't blindly combine them with other clauses A = C to deduce B = C,
 * since in fact the "equality" A = B won't necessarily hold above the
 * outer join (one of the variables might be NULL instead).  Nonetheless
 * there are cases where we can add qual clauses using transitivity.
 *
 * One case that we look for here is an outer-join clause OUTERVAR = INNERVAR
 * for which there is also an equivalence clause OUTERVAR = CONSTANT.
 * It is safe and useful to push a clause INNERVAR = CONSTANT into the
 * evaluation of the inner (nullable) relation, because any inner rows not
 * meeting this condition will not contribute to the outer-join result anyway.
 * (Any outer rows they could join to will be eliminated by the pushed-down
 * equivalence clause.)
 *
 * Note that the above rule does not work for full outer joins; nor is it
 * very interesting to consider cases where the generated equivalence clause
 * would involve relations outside the outer join, since such clauses couldn't
 * be pushed into the inner side's scan anyway.  So the restriction to
 * outervar = pseudoconstant is not really giving up anything.
 *
 * For full-join cases, we can only do something useful if it's a FULL JOIN
 * USING and a merged column has an equivalence MERGEDVAR = CONSTANT.
 * By the time it gets here, the merged column will look like
 *		COALESCE(LEFTVAR, RIGHTVAR)
 * and we will have a full-join clause LEFTVAR = RIGHTVAR that we can match
 * the COALESCE expression to. In this situation we can push LEFTVAR = CONSTANT
 * and RIGHTVAR = CONSTANT into the input relations, since any rows not
 * meeting these conditions cannot contribute to the join result.
 *
 * Again, there isn't any traction to be gained by trying to deal with
 * clauses comparing a mergedvar to a non-pseudoconstant.  So we can make
 * use of the EquivalenceClasses to search for matching variables that were
 * equivalenced to constants.  The interesting outer-join clauses were
 * accumulated for us by distribute_qual_to_rels.
 *
 * When we find one of these cases, we implement the changes we want by
 * generating a new equivalence clause INNERVAR = CONSTANT (or LEFTVAR, etc)
 * and pushing it into the EquivalenceClass structures.  This is because we
 * may already know that INNERVAR is equivalenced to some other var(s), and
 * we'd like the constant to propagate to them too.  Note that it would be
 * unsafe to merge any existing EC for INNERVAR with the OUTERVAR's EC ---
 * that could result in propagating constant restrictions from
 * INNERVAR to OUTERVAR, which would be very wrong.
 *
 * It's possible that the INNERVAR is also an OUTERVAR for some other
 * outer-join clause, in which case the process can be repeated.  So we repeat
 * looping over the lists of clauses until no further deductions can be made.
 * Whenever we do make a deduction, we remove the generating clause from the
 * lists, since we don't want to make the same deduction twice.
 *
 * If we don't find any match for a set-aside outer join clause, we must
 * throw it back into the regular joinclause processing by passing it to
 * distribute_restrictinfo_to_rels().  If we do generate a derived clause,
 * however, the outer-join clause is redundant.  We still throw it back,
 * because otherwise the join will be seen as a clauseless join and avoided
 * during join order searching; but we mark it as redundant to keep from
 * messing up the joinrel's size estimate.  (This behavior means that the
 * API for this routine is uselessly complex: we could have just put all
 * the clauses into the regular processing initially.  We keep it because
 * someday we might want to do something else, such as inserting "dummy"
 * joinclauses instead of real ones.)
 *
 * Outer join clauses that are marked outerjoin_delayed are special: this
 * condition means that one or both VARs might go to null due to a lower
 * outer join.	We can still push a constant through the clause, but only
 * if its operator is strict; and we *have to* throw the clause back into
 * regular joinclause processing.  By keeping the strict join clause,
 * we ensure that any null-extended rows that are mistakenly generated due
 * to suppressing rows not matching the constant will be rejected at the
 * upper outer join.  (This doesn't work for full-join clauses.)
 */
void
reconsider_outer_join_clauses(PlannerInfo *root)
{
	bool		found;
	ListCell   *cell;
	ListCell   *prev;
	ListCell   *next;

	/* Outer loop repeats until we find no more deductions */
	do
	{
		found = false;

		/* Process the LEFT JOIN clauses */
		prev = NULL;
		for (cell = list_head(root->left_join_clauses); cell; cell = next)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

			next = lnext(cell);
			if (reconsider_outer_join_clause(root, rinfo, true))
			{
				found = true;
				/* remove it from the list */
				root->left_join_clauses =
					list_delete_cell(root->left_join_clauses, cell, prev);
				/* we throw it back anyway (see notes above) */
				/* but the thrown-back clause has no extra selectivity */
				rinfo->norm_selec = 2.0;
				rinfo->outer_selec = 1.0;
				distribute_restrictinfo_to_rels(root, rinfo);
			}
			else
				prev = cell;
		}

		/* Process the RIGHT JOIN clauses */
		prev = NULL;
		for (cell = list_head(root->right_join_clauses); cell; cell = next)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

			next = lnext(cell);
			if (reconsider_outer_join_clause(root, rinfo, false))
			{
				found = true;
				/* remove it from the list */
				root->right_join_clauses =
					list_delete_cell(root->right_join_clauses, cell, prev);
				/* we throw it back anyway (see notes above) */
				/* but the thrown-back clause has no extra selectivity */
				rinfo->norm_selec = 2.0;
				rinfo->outer_selec = 1.0;
				distribute_restrictinfo_to_rels(root, rinfo);
			}
			else
				prev = cell;
		}

		/* Process the FULL JOIN clauses */
		prev = NULL;
		for (cell = list_head(root->full_join_clauses); cell; cell = next)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

			next = lnext(cell);
			if (reconsider_full_join_clause(root, rinfo))
			{
				found = true;
				/* remove it from the list */
				root->full_join_clauses =
					list_delete_cell(root->full_join_clauses, cell, prev);
				/* we throw it back anyway (see notes above) */
				/* but the thrown-back clause has no extra selectivity */
				rinfo->norm_selec = 2.0;
				rinfo->outer_selec = 1.0;
				distribute_restrictinfo_to_rels(root, rinfo);
			}
			else
				prev = cell;
		}
	} while (found);

	/* Now, any remaining clauses have to be thrown back */
	foreach(cell, root->left_join_clauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

		distribute_restrictinfo_to_rels(root, rinfo);
	}
	foreach(cell, root->right_join_clauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

		distribute_restrictinfo_to_rels(root, rinfo);
	}
	foreach(cell, root->full_join_clauses)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);

		distribute_restrictinfo_to_rels(root, rinfo);
	}
}

/*
 * reconsider_outer_join_clauses for a single LEFT/RIGHT JOIN clause
 *
 * Returns TRUE if we were able to propagate a constant through the clause.
 */
static bool
reconsider_outer_join_clause(PlannerInfo *root, RestrictInfo *rinfo,
							 bool outer_on_left)
{
	Expr	   *outervar,
			   *innervar;
	Oid			opno,
				collation,
				left_type,
				right_type,
				inner_datatype;
	Relids		inner_relids,
				inner_nullable_relids;
	ListCell   *lc1;

	Assert(is_opclause(rinfo->clause));
	opno = ((OpExpr *) rinfo->clause)->opno;
	collation = ((OpExpr *) rinfo->clause)->inputcollid;

	/* If clause is outerjoin_delayed, operator must be strict */
	if (rinfo->outerjoin_delayed && !op_strict(opno))
		return false;

	/* Extract needed info from the clause */
	op_input_types(opno, &left_type, &right_type);
	if (outer_on_left)
	{
		outervar = (Expr *) get_leftop(rinfo->clause);
		innervar = (Expr *) get_rightop(rinfo->clause);
		inner_datatype = right_type;
		inner_relids = rinfo->right_relids;
	}
	else
	{
		outervar = (Expr *) get_rightop(rinfo->clause);
		innervar = (Expr *) get_leftop(rinfo->clause);
		inner_datatype = left_type;
		inner_relids = rinfo->left_relids;
	}
	inner_nullable_relids = bms_intersect(inner_relids,
										  rinfo->nullable_relids);

	/* Scan EquivalenceClasses for a match to outervar */
	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		bool		match;
		ListCell   *lc2;

		/* Ignore EC unless it contains pseudoconstants */
		if (!cur_ec->ec_has_const)
			continue;
		/* Never match to a volatile EC */
		if (cur_ec->ec_has_volatile)
			continue;
		/* It has to match the outer-join clause as to semantics, too */
		if (collation != cur_ec->ec_collation)
			continue;
		if (!equal(rinfo->mergeopfamilies, cur_ec->ec_opfamilies))
			continue;
		/* Does it contain a match to outervar? */
		match = false;
		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			Assert(!cur_em->em_is_child);		/* no children yet */
			if (equal(outervar, cur_em->em_expr))
			{
				match = true;
				break;
			}
		}
		if (!match)
			continue;			/* no match, so ignore this EC */

		/*
		 * Yes it does!  Try to generate a clause INNERVAR = CONSTANT for each
		 * CONSTANT in the EC.	Note that we must succeed with at least one
		 * constant before we can decide to throw away the outer-join clause.
		 */
		match = false;
		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
			Oid			eq_op;
			RestrictInfo *newrinfo;

			if (!cur_em->em_is_const)
				continue;		/* ignore non-const members */
			eq_op = select_equality_operator(cur_ec,
											 inner_datatype,
											 cur_em->em_datatype);
			if (!OidIsValid(eq_op))
				continue;		/* can't generate equality */
			newrinfo = build_implied_join_equality(eq_op,
												   cur_ec->ec_collation,
												   innervar,
												   cur_em->em_expr,
												   bms_copy(inner_relids),
											bms_copy(inner_nullable_relids));
			if (process_equivalence(root, newrinfo, true))
				match = true;
		}

		/*
		 * If we were able to equate INNERVAR to any constant, report success.
		 * Otherwise, fall out of the search loop, since we know the OUTERVAR
		 * appears in at most one EC.
		 */
		if (match)
			return true;
		else
			break;
	}

	return false;				/* failed to make any deduction */
}

/*
 * reconsider_outer_join_clauses for a single FULL JOIN clause
 *
 * Returns TRUE if we were able to propagate a constant through the clause.
 */
static bool
reconsider_full_join_clause(PlannerInfo *root, RestrictInfo *rinfo)
{
	Expr	   *leftvar;
	Expr	   *rightvar;
	Oid			opno,
				collation,
				left_type,
				right_type;
	Relids		left_relids,
				right_relids,
				left_nullable_relids,
				right_nullable_relids;
	ListCell   *lc1;

	/* Can't use an outerjoin_delayed clause here */
	if (rinfo->outerjoin_delayed)
		return false;

	/* Extract needed info from the clause */
	Assert(is_opclause(rinfo->clause));
	opno = ((OpExpr *) rinfo->clause)->opno;
	collation = ((OpExpr *) rinfo->clause)->inputcollid;
	op_input_types(opno, &left_type, &right_type);
	leftvar = (Expr *) get_leftop(rinfo->clause);
	rightvar = (Expr *) get_rightop(rinfo->clause);
	left_relids = rinfo->left_relids;
	right_relids = rinfo->right_relids;
	left_nullable_relids = bms_intersect(left_relids,
										 rinfo->nullable_relids);
	right_nullable_relids = bms_intersect(right_relids,
										  rinfo->nullable_relids);

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		EquivalenceMember *coal_em = NULL;
		bool		match;
		bool		matchleft;
		bool		matchright;
		ListCell   *lc2;

		/* Ignore EC unless it contains pseudoconstants */
		if (!cur_ec->ec_has_const)
			continue;
		/* Never match to a volatile EC */
		if (cur_ec->ec_has_volatile)
			continue;
		/* It has to match the outer-join clause as to semantics, too */
		if (collation != cur_ec->ec_collation)
			continue;
		if (!equal(rinfo->mergeopfamilies, cur_ec->ec_opfamilies))
			continue;

		/*
		 * Does it contain a COALESCE(leftvar, rightvar) construct?
		 *
		 * We can assume the COALESCE() inputs are in the same order as the
		 * join clause, since both were automatically generated in the cases
		 * we care about.
		 *
		 * XXX currently this may fail to match in cross-type cases because
		 * the COALESCE will contain typecast operations while the join clause
		 * may not (if there is a cross-type mergejoin operator available for
		 * the two column types). Is it OK to strip implicit coercions from
		 * the COALESCE arguments?
		 */
		match = false;
		foreach(lc2, cur_ec->ec_members)
		{
			coal_em = (EquivalenceMember *) lfirst(lc2);
			Assert(!coal_em->em_is_child);		/* no children yet */
			if (IsA(coal_em->em_expr, CoalesceExpr))
			{
				CoalesceExpr *cexpr = (CoalesceExpr *) coal_em->em_expr;
				Node	   *cfirst;
				Node	   *csecond;

				if (list_length(cexpr->args) != 2)
					continue;
				cfirst = (Node *) linitial(cexpr->args);
				csecond = (Node *) lsecond(cexpr->args);

				if (equal(leftvar, cfirst) && equal(rightvar, csecond))
				{
					match = true;
					break;
				}
			}
		}
		if (!match)
			continue;			/* no match, so ignore this EC */

		/*
		 * Yes it does!  Try to generate clauses LEFTVAR = CONSTANT and
		 * RIGHTVAR = CONSTANT for each CONSTANT in the EC.  Note that we must
		 * succeed with at least one constant for each var before we can
		 * decide to throw away the outer-join clause.
		 */
		matchleft = matchright = false;
		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
			Oid			eq_op;
			RestrictInfo *newrinfo;

			if (!cur_em->em_is_const)
				continue;		/* ignore non-const members */
			eq_op = select_equality_operator(cur_ec,
											 left_type,
											 cur_em->em_datatype);
			if (OidIsValid(eq_op))
			{
				newrinfo = build_implied_join_equality(eq_op,
													   cur_ec->ec_collation,
													   leftvar,
													   cur_em->em_expr,
													   bms_copy(left_relids),
											 bms_copy(left_nullable_relids));
				if (process_equivalence(root, newrinfo, true))
					matchleft = true;
			}
			eq_op = select_equality_operator(cur_ec,
											 right_type,
											 cur_em->em_datatype);
			if (OidIsValid(eq_op))
			{
				newrinfo = build_implied_join_equality(eq_op,
													   cur_ec->ec_collation,
													   rightvar,
													   cur_em->em_expr,
													   bms_copy(right_relids),
											bms_copy(right_nullable_relids));
				if (process_equivalence(root, newrinfo, true))
					matchright = true;
			}
		}

		/*
		 * If we were able to equate both vars to constants, we're done, and
		 * we can throw away the full-join clause as redundant.  Moreover, we
		 * can remove the COALESCE entry from the EC, since the added
		 * restrictions ensure it will always have the expected value. (We
		 * don't bother trying to update ec_relids or ec_sources.)
		 */
		if (matchleft && matchright)
		{
			cur_ec->ec_members = list_delete_ptr(cur_ec->ec_members, coal_em);
			return true;
		}

		/*
		 * Otherwise, fall out of the search loop, since we know the COALESCE
		 * appears in at most one EC (XXX might stop being true if we allow
		 * stripping of coercions above?)
		 */
		break;
	}

	return false;				/* failed to make any deduction */
}


/*
 * exprs_known_equal
 *	  Detect whether two expressions are known equal due to equivalence
 *	  relationships.
 *
 * Actually, this only shows that the expressions are equal according
 * to some opfamily's notion of equality --- but we only use it for
 * selectivity estimation, so a fuzzy idea of equality is OK.
 *
 * Note: does not bother to check for "equal(item1, item2)"; caller must
 * check that case if it's possible to pass identical items.
 */
bool
exprs_known_equal(PlannerInfo *root, Node *item1, Node *item2)
{
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
		bool		item1member = false;
		bool		item2member = false;
		ListCell   *lc2;

		/* Never match to a volatile EC */
		if (ec->ec_has_volatile)
			continue;

		foreach(lc2, ec->ec_members)
		{
			EquivalenceMember *em = (EquivalenceMember *) lfirst(lc2);

			if (em->em_is_child)
				continue;		/* ignore children here */
			if (equal(item1, em->em_expr))
				item1member = true;
			else if (equal(item2, em->em_expr))
				item2member = true;
			/* Exit as soon as equality is proven */
			if (item1member && item2member)
				return true;
		}
	}
	return false;
}


/*
 * add_child_rel_equivalences
 *	  Search for EC members that reference (only) the parent_rel, and
 *	  add transformed members referencing the child_rel.
 *
 * Note that this function won't be called at all unless we have at least some
 * reason to believe that the EC members it generates will be useful.
 *
 * parent_rel and child_rel could be derived from appinfo, but since the
 * caller has already computed them, we might as well just pass them in.
 */
void
add_child_rel_equivalences(PlannerInfo *root,
						   AppendRelInfo *appinfo,
						   RelOptInfo *parent_rel,
						   RelOptInfo *child_rel)
{
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		ListCell   *lc2;

		/*
		 * If this EC contains a volatile expression, then generating child
		 * EMs would be downright dangerous, so skip it.  We rely on a
		 * volatile EC having only one EM.
		 */
		if (cur_ec->ec_has_volatile)
			continue;

		/* No point in searching if parent rel not mentioned in eclass */
		if (!bms_is_subset(parent_rel->relids, cur_ec->ec_relids))
			continue;

		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			if (cur_em->em_is_child)
				continue;		/* ignore children here */

			/* Does it reference (only) parent_rel? */
			if (bms_equal(cur_em->em_relids, parent_rel->relids))
			{
				/* Yes, generate transformed child version */
				Expr	   *child_expr;
				Relids		new_nullable_relids;

				child_expr = (Expr *)
					adjust_appendrel_attrs((Node *) cur_em->em_expr,
										   appinfo);

				/*
				 * Must translate nullable_relids.  Note this code assumes
				 * parent and child relids are singletons.
				 */
				new_nullable_relids = cur_em->em_nullable_relids;
				if (bms_overlap(new_nullable_relids, parent_rel->relids))
				{
					new_nullable_relids = bms_difference(new_nullable_relids,
														 parent_rel->relids);
					new_nullable_relids = bms_add_members(new_nullable_relids,
														  child_rel->relids);
				}

				(void) add_eq_member(cur_ec, child_expr,
									 child_rel->relids, new_nullable_relids,
									 true, cur_em->em_datatype);
			}
		}
	}
}


/*
 * mutate_eclass_expressions
 *	  Apply an expression tree mutator to all expressions stored in
 *	  equivalence classes (but ignore child exprs unless include_child_exprs).
 *
 * This is a bit of a hack ... it's currently needed only by planagg.c,
 * which needs to do a global search-and-replace of MIN/MAX Aggrefs
 * after eclasses are already set up.  Without changing the eclasses too,
 * subsequent matching of ORDER BY and DISTINCT clauses would fail.
 *
 * Note that we assume the mutation won't affect relation membership or any
 * other properties we keep track of (which is a bit bogus, but by the time
 * planagg.c runs, it no longer matters).  Also we must be called in the
 * main planner memory context.
 */
void
mutate_eclass_expressions(PlannerInfo *root,
						  Node *(*mutator) (),
						  void *context,
						  bool include_child_exprs)
{
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		ListCell   *lc2;

		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			if (cur_em->em_is_child && !include_child_exprs)
				continue;		/* ignore children unless requested */

			cur_em->em_expr = (Expr *)
				mutator((Node *) cur_em->em_expr, context);
		}
	}
}


/*
 * find_eclass_clauses_for_index_join
 *	  Create joinclauses usable for a nestloop-with-inner-indexscan
 *	  scanning the given inner rel with the specified set of outer rels.
 */
List *
find_eclass_clauses_for_index_join(PlannerInfo *root, RelOptInfo *rel,
								   Relids outer_relids)
{
	List	   *result = NIL;
	bool		is_child_rel = (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *cur_ec = (EquivalenceClass *) lfirst(lc1);
		ListCell   *lc2;

		/*
		 * Won't generate joinclauses if const or single-member (the latter
		 * test covers the volatile case too)
		 */
		if (cur_ec->ec_has_const || list_length(cur_ec->ec_members) <= 1)
			continue;

		/*
		 * No point in searching if rel not mentioned in eclass (but we can't
		 * tell that for a child rel).
		 */
		if (!is_child_rel &&
			!bms_is_subset(rel->relids, cur_ec->ec_relids))
			continue;
		/* ... nor if no overlap with outer_relids */
		if (!bms_overlap(outer_relids, cur_ec->ec_relids))
			continue;

		/*
		 * Scan members, looking for indexable columns.  Note
		 * that child EC members are considered, but only when they belong to
		 * the target relation.  (Unlike regular members, the same expression
		 * could be a child member of more than one EC.  Therefore, it's
		 * potentially order-dependent which EC a child relation's index
		 * column gets matched to.  This is annoying but it only happens in
		 * corner cases, so for now we live with just reporting the first
		 * match.  See also get_eclass_for_sort_expr.)
		 */
		foreach(lc2, cur_ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);
			EquivalenceMember *best_outer_em = NULL;
			Oid			best_eq_op = InvalidOid;
			ListCell   *lc3;

			if (!bms_equal(cur_em->em_relids, rel->relids) ||
				!eclass_matches_any_index(cur_ec, cur_em, rel))
				continue;

			/*
			 * Found one, so try to generate a join clause.  This is like
			 * generate_join_implied_equalities_normal, except simpler since
			 * our only preference item is to pick a Var on the outer side. We
			 * only need one join clause per index col.
			 */
			foreach(lc3, cur_ec->ec_members)
			{
				EquivalenceMember *outer_em = (EquivalenceMember *) lfirst(lc3);
				Oid			eq_op;

				if (outer_em->em_is_child)
					continue;		/* ignore children here */
				if (!bms_is_subset(outer_em->em_relids, outer_relids))
					continue;
				eq_op = select_equality_operator(cur_ec,
												 cur_em->em_datatype,
												 outer_em->em_datatype);
				if (!OidIsValid(eq_op))
					continue;
				best_outer_em = outer_em;
				best_eq_op = eq_op;
				if (IsA(outer_em->em_expr, Var) ||
					(IsA(outer_em->em_expr, RelabelType) &&
					 IsA(((RelabelType *) outer_em->em_expr)->arg, Var)))
					break;		/* no need to look further */
			}

			if (best_outer_em)
			{
				/* Found a suitable joinclause */
				RestrictInfo *rinfo;

				/* set parent_ec to mark as redundant with other joinclauses */
				rinfo = create_join_clause(root, cur_ec, best_eq_op,
										   cur_em, best_outer_em,
										   cur_ec);

				result = lappend(result, rinfo);

				/*
				 * Note: we keep scanning here because we want to provide a
				 * clause for every possible indexcol.
				 */
			}
		}
	}

	return result;
}


/*
 * have_relevant_eclass_joinclause
 *		Detect whether there is an EquivalenceClass that could produce
 *		a joinclause between the two given relations.
 *
 * This is essentially a very cut-down version of
 * generate_join_implied_equalities().	Note it's OK to occasionally say "yes"
 * incorrectly.  Hence we don't bother with details like whether the lack of a
 * cross-type operator might prevent the clause from actually being generated.
 */
bool
have_relevant_eclass_joinclause(PlannerInfo *root,
								RelOptInfo *rel1, RelOptInfo *rel2)
{
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
		bool		has_rel1;
		bool		has_rel2;
		ListCell   *lc2;

		/*
		 * Won't generate joinclauses if single-member (this test covers the
		 * volatile case too)
		 */
		if (list_length(ec->ec_members) <= 1)
			continue;

		/*
		 * Note we don't test ec_broken; if we did, we'd need a separate code
		 * path to look through ec_sources.  Checking the members anyway is OK
		 * as a possibly-overoptimistic heuristic.
		 *
		 * We don't test ec_has_const either, even though a const eclass won't
		 * generate real join clauses.	This is because if we had "WHERE a.x =
		 * b.y and a.x = 42", it is worth considering a join between a and b,
		 * since the join result is likely to be small even though it'll end
		 * up being an unqualified nestloop.
		 */

		/* Needn't scan if it couldn't contain members from each rel */
		if (!bms_overlap(rel1->relids, ec->ec_relids) ||
			!bms_overlap(rel2->relids, ec->ec_relids))
			continue;

		/* Scan the EC to see if it has member(s) in each rel */
		has_rel1 = has_rel2 = false;
		foreach(lc2, ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			if (cur_em->em_is_const || cur_em->em_is_child)
				continue;		/* ignore consts and children here */
			if (bms_is_subset(cur_em->em_relids, rel1->relids))
			{
				has_rel1 = true;
				if (has_rel2)
					break;
			}
			if (bms_is_subset(cur_em->em_relids, rel2->relids))
			{
				has_rel2 = true;
				if (has_rel1)
					break;
			}
		}

		if (has_rel1 && has_rel2)
			return true;
	}

	return false;
}


/*
 * has_relevant_eclass_joinclause
 *		Detect whether there is an EquivalenceClass that could produce
 *		a joinclause between the given relation and anything else.
 *
 * This is the same as have_relevant_eclass_joinclause with the other rel
 * implicitly defined as "everything else in the query".
 */
bool
has_relevant_eclass_joinclause(PlannerInfo *root, RelOptInfo *rel1)
{
	ListCell   *lc1;

	foreach(lc1, root->eq_classes)
	{
		EquivalenceClass *ec = (EquivalenceClass *) lfirst(lc1);
		bool		has_rel1;
		bool		has_rel2;
		ListCell   *lc2;

		/*
		 * Won't generate joinclauses if single-member (this test covers the
		 * volatile case too)
		 */
		if (list_length(ec->ec_members) <= 1)
			continue;

		/*
		 * Note we don't test ec_broken; if we did, we'd need a separate code
		 * path to look through ec_sources.  Checking the members anyway is OK
		 * as a possibly-overoptimistic heuristic.
		 *
		 * We don't test ec_has_const either, even though a const eclass won't
		 * generate real join clauses.	This is because if we had "WHERE a.x =
		 * b.y and a.x = 42", it is worth considering a join between a and b,
		 * since the join result is likely to be small even though it'll end
		 * up being an unqualified nestloop.
		 */

		/* Needn't scan if it couldn't contain members from each rel */
		if (!bms_overlap(rel1->relids, ec->ec_relids) ||
			bms_is_subset(ec->ec_relids, rel1->relids))
			continue;

		/* Scan the EC to see if it has member(s) in each rel */
		has_rel1 = has_rel2 = false;
		foreach(lc2, ec->ec_members)
		{
			EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc2);

			if (cur_em->em_is_const || cur_em->em_is_child)
				continue;		/* ignore consts and children here */
			if (bms_is_subset(cur_em->em_relids, rel1->relids))
			{
				has_rel1 = true;
				if (has_rel2)
					break;
			}
			if (!bms_overlap(cur_em->em_relids, rel1->relids))
			{
				has_rel2 = true;
				if (has_rel1)
					break;
			}
		}

		if (has_rel1 && has_rel2)
			return true;
	}

	return false;
}


/*
 * eclass_useful_for_merging
 *	  Detect whether the EC could produce any mergejoinable join clauses
 *	  against the specified relation.
 *
 * This is just a heuristic test and doesn't have to be exact; it's better
 * to say "yes" incorrectly than "no".	Hence we don't bother with details
 * like whether the lack of a cross-type operator might prevent the clause
 * from actually being generated.
 */
bool
eclass_useful_for_merging(EquivalenceClass *eclass,
						  RelOptInfo *rel)
{
	ListCell   *lc;

	Assert(!eclass->ec_merged);

	/*
	 * Won't generate joinclauses if const or single-member (the latter test
	 * covers the volatile case too)
	 */
	if (eclass->ec_has_const || list_length(eclass->ec_members) <= 1)
		return false;

	/*
	 * Note we don't test ec_broken; if we did, we'd need a separate code path
	 * to look through ec_sources.	Checking the members anyway is OK as a
	 * possibly-overoptimistic heuristic.
	 */

	/* If rel already includes all members of eclass, no point in searching */
	if (bms_is_subset(eclass->ec_relids, rel->relids))
		return false;

	/* To join, we need a member not in the given rel */
	foreach(lc, eclass->ec_members)
	{
		EquivalenceMember *cur_em = (EquivalenceMember *) lfirst(lc);

		if (cur_em->em_is_child)
			continue;			/* ignore children here */

		if (!bms_overlap(cur_em->em_relids, rel->relids))
			return true;
	}

	return false;
}