~ubuntu-branches/ubuntu/precise/kde-workspace/precise-security

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/********************************************************************
 KWin - the KDE window manager
 This file is part of the KDE project.

Copyright (C) 2010 by Fredrik Höglund <fredrik@kde.org>
Copyright (C) 2010 Martin Gräßlin <kde@martin-graesslin.com>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*********************************************************************/

#include "lanczosfilter.h"
#include "effects.h"

#include <kwinglutils.h>
#include <kwinglplatform.h>

#include <kwineffects.h>
#include <KDE/KGlobalSettings>

#include <qmath.h>
#include <cmath>

namespace KWin
{

LanczosFilter::LanczosFilter(QObject* parent)
    : QObject(parent)
    , m_offscreenTex(0)
    , m_offscreenTarget(0)
    , m_shader(0)
    , m_inited(false)
{
}

LanczosFilter::~LanczosFilter()
{
    delete m_offscreenTarget;
    delete m_offscreenTex;
}

void LanczosFilter::init()
{
    if (m_inited)
        return;
    m_inited = true;
    const bool force = (qstrcmp(qgetenv("KWIN_FORCE_LANCZOS"), "1") == 0);
    if (force) {
        kWarning(1212) << "Lanczos Filter forced on by environment variable";
    }

    KSharedConfigPtr config = KSharedConfig::openConfig("kwinrc");

    if (!force && config->group("Compositing").readEntry("GLTextureFilter", 2) != 2)
        return; // disabled by config

    // The lanczos filter is reported to be broken with the Intel driver and Mesa 7.10
    GLPlatform *gl = GLPlatform::instance();
    if (!force && gl->driver() == Driver_Intel && gl->mesaVersion() >= kVersionNumber(7, 10))
        return;
    // With fglrx the ARB Shader crashes KWin (see Bug #270818 and #286795) and GLSL Shaders are not functional
    if (!force && gl->driver() == Driver_Catalyst) {
        return;
    }

    m_shader = new LanczosShader(this);
    if (!m_shader->init()) {
        delete m_shader;
        m_shader = 0;
    }
}


void LanczosFilter::updateOffscreenSurfaces()
{
    int w = displayWidth();
    int h = displayHeight();
    if (!GLTexture::NPOTTextureSupported()) {
        w = nearestPowerOfTwo(w);
        h = nearestPowerOfTwo(h);
    }
    if (!m_offscreenTex || m_offscreenTex->width() != w || m_offscreenTex->height() != h) {
        if (m_offscreenTex) {
            delete m_offscreenTex;
            delete m_offscreenTarget;
        }
        m_offscreenTex = new GLTexture(w, h);
        m_offscreenTex->setFilter(GL_LINEAR);
        m_offscreenTex->setWrapMode(GL_CLAMP_TO_EDGE);
        m_offscreenTarget = new GLRenderTarget(*m_offscreenTex);
    }
}

static float sinc(float x)
{
    return std::sin(x * M_PI) / (x * M_PI);
}

static float lanczos(float x, float a)
{
    if (qFuzzyCompare(x + 1.0, 1.0))
        return 1.0;

    if (qAbs(x) >= a)
        return 0.0;

    return sinc(x) * sinc(x / a);
}

void LanczosShader::createKernel(float delta, int *size)
{
    const float a = 2.0;

    // The two outermost samples always fall at points where the lanczos
    // function returns 0, so we'll skip them.
    const int sampleCount = qBound(3, qCeil(delta * a) * 2 + 1 - 2, 29);
    const int center = sampleCount / 2;
    const int kernelSize = center + 1;
    const float factor = 1.0 / delta;

    QVector<float> values(kernelSize);
    float sum = 0;

    for (int i = 0; i < kernelSize; i++) {
        const float val = lanczos(i * factor, a);
        sum += i > 0 ? val * 2 : val;
        values[i] = val;
    }

    memset(m_kernel, 0, 16 * sizeof(QVector4D));

    // Normalize the kernel
    for (int i = 0; i < kernelSize; i++) {
        const float val = values[i] / sum;
        m_kernel[i] = QVector4D(val, val, val, val);
    }

    *size = kernelSize;
}

void LanczosShader::createOffsets(int count, float width, Qt::Orientation direction)
{
    memset(m_offsets, 0, 16 * sizeof(QVector2D));
    for (int i = 0; i < count; i++) {
        m_offsets[i] = (direction == Qt::Horizontal) ?
                       QVector2D(i / width, 0) : QVector2D(0, i / width);
    }
}

void LanczosFilter::performPaint(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data)
{
    if (effects->compositingType() == KWin::OpenGLCompositing && (data.xScale < 0.9 || data.yScale < 0.9) &&
            KGlobalSettings::graphicEffectsLevel() & KGlobalSettings::SimpleAnimationEffects) {
        if (!m_inited)
            init();
        const QRect screenRect = Workspace::self()->clientArea(ScreenArea, w->screen(), w->desktop());
        // window geometry may not be bigger than screen geometry to fit into the FBO
        if (m_shader && w->width() <= screenRect.width() && w->height() <= screenRect.height()) {
            double left = 0;
            double top = 0;
            double right = w->width();
            double bottom = w->height();
            foreach (const WindowQuad & quad, data.quads) {
                // we need this loop to include the decoration padding
                left   = qMin(left, quad.left());
                top    = qMin(top, quad.top());
                right  = qMax(right, quad.right());
                bottom = qMax(bottom, quad.bottom());
            }
            double width = right - left;
            double height = bottom - top;
            if (width > screenRect.width() || height > screenRect.height()) {
                // window with padding does not fit into the framebuffer
                // so cut of the shadow
                left = 0;
                top = 0;
                width = w->width();
                height = w->height();
            }
            int tx = data.xTranslate + w->x() + left * data.xScale;
            int ty = data.yTranslate + w->y() + top * data.yScale;
            int tw = width * data.xScale;
            int th = height * data.yScale;
            const QRect textureRect(tx, ty, tw, th);

            int sw = width;
            int sh = height;

            GLTexture *cachedTexture = static_cast< GLTexture*>(w->data(LanczosCacheRole).value<void*>());
            if (cachedTexture) {
                if (cachedTexture->width() == tw && cachedTexture->height() == th) {
                    cachedTexture->bind();
                    if (ShaderManager::instance()->isValid()) {
                        glEnable(GL_BLEND);
                        glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

                        const float rgb = data.brightness * data.opacity;
                        const float a = data.opacity;

                        GLShader *shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
                        shader->setUniform(GLShader::Offset, QVector2D(0, 0));
                        shader->setUniform(GLShader::ModulationConstant, QVector4D(rgb, rgb, rgb, a));
                        shader->setUniform(GLShader::Saturation, data.saturation);
                        shader->setUniform(GLShader::AlphaToOne, 0);

                        cachedTexture->render(textureRect, textureRect);

                        ShaderManager::instance()->popShader();
                        glDisable(GL_BLEND);
                    } else {
                        prepareRenderStates(cachedTexture, data.opacity, data.brightness, data.saturation);
                        cachedTexture->render(textureRect, textureRect);
                        restoreRenderStates(cachedTexture, data.opacity, data.brightness, data.saturation);
                    }
                    cachedTexture->unbind();
                    m_timer.start(5000, this);
                    return;
                } else {
                    // offscreen texture not matching - delete
                    delete cachedTexture;
                    cachedTexture = 0;
                    w->setData(LanczosCacheRole, QVariant());
                }
            }

            WindowPaintData thumbData = data;
            thumbData.xScale = 1.0;
            thumbData.yScale = 1.0;
            thumbData.xTranslate = -w->x() - left;
            thumbData.yTranslate = -w->y() - top;
            thumbData.brightness = 1.0;
            thumbData.opacity = 1.0;
            thumbData.saturation = 1.0;

            // Bind the offscreen FBO and draw the window on it unscaled
            updateOffscreenSurfaces();
            GLRenderTarget::pushRenderTarget(m_offscreenTarget);

            glClearColor(0.0, 0.0, 0.0, 0.0);
            glClear(GL_COLOR_BUFFER_BIT);
            w->sceneWindow()->performPaint(mask, infiniteRegion(), thumbData);

            // Create a scratch texture and copy the rendered window into it
            GLTexture tex(sw, sh);
            tex.setFilter(GL_LINEAR);
            tex.setWrapMode(GL_CLAMP_TO_EDGE);
            tex.bind();

            glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, m_offscreenTex->height() - sh, sw, sh);

            // Set up the shader for horizontal scaling
            float dx = sw / float(tw);
            int kernelSize;
            m_shader->createKernel(dx, &kernelSize);
            m_shader->createOffsets(kernelSize, sw, Qt::Horizontal);

            m_shader->bind();
            m_shader->setUniforms();

            // Draw the window back into the FBO, this time scaled horizontally
            glClear(GL_COLOR_BUFFER_BIT);
            QVector<float> verts;
            QVector<float> texCoords;
            verts.reserve(12);
            texCoords.reserve(12);

            texCoords << 1.0 << 0.0; verts << tw  << 0.0; // Top right
            texCoords << 0.0 << 0.0; verts << 0.0 << 0.0; // Top left
            texCoords << 0.0 << 1.0; verts << 0.0 << sh;  // Bottom left
            texCoords << 0.0 << 1.0; verts << 0.0 << sh;  // Bottom left
            texCoords << 1.0 << 1.0; verts << tw  << sh;  // Bottom right
            texCoords << 1.0 << 0.0; verts << tw  << 0.0; // Top right
            GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
            vbo->reset();
            vbo->setData(6, 2, verts.constData(), texCoords.constData());
            vbo->render(GL_TRIANGLES);

            // At this point we don't need the scratch texture anymore
            tex.unbind();
            tex.discard();

            // create scratch texture for second rendering pass
            GLTexture tex2(tw, sh);
            tex2.setFilter(GL_LINEAR);
            tex2.setWrapMode(GL_CLAMP_TO_EDGE);
            tex2.bind();

            glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, m_offscreenTex->height() - sh, tw, sh);

            // Set up the shader for vertical scaling
            float dy = sh / float(th);
            m_shader->createKernel(dy, &kernelSize);
            m_shader->createOffsets(kernelSize, m_offscreenTex->height(), Qt::Vertical);
            m_shader->setUniforms();

            // Now draw the horizontally scaled window in the FBO at the right
            // coordinates on the screen, while scaling it vertically and blending it.
            glClear(GL_COLOR_BUFFER_BIT);

            verts.clear();

            verts << tw  << 0.0; // Top right
            verts << 0.0 << 0.0; // Top left
            verts << 0.0 << th;  // Bottom left
            verts << 0.0 << th;  // Bottom left
            verts << tw  << th;  // Bottom right
            verts << tw  << 0.0; // Top right
            vbo->setData(6, 2, verts.constData(), texCoords.constData());
            vbo->render(GL_TRIANGLES);

            tex2.unbind();
            tex2.discard();
            m_shader->unbind();

            // create cache texture
            GLTexture *cache = new GLTexture(tw, th);

            cache->setFilter(GL_LINEAR);
            cache->setWrapMode(GL_CLAMP_TO_EDGE);
            cache->bind();
            glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, m_offscreenTex->height() - th, tw, th);
            GLRenderTarget::popRenderTarget();

            if (ShaderManager::instance()->isValid()) {
                glEnable(GL_BLEND);
                glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

                const float rgb = data.brightness * data.opacity;
                const float a = data.opacity;

                GLShader *shader = ShaderManager::instance()->pushShader(ShaderManager::SimpleShader);
                shader->setUniform(GLShader::Offset, QVector2D(0, 0));
                shader->setUniform(GLShader::ModulationConstant, QVector4D(rgb, rgb, rgb, a));
                shader->setUniform(GLShader::Saturation, data.saturation);
                shader->setUniform(GLShader::AlphaToOne, 0);

                cache->render(textureRect, textureRect);

                ShaderManager::instance()->popShader();
                glDisable(GL_BLEND);
            } else {
                prepareRenderStates(cache, data.opacity, data.brightness, data.saturation);
                cache->render(textureRect, textureRect);
                restoreRenderStates(cache, data.opacity, data.brightness, data.saturation);
            }

            cache->unbind();
            w->setData(LanczosCacheRole, QVariant::fromValue(static_cast<void*>(cache)));

            // Delete the offscreen surface after 5 seconds
            m_timer.start(5000, this);
            return;
        }
    } // if ( effects->compositingType() == KWin::OpenGLCompositing )
    w->sceneWindow()->performPaint(mask, region, data);
} // End of function

void LanczosFilter::timerEvent(QTimerEvent *event)
{
    if (event->timerId() == m_timer.timerId()) {
        m_timer.stop();

        delete m_offscreenTarget;
        delete m_offscreenTex;
        m_offscreenTarget = 0;
        m_offscreenTex = 0;
        foreach (EffectWindow * w, effects->stackingOrder()) {
            QVariant cachedTextureVariant = w->data(LanczosCacheRole);
            if (cachedTextureVariant.isValid()) {
                GLTexture *cachedTexture = static_cast< GLTexture*>(cachedTextureVariant.value<void*>());
                delete cachedTexture;
                cachedTexture = 0;
                w->setData(LanczosCacheRole, QVariant());
            }
        }
    }
}

void LanczosFilter::prepareRenderStates(GLTexture* tex, double opacity, double brightness, double saturation)
{
#ifndef KWIN_HAVE_OPENGLES
    const bool alpha = true;
    // setup blending of transparent windows
    glPushAttrib(GL_ENABLE_BIT);
    glEnable(GL_BLEND);
    glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
    if (saturation != 1.0 && tex->saturationSupported()) {
        // First we need to get the color from [0; 1] range to [0.5; 1] range
        glActiveTexture(GL_TEXTURE0);
        glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
        glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);
        const float scale_constant[] = { 1.0, 1.0, 1.0, 0.5};
        glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, scale_constant);
        tex->bind();

        // Then we take dot product of the result of previous pass and
        //  saturation_constant. This gives us completely unsaturated
        //  (greyscale) image
        // Note that both operands have to be in range [0.5; 1] since opengl
        //  automatically substracts 0.5 from them
        glActiveTexture(GL_TEXTURE1);
        float saturation_constant[] = { 0.5 + 0.5 * 0.30, 0.5 + 0.5 * 0.59, 0.5 + 0.5 * 0.11, saturation };
        glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
        glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_DOT3_RGB);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
        glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant);
        tex->bind();

        // Finally we need to interpolate between the original image and the
        //  greyscale image to get wanted level of saturation
        glActiveTexture(GL_TEXTURE2);
        glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
        glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_INTERPOLATE);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_CONSTANT);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND2_RGB, GL_SRC_ALPHA);
        glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, saturation_constant);
        // Also replace alpha by primary color's alpha here
        glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
        glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);
        glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
        // And make primary color contain the wanted opacity
        glColor4f(opacity, opacity, opacity, opacity);
        tex->bind();

        if (alpha || brightness != 1.0f) {
            glActiveTexture(GL_TEXTURE3);
            glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
            glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
            glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
            glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
            glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR);
            glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
            // The color has to be multiplied by both opacity and brightness
            float opacityByBrightness = opacity * brightness;
            glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness, opacity);
            if (alpha) {
                // Multiply original texture's alpha by our opacity
                glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
                glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0);
                glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
                glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR);
                glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA);
            } else {
                // Alpha will be taken from previous stage
                glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
                glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS);
                glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
            }
            tex->bind();
        }

        glActiveTexture(GL_TEXTURE0);
    } else if (opacity != 1.0 || brightness != 1.0) {
        // the window is additionally configured to have its opacity adjusted,
        // do it
        float opacityByBrightness = opacity * brightness;
        if (alpha) {
            glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
            glColor4f(opacityByBrightness, opacityByBrightness, opacityByBrightness,
                      opacity);
        } else {
            // Multiply color by brightness and replace alpha by opacity
            float constant[] = { opacityByBrightness, opacityByBrightness, opacityByBrightness, opacity };
            glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
            glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
            glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
            glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
            glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
            glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
            glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
            glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT);
            glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, constant);
        }
    }
#endif
}

void LanczosFilter::restoreRenderStates(GLTexture* tex, double opacity, double brightness, double saturation)
{
#ifndef KWIN_HAVE_OPENGLES
    if (opacity != 1.0 || saturation != 1.0 || brightness != 1.0f) {
        if (saturation != 1.0 && tex->saturationSupported()) {
            glActiveTexture(GL_TEXTURE3);
            glDisable(tex->target());
            glActiveTexture(GL_TEXTURE2);
            glDisable(tex->target());
            glActiveTexture(GL_TEXTURE1);
            glDisable(tex->target());
            glActiveTexture(GL_TEXTURE0);
        }
    }
    glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
    glColor4f(0, 0, 0, 0);

    glPopAttrib();  // ENABLE_BIT
#endif
}

/************************************************
* LanczosShader
************************************************/
LanczosShader::LanczosShader(QObject* parent)
    : QObject(parent)
    , m_shader(0)
    , m_arbProgram(0)
{
}

LanczosShader::~LanczosShader()
{
    delete m_shader;
#ifndef KWIN_HAVE_OPENGLES
    if (m_arbProgram) {
        glDeleteProgramsARB(1, &m_arbProgram);
        m_arbProgram = 0;
    }
#endif
}

void LanczosShader::bind()
{
    if (m_shader)
        ShaderManager::instance()->pushShader(m_shader);
#ifndef KWIN_HAVE_OPENGLES
    else {
        glEnable(GL_FRAGMENT_PROGRAM_ARB);
        glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, m_arbProgram);
    }
#endif
}

void LanczosShader::unbind()
{
    if (m_shader)
        ShaderManager::instance()->popShader();
#ifndef KWIN_HAVE_OPENGLES
    else {
        int boundObject;
        glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_BINDING_ARB, &boundObject);
        if (boundObject == m_arbProgram) {
            glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0);
            glDisable(GL_FRAGMENT_PROGRAM_ARB);
        }
    }
#endif
}

void LanczosShader::setUniforms()
{
    if (m_shader) {
        glUniform1i(m_uTexUnit, 0);
        glUniform2fv(m_uOffsets, 16, (const GLfloat*)m_offsets);
        glUniform4fv(m_uKernel, 16, (const GLfloat*)m_kernel);
    }
#ifndef KWIN_HAVE_OPENGLES
    else {
        for (int i = 0; i < 16; ++i) {
            glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, i, m_offsets[i].x(), m_offsets[i].y(), 0, 0);
        }
        for (int i = 0; i < 16; ++i) {
            glProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, i + 16, m_kernel[i].x(), m_kernel[i].y(), m_kernel[i].z(), m_kernel[i].w());
        }
    }
#endif
}

bool LanczosShader::init()
{
    GLPlatform *gl = GLPlatform::instance();
    if (gl->supports(GLSL) &&
            ShaderManager::instance()->isValid() &&
            GLRenderTarget::supported() &&
            !(gl->isRadeon() && gl->chipClass() < R600)) {
        m_shader = ShaderManager::instance()->loadFragmentShader(ShaderManager::SimpleShader, ":/resources/lanczos-fragment.glsl");
        if (m_shader->isValid()) {
            ShaderManager::instance()->pushShader(m_shader);
            m_uTexUnit    = m_shader->uniformLocation("texUnit");
            m_uKernel     = m_shader->uniformLocation("kernel");
            m_uOffsets    = m_shader->uniformLocation("offsets");
            ShaderManager::instance()->popShader();
            return true;
        } else {
            kDebug(1212) << "Shader is not valid";
            m_shader = 0;
            // try ARB shader
        }
    }

#ifdef KWIN_HAVE_OPENGLES
    // no ARB shader in GLES
    return false;
#else
    // try to create an ARB Shader
    if (!hasGLExtension("GL_ARB_fragment_program"))
        return false;

    QByteArray text;
    QTextStream stream(&text);

    // Note: This program uses 31 temporaries, 61 ALU instructions, 31 texture
    //       fetches, 3 texture indirections and 93 instructions.
    //       The R300 limitations are 32, 64, 32, 4 and 96 respectively.
    stream << "!!ARBfp1.0\n";
    stream << "TEMP sum;\n";

    // Declare 30 temporaries for holding texcoords and TEX results
    for (int i = 0; i < 30; i++)
        stream << "TEMP temp" << i << ";\n";

    // Compute the texture coordinates
    for (int i = 0, j = 0; i < 30 / 2; i++) {
        stream << "ADD temp" << j++ << ", fragment.texcoord, program.local[" << i + 1 << "];\n";
        stream << "SUB temp" << j++ << ", fragment.texcoord, program.local[" << i + 1 << "];\n";
    }

    // Sample the texture coordinates
    stream << "TEX sum, fragment.texcoord, texture[0], 2D;\n";
    for (int i = 0; i < 30; i++)
        stream << "TEX temp" << i << ", temp" << i << ", texture[0], 2D;\n";

    // Process the results
    stream << "MUL sum, sum, program.local[16];\n"; // sum = sum * kernel[0]
    for (int i = 0, j = 0; i < 30 / 2; i++) {
        stream << "MAD sum, temp" << j++ << ", program.local[" << (17 + i) << "], sum;\n";
        stream << "MAD sum, temp" << j++ << ", program.local[" << (17 + i) << "], sum;\n";
    }

    stream << "MOV result.color, sum;\n";
    stream << "END\n";
    stream.flush();

    glEnable(GL_FRAGMENT_PROGRAM_ARB);
    glGenProgramsARB(1, &m_arbProgram);
    glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, m_arbProgram);
    glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, text.length(), text.constData());

    if (glGetError()) {
        const char *error = (const char*)glGetString(GL_PROGRAM_ERROR_STRING_ARB);
        kError() << "Failed to compile fragment program:" << error;
        glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0);
        glDeleteProgramsARB(1, &m_arbProgram);
        glDisable(GL_FRAGMENT_PROGRAM_ARB);
        m_arbProgram = 0;
        return false;
    }

    glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0);
    glDisable(GL_FRAGMENT_PROGRAM_ARB);
    kDebug(1212) << "ARB Shader compiled, id: " << m_arbProgram;
    return true;
#endif
}

} // namespace