~ubuntu-branches/ubuntu/quantal/agtl/quantal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#!/usr/bin/python
# -*- coding: utf-8 -*-

#   Copyright (C) 2010 Daniel Fett
#   This program is free software: you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation, either version 3 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
#   Author: Daniel Fett agtl@danielfett.de
#   Jabber: fett.daniel@jaber.ccc.de
#   Bugtracker and GIT Repository: http://github.com/webhamster/advancedcaching
#


import openstreetmap

import logging
logger = logging.getLogger('abstractmap')
import geo
import math




class AbstractMap():
    MAP_FACTOR = 0
    RADIUS_EARTH = 6371000.0

    CLICK_MAX_RADIUS = 7
    CLICK_CHECK_RADIUS = 17

    @classmethod
    def set_config(Map, map_providers, map_path, placeholder_cantload, placeholder_loading):

        Map.noimage_cantload = Map._load_tile(placeholder_cantload)
        Map.noimage_loading = Map._load_tile(placeholder_loading)
        Map.tile_loaders = []

        for name, params in map_providers:
            tl = openstreetmap.get_tile_loader( ** dict([(str(a), b) for a, b in params.items()]))
            tl.noimage_loading = Map.noimage_loading
            tl.noimage_cantload = Map.noimage_cantload
            tl.base_dir = map_path
            #tl.gui = self
            Map.tile_loaders.append((name, tl))

    def __init__(self, center, zoom, tile_loader = None):
        self.active_tile_loaders = []
        self.double_size = False
        self.layers = []
        self.osd_message = None

        if tile_loader == None:
            self.tile_loader = self.tile_loaders[0][1]
        else:
            self.tile_loader = tile_loader
        self.dragging = False
        self.drag_offset_x = 0
        self.drag_offset_y = 0
        self.zoom = zoom
        self.total_map_width = 256 * 2 ** zoom
        self.set_center(center, False)
        #self.set_zoom(zoom)

        ##############################################
        #
        # Controlling the layers
        #
        ##############################################

    def add_layer(self, layer):
        self.layers.append(layer)
        layer.attach(self)


    def set_osd_message(self, message):
        self.osd_message = message

        ##############################################
        #
        # Controlling the map view
        #
        ##############################################

    def set_center(self, coord, update = True):
        if self.dragging:
            return
        self.map_center_x, self.map_center_y = self.deg2num(coord)
        self.center_latlon = coord
        self.draw_at_x = 0
        self.draw_at_y = 0
        if update:
            self._draw_map()

    def set_center_lazy(self, coord):
        if self.dragging:
            return
        old_center_x, old_center_y = self.coord2point(self.center_latlon)
        new_center_x, new_center_y = self.coord2point(coord)

        if abs(old_center_x - new_center_x) > \
            self.map_width * self.LAZY_SET_CENTER_DIFFERENCE or \
            abs(old_center_y - new_center_y) > \
            self.map_height * self.LAZY_SET_CENTER_DIFFERENCE:
            self.set_center(coord)
            logger.debug('Not lazy!')
            return True
        logger.debug('Lazy!')
        return False


    def get_center(self):
        return self.center_latlon

    def relative_zoom(self, direction=None, update=True):
        if direction != None:
            self.set_zoom(self.zoom + direction, update)

    def relative_zoom_preserve_center_at(self, screenpoint, direction):
        offs = screenpoint[0] - self.map_width/2.0, screenpoint[1] - self.map_height/2.0
        self.set_center(self.screenpoint2coord(screenpoint), False)
        self.relative_zoom(direction, False)
        self._move_map_relative(-offs[0], -offs[1])


    def set_zoom(self, newzoom, update = True):
        if newzoom < 0 or newzoom > self.tile_loader.MAX_ZOOM:
            return
        logger.debug('New zoom level: %d' % newzoom)
        self.zoom = newzoom
        self.total_map_width = (256 * 2**self.zoom)
        self.set_center(self.center_latlon, update)

    def get_zoom(self):
        return self.zoom

    def get_max_zoom(self):
        return self.tile_loader.MAX_ZOOM

    def get_min_zoom(self):
        return 0

    def _move_map_relative(self, offset_x, offset_y, update = True):
        self.map_center_x += (float(offset_x) / self.tile_loader.TILE_SIZE)
        self.map_center_y += (float(offset_y) / self.tile_loader.TILE_SIZE)
        self.map_center_x, self.map_center_y = self.check_bounds(self.map_center_x, self.map_center_y)
        self.center_latlon = self.num2deg(self.map_center_x, self.map_center_y)
        if update:
            self._draw_map()


    def fit_to_bounds(self, minlat, maxlat, minlon, maxlon):
        if minlat == maxlat and minlon == maxlon:
            self.set_center(geo.Coordinate(minlat, minlon))
            self.set_zoom(self.get_max_zoom())
            return
        logger.debug("Settings Bounds: lat(%f, %f) lon(%f, %f)" % (minlat, maxlat, minlon, maxlon))
        req_deg_per_pix_lat = (maxlat - minlat) / self.map_height
        prop_zoom_lat = math.log(((180.0/req_deg_per_pix_lat) / self.tile_loader.TILE_SIZE), 2)

        req_deg_per_pix_lon = (maxlon - minlon) / self.map_width
        prop_zoom_lon = math.log(((360.0/req_deg_per_pix_lon) / self.tile_loader.TILE_SIZE), 2)

        target_zoom = math.floor(min(prop_zoom_lat, prop_zoom_lon))
        logger.debug("Proposed zoom lat: %f, proposed zoom lon: %f, target: %f" %(prop_zoom_lat, prop_zoom_lon, target_zoom))
        
        center = geo.Coordinate((maxlat + minlat) / 2.0, (maxlon + minlon) / 2.0)
        logger.debug("New Center: %s" % center)

        self.set_center(center, False)
        self.set_zoom(max(min(target_zoom, self.get_max_zoom()), self.get_min_zoom()))


        ##############################################
        #
        # Configuration
        #
        ##############################################

    def set_double_size(self, ds):
        self.double_size = ds

    def get_double_size(self):
        return self.double_size

    def set_tile_loader(self, loader):
        self.tile_loader = loader
        self.emit('tile-loader-changed', loader)
        self.relative_zoom(0)

    def set_placeholder_images(self, cantload, loading):
        self.noimage_cantload = self._load_tile(cantload)
        self.noimage_loading = self._load_tile(loading)

        ##############################################
        #
        # Coordinate Conversion and Checking
        #
        ##############################################

    def point_in_screen(self, point):
        a = (point[0] >= 0 and point[1] >= 0 and point[0] < self.map_width and point[1] < self.map_height)
        return a

    def coord2point(self, coord):
        point = self.deg2num(coord)
        size = self.tile_loader.TILE_SIZE
        p_x = int(point[0] * size + self.map_width / 2) - self.map_center_x * size
        p_y = int(point[1] * size + self.map_height / 2) - self.map_center_y * size
        return (p_x % self.total_map_width , p_y)

    def coord2point_float(self, coord):
        point = self.deg2num(coord)
        size = self.tile_loader.TILE_SIZE
        p_x = point[0] * size + self.map_width / 2 - self.map_center_x * size
        p_y = point[1] * size + self.map_height / 2 - self.map_center_y * size
        return (p_x % self.total_map_width , p_y)

    def screenpoint2coord(self, point):
        size = self.tile_loader.TILE_SIZE
        coord = self.num2deg(\
                                ((point[0] - self.draw_at_x) + self.map_center_x * size - self.map_width / 2) / size, \
                                ((point[1] - self.draw_at_y) + self.map_center_y * size - self.map_height / 2) / size \
                                )
        return coord

    def get_visible_area(self):
        a = self.screenpoint2coord((0, 0))
        b = self.screenpoint2coord((self.map_width, self.map_height))
        return geo.Coordinate(min(a.lat, b.lat), min(a.lon, b.lon)), geo.Coordinate(max(a.lat, b.lat), max(a.lon, b.lon))

    @staticmethod
    def in_area(coord, area):
        return (coord.lat > area[0].lat and coord.lat < area[1].lat and coord.lon > area[0].lon and coord.lon < area[1].lon)

    def _check_click(self, offset_x, offset_y, ev_x, ev_y):
        if offset_x ** 2 + offset_y ** 2 < self.CLICK_MAX_RADIUS ** 2:

            c = self.screenpoint2coord((ev_x, ev_y))
            c1 = self.screenpoint2coord([ev_x - self.CLICK_CHECK_RADIUS, ev_y - self.CLICK_CHECK_RADIUS])
            c2 = self.screenpoint2coord([ev_x + self.CLICK_CHECK_RADIUS, ev_y + self.CLICK_CHECK_RADIUS])
            for l in reversed(self.layers):
                if l.clicked_screen((ev_x, ev_y)) == False:
                    break
                if l.clicked_coordinate(c, c1, c2) == False:
                    break
            return True
        return False

        ##############################################
        #
        # Tile Number calculations
        #
        ##############################################
    def tile_size(self):
        return self.tile_loader.TILE_SIZE

    def get_meters_per_pixel(self, lat):
        return math.cos(lat * math.pi / 180.0) * 2.0 * math.pi * self.RADIUS_EARTH / self.total_map_width

    def deg2tilenum(self, lat_deg, lon_deg):
        lat_rad = math.radians(lat_deg)
        n = 2 ** self.zoom
        xtile = int((lon_deg + 180) / 360 * n)
        ytile = int((1.0 - math.log(math.tan(lat_rad) + (1.0 / math.cos(lat_rad))) / math.pi) / 2.0 * n)
        return(xtile, ytile)

    def deg2num(self, coord):
        lat_rad = math.radians(coord.lat)
        n = 2 ** self.zoom
        xtile = (coord.lon + 180.0) / 360 * n
        ytile = (1.0 - math.log(math.tan(lat_rad) + (1.0 / math.cos(lat_rad))) / math.pi) / 2.0 * n
        return(xtile, ytile)

    def num2deg(self, xtile, ytile):
        n = 2 ** self.zoom
        lon_deg = xtile / n * 360.0 - 180.0
        lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))
        lat_deg = lat_rad * 180.0 / math.pi
        return geo.Coordinate(lat_deg, lon_deg)

    def check_bounds(self, xtile, ytile):
        max_x = 2**self.zoom
        max_y = 2**self.zoom
        return (
            xtile % max_x,
            ytile % max_y
        )



class AbstractMapLayer():
    def __init__(self):
        self.result = None

    def draw(self):
        pass

    def clicked_screen(self, screenpoint):
        pass

    def clicked_coordinate(self, center, topleft, bottomright):
        pass

    def resize(self):
        pass

    def attach(self, map):
        self.map = map
        
    def refresh(self):
        self.draw()
        self.map.refresh()

logger = logging.getLogger('abstractmarkslayer')

class AbstractMarksLayer(AbstractMapLayer):

    ARROW_OFFSET = 1.0 / 3.0 # Offset to center of arrow, calculated as 2-x = sqrt(1^2+(x+1)^2)
    ARROW_SHAPE = [(0, -2 + ARROW_OFFSET), (1, + 1 + ARROW_OFFSET), (0, 0 + ARROW_OFFSET), (-1, 1 + ARROW_OFFSET), (0, -2 + ARROW_OFFSET)]

    def __init__(self):
        AbstractMapLayer.__init__(self)
        self.current_target = None
        self.gps_target_distance = None
        self.gps_target_bearing = None
        self.gps_data = None
        self.gps_last_good_fix = None
        self.gps_has_fix = None
        self.follow_position = False


    def set_follow_position(self, value):
        logger.info('Setting "Follow position" to :' + repr(value))
        if value and not self.follow_position and self.gps_last_good_fix != None:
            self.map.set_center(self.gps_last_good_fix.position)
        self.follow_position = value

    def get_follow_position(self):
        return self.follow_position

    def on_target_changed(self, caller, cache, distance, bearing):
        self.current_target = cache
        self.gps_target_distance = distance
        self.gps_target_bearing = bearing

    def on_good_fix(self, core, gps_data, distance, bearing):
        self.gps_data = gps_data
        self.gps_last_good_fix = gps_data
        self.gps_has_fix = True
        self.gps_target_distance = distance
        self.gps_target_bearing = bearing
        if self.map.dragging:
            return
        if (self.follow_position and not self.map.set_center_lazy(self.gps_data.position)) or not self.follow_position:
            self.draw()
            self.map.refresh()

    def on_no_fix(self, caller, gps_data, status):
        self.gps_data = gps_data
        self.gps_has_fix = False


    @staticmethod
    def _get_arrow_transformed(root_x, root_y, width, height, angle):
        multiply = height / (2 * (2-AbstractMarksLayer.ARROW_OFFSET))
        offset_x = width / 2
        offset_y = height / 2
        s = multiply * math.sin(math.radians(angle))
        c = multiply * math.cos(math.radians(angle))
        arrow_transformed = [(int(x * c + offset_x - y * s) + root_x,
                              int(y * c + offset_y + x * s) + root_y) for x, y in AbstractMarksLayer.ARROW_SHAPE]
        return arrow_transformed
                

class AbstractGeocacheLayer(AbstractMapLayer):

    CACHE_SIZE = 20
    TOO_MANY_POINTS = 30
    CACHES_ZOOM_LOWER_BOUND = 9
    CACHE_DRAW_SIZE = 10

    MAX_NUM_RESULTS_SHOW = 100

    def __init__(self, get_geocaches_callback, show_cache_callback):
        AbstractMapLayer.__init__(self)
        #self.show_found = False
        self.show_name = False
        self.get_geocaches_callback = get_geocaches_callback
        self.visualized_geocaches = []
        self.show_cache_callback = show_cache_callback
        self.current_cache = None
        self.select_found = None
    '''
    def set_show_found(self, show_found):
        if show_found:
            self.select_found = None
        else:
            self.select_found = False
    '''
    def set_show_name(self, show_name):
        self.show_name = show_name

    def set_current_cache(self, cache):
        self.current_cache = cache

    def clicked_coordinate(self, center, topleft, bottomright):
        mindistance = (center.lat - topleft.lat) ** 2 + (center.lon - topleft.lon) ** 2
        mincache = None
        for c in self.visualized_geocaches:
            dist = (c.lat - center.lat) ** 2 + (c.lon - center.lon) ** 2

            if dist < mindistance:
                mindistance = dist
                mincache = c

        if mincache != None:
            self.show_cache_callback(mincache)
        return False


    @staticmethod
    def shorten_name(s, chars):
        max_pos = chars
        min_pos = chars - 10

        NOT_FOUND = -1

        suffix = '…'

        # Case 1: Return string if it is shorter (or equal to) than the limit
        length = len(s)
        if length <= max_pos:
            return s
        else:
            # Case 2: Return it to nearest period if possible
            try:
                end = s.rindex('.', min_pos, max_pos)
            except ValueError:
                # Case 3: Return string to nearest space
                end = s.rfind(' ', min_pos, max_pos)
                if end == NOT_FOUND:
                    end = max_pos
            return s[0:end] + suffix