~ubuntu-branches/ubuntu/quantal/hexer/quantal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
/* calc.c	01/13/1996
 * a simple calculator.
 */

/* Copyright (c) 1995,1996 Sascha Demetrio
 * Copyright (c) 2009, 2010 Peter Pentchev
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *    If you modify any part of HEXER and resitribute it, you must add
 *    a notice to the `README' file and the modified source files containing
 *    information about the  changes you made.  I do not want to take
 *    credit or be blamed for your modifications.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *    If you modify any part of HEXER and resitribute it in binary form,
 *    you must supply a `README' file containing information about the
 *    changes you made.
 * 3. The name of the developer may not be used to endorse or promote
 *    products derived from this software without specific prior written
 *    permission.
 *
 * HEXER WAS DEVELOPED BY SASCHA DEMETRIO.
 * THIS SOFTWARE SHOULD NOT BE CONSIDERED TO BE A COMMERCIAL PRODUCT.
 * THE DEVELOPER URGES THAT USERS WHO REQUIRE A COMMERCIAL PRODUCT
 * NOT MAKE USE OF THIS WORK.
 *
 * DISCLAIMER:
 * THIS SOFTWARE IS PROVIDED BY THE DEVELOPER ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE DEVELOPER BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "config.h"
#include "defs.h"

#define NDEBUG

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#include <math.h>
#if HAVE_FLOAT_H
#include <float.h>
#endif
#include <limits.h>

#include "buffer.h"
#include "hexer.h"
#include "calc.h"
#include "readline.h"
#include "tio.h"

#define CALC_STACKSIZE 1024

#ifndef DBL_EPSILON
#define DBL_EPSILON (1e-9)
#endif

#ifndef LONG_BITS
#define LONG_BITS 32
#endif

#ifndef DEBUG
#define DEBUG 0
#endif

static int calc_stack_initialized_f = 0;
static int calc_command_counter = 0;

enum calc_object_e {
  CO_NONE,                           /* uninitialized */
  CO_INTEGER, CO_FLOAT, CO_BOOLEAN,  /* numeric values */
  CO_UNARY_OPERATOR,                 /* unary operator sign */
  CO_BINARY_OPERATOR,                /* binary operator sign */
  CO_VARIABLE,                       /* variable name */
  CO_ERROR                           /* error message */
};

#define CO_VALUE(x) (x.type == CO_INTEGER                                     \
                     || x.type == CO_FLOAT                                    \
                     || x.type == CO_BOOLEAN)

static char *calc_object_names[] = {
  "none", "integer", "float", "boolean", "unary operator", "binary operator",
  "variable", "error", 0
};

enum calc_unary_operator_e {
  OP_NEG, OP_NOT, OP_COMP,
  OP_PAROPEN, OP_PARCLOSE,
  OP_EXEC,
  OP_max_unary_operator
};

static char *calc_unary_operator_names[OP_max_unary_operator] = {
  "-  neg", "!  not", "~  comp", "(  paropen", ")  parclose", ":  exec"
};

enum calc_binary_operator_e {
  OP_POW,
  OP_MUL, OP_DIV, OP_MOD,
  OP_ADD, OP_SUB,
  OP_SHL, OP_SHR,
  OP_LES, OP_LEQ, OP_GRT, OP_GEQ,
  OP_EQU, OP_NEQ,
  OP_AND, OP_XOR, OP_OR,
  OP_LAND, OP_LOR,
  OP_ASSIGN,
  OP_max_binary_operator
};

static int prec[OP_max_binary_operator] = {
  0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8
};

static char *calc_binary_operator_names[OP_max_binary_operator] = {
  "** pow",
  "*  mul", "/  div", "%  mod", "+  add", "-  sub", "<< shl", ">> shr",
  "<  les", "<= leq", ">  grt", ">= geq", "== equ", "!= neq",
  "&  and", "^  xor", "|  or", "&& land", "|| lor", "=  assign"
};

struct calc_object_s {
  enum calc_object_e type;
  union {
    long i;                            /* `CO_INTEGER', `CO_BOOLEAN' */
    double f;                          /* `CO_FLOAT' */
    char *s;                           /* `CO_VARIABLE', `CO_ERROR' */
    enum calc_unary_operator_e uo;     /* `CO_UNARY_OPERATOR' */
    enum calc_binary_operator_e bo;    /* `CO_BINARY_OPERATOR' */
  } u;
};

/* a simple list of variables.
 */
struct calc_variable_s {
  char *name;
  struct calc_object_s object;
  struct calc_variable_s *next;
} *calc_variable_list = 0;

#ifdef CALC_COMPILE
enum calc_code_e {
  CC_VALUE,          /* immediate value */
  CC_INSTRUCTION     /* instruction */
};

static char *calc_code_names[] = {
  "VALUE", "INSTRUCTION", 0
};

#if 0
enum calc_instruction_e {
  CI_ADD,      /* add the top two elements on the stack */
  CI_ADDI,     /* add an immediate value to the top element */
  CI_SUB,      /* substact the top two elements */
  CI_SUBI,     /* substact immediate value from the top element */
  CI_MUL,      /* multiply the top two elements */
  CI_MULI,     /* multiply an immediate value with the top element */
  CI_POW,      /* compute s[-2] ** s[-1] */
  CI_POWI,     /* compute s[-1] ** i (immediate value) */
  CI_IDIV,     /* integer divide the top two elements */
  CI_IDIVI,    /* integer divide the top element by an immediate value */
  CI_DIV,      /* divide the top two elements */
  CI_DIVI,     /* divide the top element by an immediate value */
  CI_SHL,      /* shift left s[-2] by s[-1] bits */
  CI_SHLI,     /* shift left the top element by an immediate value */
  CI_SHR,      /* shift right s[-2] by s[-1] bits */
  CI_SHRI,     /* shift right the top element by an immediate value */
  CI_LES,      /* check if the top element is less than zero */
  CI_LEQ,      /* check if the top element is less or equal than zero */
  CI_GRT,      /* check if the top element is greater than zero */
  CI_GEQ,      /* check if the top element is greater or equal than zero */
  CI_EQU,      /* check if the top element is equal to zero */
  CI_NEQ,      /* check if the top element is not equal to zero */
  CI_PUSH,     /* push an immediate value onto the execution stack */
  CI_POP,      /* remove an element from the execution stack */
  CI_VALUE,    /* push the value of a variable onto the execution stack */
  CI_ASSIGN,   /* assign the top element to a variable */
#if 0
  CI_BEQ,      /* branch on equal */
  CI_BNE,      /* branch on not equal */
#endif
  CI_MAX       /* number of instructions */
};

static char *calc_instruction_names[] = {
  "ADD", "ADDI", "SUB", "SUBI", "MUL", "MULI", "POW", "POWI", "IDIV", "IDIVI",
  "DIV", "DIVI", "SHL", "SHLI", "SHR", "SHRI", "LES", "LEQ", "EQU", "NEQ",
  "PUSH", "POP", "VALUE", "ASSIGN",
  "BEQ", "BNE", 0
};
#endif

struct calc_code_s {
  enum calc_code_e type;
  union {
    enum calc_instruction_e instruction;
    struct calc_object_s object;
  } u;
};
#endif

static struct calc_object_s stack[CALC_STACKSIZE];
static int sp;

  static int
calc_initialize_stack(void)
{
  int i;

  if (calc_stack_initialized_f) return 0;
  ++calc_stack_initialized_f;
  for (i = 0; i < CALC_STACKSIZE; ++i) stack[i].type = CO_NONE;
  return 0;
}
/* calc_initialize_stack */

  static int
calc_clear_stack(int count)
  /* remove the trailing `count' stack elements from the stack.
   */
{
  for (--sp; count; --count, --sp) {
    switch (stack[sp].type) {
    case CO_VARIABLE:
    case CO_ERROR:
      free(stack[sp].u.s);
      stack[sp].u.s = 0;
      break;
    default:
      break;
    }
    stack[sp].type = CO_NONE;
  }
  ++sp;
  return 0;
}
/* calc_clear_stack */

  static int
calc_set_stack(int position, struct calc_object_s object)
{
  if (stack[position].type == CO_ERROR || stack[position].type == CO_VARIABLE)
    free(stack[position].u.s);
  stack[position] = object;
  return 0;
}
/* calc_set_stack */

  static char *
calc_sprint(char *s, struct calc_object_s object)
{
  switch(object.type) {
  case CO_BINARY_OPERATOR:
    sprintf(s, "%s", calc_binary_operator_names[(int)object.u.bo] + 3);
    break;
  case CO_UNARY_OPERATOR:
    sprintf(s, "%s", calc_unary_operator_names[(int)object.u.uo] + 3);
    break;
  case CO_INTEGER:
    sprintf(s, "%li 0%lo 0x%lx", object.u.i, object.u.i, object.u.i);
    break;
  case CO_FLOAT:
    sprintf(s, "%g", object.u.f);
    break;
  case CO_BOOLEAN:
    sprintf(s, "%s", object.u.i ? "true" : "false");
    break;
  case CO_ERROR:
  case CO_VARIABLE:
    sprintf(s, "%s", object.u.s);
    break;
  default:
    sprintf(s, "INVALID OBJECT");
  }
  return s;
}
/* calc_print */

  static int
#if USE_STDARG
calc_error(struct calc_object_s *x, const char *fmt, ...)
#else
calc_error(x, fmt, va_alist)
  struct calc_object_s *x;
  char *fmt;
  va_dcl
#endif
{
  va_list ap;
  char buf[256];

#if USE_STDARG
  va_start(ap, fmt);
#else
  va_start(ap);
#endif
  vsprintf(buf, fmt, ap);
  if (x->type != CO_ERROR) {
    x->type = CO_ERROR;
    x->u.s = strdup(buf);
  }
  va_end(ap);
  return 0;
}
/* calc_error */

  static int
calc_evaluate(struct calc_object_s *object)
{
  struct calc_variable_s *i;

  assert(object->type == CO_VARIABLE);
  for (i = calc_variable_list; i; i = i->next)
    if (!strcmp(object->u.s, i->name)) {
      *object = i->object;
      return 0;
    }
  calc_error(object, "undefined variable `%s'", object->u.s);
  return -1;
}
/* calc_evaluate */

  static int
calc_assign(struct calc_object_s x, struct calc_object_s y)
{
  struct calc_variable_s *i;

  assert(x.type == CO_VARIABLE);
  assert(y.type != CO_VARIABLE);
  assert(y.type != CO_ERROR);
  for (i = calc_variable_list; i; i = i->next)
    if (!strcmp(x.u.s, i->name)) {
      i->object = y;
      return 0;
    }
  i = (struct calc_variable_s *)malloc(sizeof *i);
  i->object = y;
  i->name = strdup(x.u.s);
  i->next = calc_variable_list;
  calc_variable_list = i;
  return 0;
}
/* calc_assign */

  static int
calc_operation(int position, int binary)
  /* evaluate the simple expression on stack position `position' and
   * update the stack.  if `binary == 0', a unary expression is expected,
   * else a binary expression is expected.  the function returns 0 on
   * success and -1 on error.
   */
{
  struct calc_object_s x, y, op;
  int int_f;
  int error_f = 0;
  int nremove;  /* number of elements to remove from the stack */
  int i;

  if (binary) {  /* binary operator */
    nremove = 2;
    assert(position + 2 < sp);
    x = stack[position];
    op = stack[position + 1];
    y = stack[position + 2];
    if (x.type == CO_VARIABLE && op.u.bo != OP_ASSIGN) calc_evaluate(&x);
    if (y.type == CO_VARIABLE) calc_evaluate(&y);
    if (op.type != CO_BINARY_OPERATOR || !CO_VALUE(y)) {
      if (y.type == CO_ERROR) x = y; else calc_error(&x, "syntax error");
      ++error_f;
      goto exit;
    }
    switch (op.u.bo) {
    case OP_POW:
      int_f = 0;
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        int_f = 1;
        x.type = CO_FLOAT;
        x.u.f = (double)x.u.i;
      case CO_FLOAT:
        if (y.type != CO_FLOAT) {
          y.type = CO_FLOAT;
          y.u.f = (double)y.u.i;
        } else
          int_f = 0;
        x.u.f = pow(x.u.f, y.u.f);
        if (int_f && x.u.f < (unsigned)(1 << (LONG_BITS - 1)) - 1) {
          x.type = CO_INTEGER;
          x.u.i = (int)x.u.f;
        }
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_MUL:
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i *= y.u.i;
          break;
        } else {
          x.u.f = (double)x.u.i;
          x.type = CO_FLOAT;
        }
      case CO_FLOAT:
        x.u.f *= y.type == CO_FLOAT ? y.u.f : (double)y.u.i;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_DIV:
      if (y.type == CO_FLOAT ? fabs(y.u.f) < DBL_EPSILON : !y.u.i) {
        calc_error(&x, "division by zero");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i /= y.u.i;
          break;
        } else {
          x.u.f = (double)x.u.i;
          x.type = CO_FLOAT;
        }
      case CO_FLOAT:
        x.u.f /= y.type == CO_FLOAT ? y.u.f : (double)y.u.i;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_MOD:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator MOD (%%)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        x.u.i %= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_ADD:
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i += y.u.i;
          break;
        } else {
          x.u.f = (double)x.u.i;
          x.type = CO_FLOAT;
        }
      case CO_FLOAT:
        x.u.f += y.type == CO_FLOAT ? y.u.f : (double)y.u.i;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_SUB:
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i -= y.u.i;
          break;
        } else {
          x.u.f = (double)x.u.i;
          x.type = CO_FLOAT;
        }
      case CO_FLOAT:
        x.u.f -= y.type == CO_FLOAT ? y.u.f : (double)y.u.i;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_SHL:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator SHL (<<)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.u.i >= LONG_BITS) y.u.i = LONG_BITS - 1;
        x.u.i <<= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_SHR:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator SHR (>>)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.u.i >= LONG_BITS) y.u.i = LONG_BITS - 1;
        x.u.i >>= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_LES:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i < y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        x.u.i = x.u.f < (y.type == CO_FLOAT ? y.u.f : (double)y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_LEQ:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i <= y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        x.u.i = x.u.f <= (y.type == CO_FLOAT ? y.u.f : (double)y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_GRT:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i > y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        x.u.i = x.u.f > (y.type == CO_FLOAT ? y.u.f : (double)y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_GEQ:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i >= y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        x.u.i = x.u.f >= (y.type == CO_FLOAT ? y.u.f : (double)y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_EQU:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i == y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        if (y.type == CO_INTEGER) y.u.f = (double)y.u.i;
        x.u.i = fabs(x.u.f - y.u.f) < DBL_EPSILON;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_NEQ:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        if (y.type != CO_FLOAT) {
          x.u.i = x.u.i != y.u.i;
          break;
        } else
          x.u.f = (double)x.u.i;
      case CO_FLOAT:
        if (y.type == CO_INTEGER) y.u.f = (double)y.u.i;
        x.u.i = fabs(x.u.f - y.u.f) >= DBL_EPSILON;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_AND:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator AND (&)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.u.i >= LONG_BITS) y.u.i = LONG_BITS - 1;
        x.u.i &= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_XOR:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator XOR (^)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.u.i >= LONG_BITS) y.u.i = LONG_BITS - 1;
        x.u.i ^= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_OR:
      if (x.type == CO_FLOAT || y.type == CO_FLOAT) {
        calc_error(&x, "invalid type in binary operator OR (|)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        if (y.type == CO_INTEGER) x.type = CO_INTEGER;
      case CO_INTEGER:
        if (y.u.i >= LONG_BITS) y.u.i = LONG_BITS - 1;
        x.u.i |= y.u.i;
        break;
      case CO_FLOAT:
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_LAND:  /* logical AND */
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        x.u.i = x.u.i
          && (y.type == CO_FLOAT ? fabs(y.u.f) >= DBL_EPSILON : y.u.i);
        break;
      case CO_FLOAT:
        x.u.i = fabs(x.u.f) >= DBL_EPSILON
          && (y.type == CO_FLOAT ? fabs(y.u.f) >= DBL_EPSILON : y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_LOR:  /* logical OR */
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        x.u.i = x.u.i
          || (y.type == CO_FLOAT ? fabs(y.u.f) >= DBL_EPSILON : y.u.i);
        break;
      case CO_FLOAT:
        x.u.i = fabs(x.u.f) >= DBL_EPSILON
          || (y.type == CO_FLOAT ? fabs(y.u.f) >= DBL_EPSILON : y.u.i);
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      x.type = CO_BOOLEAN;
      break;
    case OP_ASSIGN:
      if (x.type != CO_VARIABLE) {
        calc_error(&x, "invalid l-value in assignment");
        ++error_f;
        break;
      }
      calc_assign(x, y);
      x = y;
      break;
    default:
      calc_error(&x, "syntax error");
      ++error_f;
      break;
    }
  } else {  /* unary operator */
    nremove = 1;
    assert(position + 1 < sp);
    op = stack[position];
    x = stack[position + 1];
    assert(op.type == CO_UNARY_OPERATOR);
    if (x.type == CO_VARIABLE) calc_evaluate(&x);
    switch (op.u.uo) {
    case OP_NEG:
      switch (x.type) {
      case CO_BOOLEAN:
      case CO_INTEGER:
        x.u.i = -x.u.i;
        break;
      case CO_FLOAT:
        x.u.f = -x.u.f;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_NOT:  /* logical NOT */
      switch (x.type) {
      case CO_INTEGER:
        x.type = CO_BOOLEAN;
      case CO_BOOLEAN:
        x.u.i = !x.u.i;
        break;
      case CO_FLOAT:
        x.u.i = !x.u.f;
        x.type = CO_BOOLEAN;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_COMP:  /* bit complement */
      if (x.type == CO_FLOAT) {
        calc_error(&x, "invalid type in unary operator COMP (~)");
        ++error_f;
        break;
      }
      switch (x.type) {
      case CO_BOOLEAN:
        x.type = CO_INTEGER;
      case CO_INTEGER:
        x.u.i = ~x.u.i;
        break;
      default:
        calc_error(&x, "syntax error");
        ++error_f;
        break;
      }
      break;
    case OP_PAROPEN:
      break;
    case OP_PARCLOSE:
    case OP_EXEC:
      /* `calc_operation()' should never be called for `OP_EXEC' or
       * `OP_PARCLOSE'. */
    default:
      calc_error(&x, "syntax error");
      ++error_f;
      break;
    }
  }
exit:
  for (i = position + 1; i < sp; ++i) calc_set_stack(i, stack[i + nremove]);
  calc_clear_stack(nremove);
  calc_set_stack(position, x);
  return error_f;
}
/* calc_operation */

  static int
calc_reduce(void)
  /* try to reduce to top of the stack.  return values:
   * -1:  reduction failed due to an error.  an error element has been put
   *      onto the stack.
   * 0:   no reduction.
   * 1:   reduction succeeded.
   */
{
  struct calc_object_s x, y, z;
  int error_f = 0;
  int reduce_f = 0;

  if (sp < 2) goto exit_calc_reduce;
  x = stack[sp - 1];
  y = stack[sp - 2];
  switch (x.type) {
  case CO_INTEGER: case CO_FLOAT: case CO_BOOLEAN: case CO_VARIABLE:
    switch (y.type) {
    case CO_UNARY_OPERATOR:
      if (y.u.uo != OP_PAROPEN) {
unary:  error_f = calc_operation(sp - 2, 0);
        ++reduce_f;
      }
      break;
    case CO_BINARY_OPERATOR:
      /* check if `y' is an unary minus */
      if (y.u.bo == OP_SUB && (sp == 2 ? 1 : !CO_VALUE(stack[sp - 3]))) {
        stack[sp - 2].type = CO_UNARY_OPERATOR;
        stack[sp - 2].u.uo = OP_NEG;
        goto unary;
      }
      break;
    default:
      calc_error(stack + sp++, "syntax error");
      ++error_f;
      break;
    }
    break;
  case CO_UNARY_OPERATOR:
    if (x.u.uo == OP_PARCLOSE)
      goto eval;
    else if (x.u.uo == OP_EXEC && sp > 3)
      goto exec;
    break;
  case CO_BINARY_OPERATOR:
    if (sp > 3) {
exec: z = stack[sp - 3];
      if (z.type == CO_BINARY_OPERATOR) {
        if (!CO_VALUE(y) && y.type != CO_VARIABLE) {
          calc_error(stack + sp++, "syntax error");
          ++error_f;
          break;
        } else if (prec[(int)z.u.bo] <= prec[(int)x.u.bo]
                   || x.type == CO_UNARY_OPERATOR) {
          error_f = calc_operation(sp - 4, 1);
          ++reduce_f;
          break;
        }
      } else {
        if (z.type != CO_UNARY_OPERATOR || z.u.uo != OP_PAROPEN) {
          calc_error(stack + sp++, "syntax error");
          ++error_f;
          break;
        }
      }
    }
    break;
  default: abort();
  }
exit_calc_reduce:
  return error_f ? -1 : reduce_f;

eval: /* evaluate a parenthesed expression */
  if (sp > 1 && y.type == CO_UNARY_OPERATOR ? y.u.uo == OP_PAROPEN : 0) {
    calc_clear_stack(2);
    calc_error(stack + sp++, "empty parentheses");
    ++error_f;
  } else if (sp > 2) {
    z = stack[sp - 3];
    if (z.type == CO_BINARY_OPERATOR && sp > 3)
      goto exec;
    else if (z.type == CO_UNARY_OPERATOR) {
      assert(z.u.uo == OP_PAROPEN);
      if (!CO_VALUE(y)) {
        calc_error(&y, "invalid object (%s) in parentheses",
                   calc_object_names[(int)y.type]);
        ++error_f;
      }
      stack[sp - 3] = y;
      calc_clear_stack(2);
      ++reduce_f;
    }
  } else {
    calc_clear_stack(1);
    calc_error(stack + sp++, "unmatched ')'");
    ++error_f;
  }
  return error_f ? -1 : reduce_f;
}
/* calc_reduce */

  static int
istrue(char *s, char **endptr)
{
  static char *true_strings[] = { "true", "t", "TRUE", "True", "T",
    "yes", "y", "YES", "Yes", "on", "ON", "On", 0 };
  int i, l;

  for (i = 0; (l = (true_strings[i] ? strlen(true_strings[i]) : 0)); ++i)
    if (!strncmp(true_strings[i], s, l)) {
      *endptr = s + l;
      return 1;
    }
  *endptr = s;
  return 0;
}
/* istrue */

  static int
isfalse(char *s, char **endptr)
{
  static char *false_strings[] = { "false", "f", "FALSE", "False", "F",
    "no", "n", "NO", "No", "off", "OFF", "Off", 0 };
  int i, l;

  for (i = 0; (l = (false_strings[i] ? strlen(false_strings[i]) : 0)); ++i)
    if (!strncmp(false_strings[i], s, l)) {
      *endptr = s + l;
      return 1;
    }
  *endptr = s;
  return 0;
}
/* isfalse */

#ifndef XDIGIT
#define XDIGIT(x) (isdigit(x) ? x - '0' : tolower(x) - 'a' + 0xa)
#endif

  static int
calc_scan(char *expr)
{
  char *p, *q, *r;
  long val;
  double fval;
  struct calc_object_s x;
  int float_f = 0;
  int base;
  int i;

  calc_clear_stack(sp);
  for (p = expr; p;) {
    while (isspace(*p)) ++p;
    if (!*p) break;
    if (isdigit(*p) || *p == '.') {
      if (*p == '0') {
        if (tolower(p[1]) == 'x') /* hex */
          base = 0x10, r = p + 2;
        else if (isdigit(p[1])) /* oct */
          base = 010, r = p + 1;
        else
          goto dec;
      } else { /* dec */
dec:    base = 10, r = p;
        for (q = p, val = 0; isdigit(*q); ++q);
        if (*q == '.' || *q == 'e' || *q == 'E') ++float_f;
      }
      if (float_f) {
        fval = strtod(r, &p);
        x.type = CO_FLOAT;
        x.u.f = fval;
      } else {
        val = strtol(r, &p, base);
        x.type = CO_INTEGER;
        x.u.i = val;
      }
    } else if (istrue(p, &p)) {
      x.type = CO_BOOLEAN;
      x.u.i = 1;
    } else if (isfalse(p, &p)) {
      x.type = CO_BOOLEAN;
      x.u.i = 0;
    } else if (isalpha(*p) || *p == '_' || *p == '$') {
      for (q = p + 1; isalnum(*q) || *q == '_' || *q == '$'; ++q);
      x.type = CO_VARIABLE;
      x.u.s = strdup(p);
      x.u.s[q - p] = 0;
      p = q;
    } else {
      switch (*p) {
      case '*':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        if (*p == '*') {
          ++p;
          x.u.bo = OP_POW;
        } else
          x.u.bo = OP_MUL;
        break;
      case '/':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        x.u.bo = OP_DIV;
        break;
      case '%':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        x.u.bo = OP_MOD;
        break;
      case '+':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        x.u.bo = OP_ADD;
        break;
      case '-':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        x.u.bo = OP_SUB;
        break;
      case '<':
        ++p;
        switch (*p) {
        case '<':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_SHL;
          break;
        case '=':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_LEQ;
          break;
        default:
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_LES;
        }
        break;
      case '>':
        ++p;
        switch (*p) {
        case '>':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_SHR;
          break;
        case '=':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_GEQ;
          break;
        default:
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_GRT;
        }
        break;
      case '=':
        ++p;
        switch (*p) {
        case '=':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_EQU;
          break;
        default:
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_ASSIGN;
        }
        break;
      case '!':
        ++p;
        switch (*p) {
        case '=':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_NEQ;
          break;
        default:
          x.type = CO_UNARY_OPERATOR;
          x.u.uo = OP_NOT;
        }
        break;
      case '&':
        ++p;
        switch (*p) {
        case '&':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_LAND;
          break;
        default:
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_AND;
        }
        break;
      case '|':
        ++p;
        switch (*p) {
        case '|':
          ++p;
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_LOR;
          break;
        default:
          x.type = CO_BINARY_OPERATOR;
          x.u.bo = OP_OR;
        }
        break;
      case '^':
        ++p;
        x.type = CO_BINARY_OPERATOR;
        x.u.bo = OP_XOR;
        break;
      case '~':
        ++p;
        x.type = CO_UNARY_OPERATOR;
        x.u.uo = OP_COMP;
        break;
      case '(':
        ++p;
        x.type = CO_UNARY_OPERATOR;
        x.u.uo = OP_PAROPEN;
        break;
      case ')':
        ++p;
        x.type = CO_UNARY_OPERATOR;
        x.u.uo = OP_PARCLOSE;
        break;
      default:
        calc_error(stack + sp++, "unexpected caracter %c (0x%x)",
                   isprint(*p) ? *p : ' ', (int)(unsigned char)*p);
        return -1;
      }
    }
    stack[sp++] = x;
#   if DEBUG
    calc_stack();
    while ((i = calc_reduce()) > 0) calc_stack();
    if (i < 0) {
      calc_stack();
      return -1;
    }
#   else
    while ((i = calc_reduce()) > 0);
    if (i < 0) return -1;
#   endif
  }
  x.type = CO_UNARY_OPERATOR;
  x.u.uo = OP_EXEC;
  stack[sp++] = x;
# if DEBUG
  calc_stack();
  while ((i = calc_reduce()) > 0) calc_stack();
  if (i < 0) calc_stack();
# else
  while ((i = calc_reduce()) > 0);
# endif
  return i;
}
/* calc_scan */

#ifdef MYCALC
  int
main(argc, argv)
  int argc;
  char **argv;
{
  char buf[256];
  int error_f = 0;
  int i;
  struct calc_object_s x;

  calc_initialize_stack();
  for (;;) {
    *buf = 0;
    if (argc > 1)
      for (i = 1; i < argc; ++i)
	snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%s", argv[i]);
    else
      fgets(buf, 256, stdin);
    if (!*buf) break;
    if (buf[strlen(buf) - 1] == '\n') buf[strlen(buf) - 1] = 0;
    if (calc_scan(buf)) {
      /* search for error objects on the stack */
      for (i = sp - 1; i >= 0; --i)
        if (stack[i].type == CO_ERROR) {
          calc_print(stack[i], 0);
          ++error_f;
          putchar('\n');
        }
      if (!error_f) {
        printf("unknown error\nstack:\n");
        calc_stack();
      }
    } else {
      if (stack[1].type != CO_UNARY_OPERATOR || stack[1].u.uo != OP_EXEC)
        printf("syntax error");
      else {
        if (stack[0].type == CO_VARIABLE) calc_evaluate(stack);
        if (stack[0].type == CO_ERROR)
          calc_print(stack[0], 0);
        else if (!CO_VALUE(stack[0]))
          printf("syntax error");
        else {
          if (argc == 1) printf("$%i = ", ++calc_command_counter);
          calc_print(stack[0], 0);
          x.type = CO_VARIABLE;
          x.u.s = (char *)alloca(256);
          sprintf(x.u.s, "$%i", calc_command_counter);
          calc_assign(x, stack[0]);
          sprintf(x.u.s, "$$");
          calc_assign(x, stack[0]);
        }
        putchar('\n');
      }
    }
    calc_clear_stack(sp);
    if (argc > 1) break;
  }
  return 0;
}
/* main */
#else
  char *
calculator(char *expr)
{
  int i;
  int error_f = 0;
  static char result[256];
  struct calc_object_s x;

  calc_initialize_stack();
  if (calc_scan(expr)) {
    /* search for error objects on the stack */
    for (i = sp - 1; i >= 0; --i)
      if (stack[i].type == CO_ERROR) {
        calc_sprint(result, stack[i]);
        ++error_f;
        break;
      }
    if (!error_f)
      sprintf(result, "unknown error");
  } else {
    if (stack[1].type != CO_UNARY_OPERATOR || stack[1].u.uo != OP_EXEC)
      sprintf(result, "syntax error");
    else {
      if (stack[0].type == CO_VARIABLE) calc_evaluate(stack);
      if (stack[0].type == CO_ERROR)
        calc_sprint(result, stack[0]);
      else if (!CO_VALUE(stack[0]))
        sprintf(result, "syntax error");
      else {
        sprintf(result, "$%i = ", ++calc_command_counter);
        calc_sprint(result + strlen(result), stack[0]);
        x.type = CO_VARIABLE;
        x.u.s = (char *)alloca(256);
        sprintf(x.u.s, "$%i", calc_command_counter);
        calc_assign(x, stack[0]);
        sprintf(x.u.s, "$$");
        calc_assign(x, stack[0]);
      }
    }
  }
  calc_clear_stack(sp);
  return result;
}
/* calculator */
#endif

/* end of calc.c */

/* VIM configuration: (do not delete this line)
 *
 * vim:bk:nodg:efm=%f\:%l\:%m:hid:icon:
 * vim:sw=2:sm:textwidth=79:ul=1024:wrap:
 */