~ubuntu-branches/ubuntu/quantal/libjpeg-turbo/quantal-201207102317

1 by Tom Gall
Import upstream version 1.1.90+svn702
1
/*
2
 * jmemmgr.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains the JPEG system-independent memory management
9
 * routines.  This code is usable across a wide variety of machines; most
10
 * of the system dependencies have been isolated in a separate file.
11
 * The major functions provided here are:
12
 *   * pool-based allocation and freeing of memory;
13
 *   * policy decisions about how to divide available memory among the
14
 *     virtual arrays;
15
 *   * control logic for swapping virtual arrays between main memory and
16
 *     backing storage.
17
 * The separate system-dependent file provides the actual backing-storage
18
 * access code, and it contains the policy decision about how much total
19
 * main memory to use.
20
 * This file is system-dependent in the sense that some of its functions
21
 * are unnecessary in some systems.  For example, if there is enough virtual
22
 * memory so that backing storage will never be used, much of the virtual
23
 * array control logic could be removed.  (Of course, if you have that much
24
 * memory then you shouldn't care about a little bit of unused code...)
25
 */
26
27
#define JPEG_INTERNALS
28
#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
29
#include "jinclude.h"
30
#include "jpeglib.h"
31
#include "jmemsys.h"		/* import the system-dependent declarations */
32
33
#ifndef NO_GETENV
34
#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
35
extern char * getenv JPP((const char * name));
36
#endif
37
#endif
38
39
40
LOCAL(size_t)
41
round_up_pow2 (size_t a, size_t b)
42
/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
43
/* Assumes a >= 0, b > 0, and b is a power of 2 */
44
{
45
  return ((a + b - 1) & (~(b - 1)));
46
}
47
48
49
/*
50
 * Some important notes:
51
 *   The allocation routines provided here must never return NULL.
52
 *   They should exit to error_exit if unsuccessful.
53
 *
54
 *   It's not a good idea to try to merge the sarray and barray routines,
55
 *   even though they are textually almost the same, because samples are
56
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
57
 *   in machines where byte pointers have a different representation from
58
 *   word pointers, the resulting machine code could not be the same.
59
 */
60
61
62
/*
63
 * Many machines require storage alignment: longs must start on 4-byte
64
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
65
 * always returns pointers that are multiples of the worst-case alignment
66
 * requirement, and we had better do so too.
67
 * There isn't any really portable way to determine the worst-case alignment
68
 * requirement.  This module assumes that the alignment requirement is
69
 * multiples of ALIGN_SIZE.
70
 * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
71
 * workstations (where doubles really do need 8-byte alignment) and will work
72
 * fine on nearly everything.  If your machine has lesser alignment needs,
73
 * you can save a few bytes by making ALIGN_SIZE smaller.
74
 * The only place I know of where this will NOT work is certain Macintosh
75
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
76
 * Doing 10-byte alignment is counterproductive because longwords won't be
77
 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
78
 * such a compiler.
79
 */
80
81
#ifndef ALIGN_SIZE		/* so can override from jconfig.h */
82
#ifndef WITH_SIMD
83
#define ALIGN_SIZE  SIZEOF(double)
84
#else
85
#define ALIGN_SIZE  16 /* Most SIMD implementations require this */
86
#endif
87
#endif
88
89
/*
90
 * We allocate objects from "pools", where each pool is gotten with a single
91
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
92
 * overhead within a pool, except for alignment padding.  Each pool has a
93
 * header with a link to the next pool of the same class.
94
 * Small and large pool headers are identical except that the latter's
95
 * link pointer must be FAR on 80x86 machines.
96
 */
97
98
typedef struct small_pool_struct * small_pool_ptr;
99
100
typedef struct small_pool_struct {
101
  small_pool_ptr next;	/* next in list of pools */
102
  size_t bytes_used;		/* how many bytes already used within pool */
103
  size_t bytes_left;		/* bytes still available in this pool */
104
} small_pool_hdr;
105
106
typedef struct large_pool_struct FAR * large_pool_ptr;
107
108
typedef struct large_pool_struct {
109
  large_pool_ptr next;	/* next in list of pools */
110
  size_t bytes_used;		/* how many bytes already used within pool */
111
  size_t bytes_left;		/* bytes still available in this pool */
112
} large_pool_hdr;
113
114
/*
115
 * Here is the full definition of a memory manager object.
116
 */
117
118
typedef struct {
119
  struct jpeg_memory_mgr pub;	/* public fields */
120
121
  /* Each pool identifier (lifetime class) names a linked list of pools. */
122
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
123
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
124
125
  /* Since we only have one lifetime class of virtual arrays, only one
126
   * linked list is necessary (for each datatype).  Note that the virtual
127
   * array control blocks being linked together are actually stored somewhere
128
   * in the small-pool list.
129
   */
130
  jvirt_sarray_ptr virt_sarray_list;
131
  jvirt_barray_ptr virt_barray_list;
132
133
  /* This counts total space obtained from jpeg_get_small/large */
134
  size_t total_space_allocated;
135
136
  /* alloc_sarray and alloc_barray set this value for use by virtual
137
   * array routines.
138
   */
139
  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
140
} my_memory_mgr;
141
142
typedef my_memory_mgr * my_mem_ptr;
143
144
145
/*
146
 * The control blocks for virtual arrays.
147
 * Note that these blocks are allocated in the "small" pool area.
148
 * System-dependent info for the associated backing store (if any) is hidden
149
 * inside the backing_store_info struct.
150
 */
151
152
struct jvirt_sarray_control {
153
  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
154
  JDIMENSION rows_in_array;	/* total virtual array height */
155
  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
156
  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
157
  JDIMENSION rows_in_mem;	/* height of memory buffer */
158
  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
159
  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
160
  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
161
  boolean pre_zero;		/* pre-zero mode requested? */
162
  boolean dirty;		/* do current buffer contents need written? */
163
  boolean b_s_open;		/* is backing-store data valid? */
164
  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
165
  backing_store_info b_s_info;	/* System-dependent control info */
166
};
167
168
struct jvirt_barray_control {
169
  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
170
  JDIMENSION rows_in_array;	/* total virtual array height */
171
  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
172
  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
173
  JDIMENSION rows_in_mem;	/* height of memory buffer */
174
  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
175
  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
176
  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
177
  boolean pre_zero;		/* pre-zero mode requested? */
178
  boolean dirty;		/* do current buffer contents need written? */
179
  boolean b_s_open;		/* is backing-store data valid? */
180
  jvirt_barray_ptr next;	/* link to next virtual barray control block */
181
  backing_store_info b_s_info;	/* System-dependent control info */
182
};
183
184
185
#ifdef MEM_STATS		/* optional extra stuff for statistics */
186
187
LOCAL(void)
188
print_mem_stats (j_common_ptr cinfo, int pool_id)
189
{
190
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
191
  small_pool_ptr shdr_ptr;
192
  large_pool_ptr lhdr_ptr;
193
194
  /* Since this is only a debugging stub, we can cheat a little by using
195
   * fprintf directly rather than going through the trace message code.
196
   * This is helpful because message parm array can't handle longs.
197
   */
198
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
199
	  pool_id, mem->total_space_allocated);
200
201
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
202
       lhdr_ptr = lhdr_ptr->next) {
203
    fprintf(stderr, "  Large chunk used %ld\n",
204
	    (long) lhdr_ptr->bytes_used);
205
  }
206
207
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
208
       shdr_ptr = shdr_ptr->next) {
209
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
210
	    (long) shdr_ptr->bytes_used,
211
	    (long) shdr_ptr->bytes_left);
212
  }
213
}
214
215
#endif /* MEM_STATS */
216
217
218
LOCAL(void)
219
out_of_memory (j_common_ptr cinfo, int which)
220
/* Report an out-of-memory error and stop execution */
221
/* If we compiled MEM_STATS support, report alloc requests before dying */
222
{
223
#ifdef MEM_STATS
224
  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
225
#endif
226
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
227
}
228
229
230
/*
231
 * Allocation of "small" objects.
232
 *
233
 * For these, we use pooled storage.  When a new pool must be created,
234
 * we try to get enough space for the current request plus a "slop" factor,
235
 * where the slop will be the amount of leftover space in the new pool.
236
 * The speed vs. space tradeoff is largely determined by the slop values.
237
 * A different slop value is provided for each pool class (lifetime),
238
 * and we also distinguish the first pool of a class from later ones.
239
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
240
 * machines, but may be too small if longs are 64 bits or more.
241
 *
242
 * Since we do not know what alignment malloc() gives us, we have to
243
 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
244
 * adjustment.
245
 */
246
247
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
248
{
249
	1600,			/* first PERMANENT pool */
250
	16000			/* first IMAGE pool */
251
};
252
253
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
254
{
255
	0,			/* additional PERMANENT pools */
256
	5000			/* additional IMAGE pools */
257
};
258
259
#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
260
261
262
METHODDEF(void *)
263
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
264
/* Allocate a "small" object */
265
{
266
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
267
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
268
  char * data_ptr;
269
  size_t min_request, slop;
270
271
  /*
272
   * Round up the requested size to a multiple of ALIGN_SIZE in order
273
   * to assure alignment for the next object allocated in the same pool
274
   * and so that algorithms can straddle outside the proper area up
275
   * to the next alignment.
276
   */
277
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
278
279
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
280
  if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
281
    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
282
283
  /* See if space is available in any existing pool */
284
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
285
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
286
  prev_hdr_ptr = NULL;
287
  hdr_ptr = mem->small_list[pool_id];
288
  while (hdr_ptr != NULL) {
289
    if (hdr_ptr->bytes_left >= sizeofobject)
290
      break;			/* found pool with enough space */
291
    prev_hdr_ptr = hdr_ptr;
292
    hdr_ptr = hdr_ptr->next;
293
  }
294
295
  /* Time to make a new pool? */
296
  if (hdr_ptr == NULL) {
297
    /* min_request is what we need now, slop is what will be leftover */
298
    min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
299
    if (prev_hdr_ptr == NULL)	/* first pool in class? */
300
      slop = first_pool_slop[pool_id];
301
    else
302
      slop = extra_pool_slop[pool_id];
303
    /* Don't ask for more than MAX_ALLOC_CHUNK */
304
    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
305
      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
306
    /* Try to get space, if fail reduce slop and try again */
307
    for (;;) {
308
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
309
      if (hdr_ptr != NULL)
310
	break;
311
      slop /= 2;
312
      if (slop < MIN_SLOP)	/* give up when it gets real small */
313
	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
314
    }
315
    mem->total_space_allocated += min_request + slop;
316
    /* Success, initialize the new pool header and add to end of list */
317
    hdr_ptr->next = NULL;
318
    hdr_ptr->bytes_used = 0;
319
    hdr_ptr->bytes_left = sizeofobject + slop;
320
    if (prev_hdr_ptr == NULL)	/* first pool in class? */
321
      mem->small_list[pool_id] = hdr_ptr;
322
    else
323
      prev_hdr_ptr->next = hdr_ptr;
324
  }
325
326
  /* OK, allocate the object from the current pool */
327
  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
328
  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
329
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
330
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
331
  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
332
  hdr_ptr->bytes_used += sizeofobject;
333
  hdr_ptr->bytes_left -= sizeofobject;
334
335
  return (void *) data_ptr;
336
}
337
338
339
/*
340
 * Allocation of "large" objects.
341
 *
342
 * The external semantics of these are the same as "small" objects,
343
 * except that FAR pointers are used on 80x86.  However the pool
344
 * management heuristics are quite different.  We assume that each
345
 * request is large enough that it may as well be passed directly to
346
 * jpeg_get_large; the pool management just links everything together
347
 * so that we can free it all on demand.
348
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
349
 * structures.  The routines that create these structures (see below)
350
 * deliberately bunch rows together to ensure a large request size.
351
 */
352
353
METHODDEF(void FAR *)
354
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
355
/* Allocate a "large" object */
356
{
357
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
358
  large_pool_ptr hdr_ptr;
359
  char FAR * data_ptr;
360
361
  /*
362
   * Round up the requested size to a multiple of ALIGN_SIZE so that
363
   * algorithms can straddle outside the proper area up to the next
364
   * alignment.
365
   */
366
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
367
368
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
369
  if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
370
    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
371
372
  /* Always make a new pool */
373
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
374
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
375
376
  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
377
					    SIZEOF(large_pool_hdr) +
378
					    ALIGN_SIZE - 1);
379
  if (hdr_ptr == NULL)
380
    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
381
  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
382
383
  /* Success, initialize the new pool header and add to list */
384
  hdr_ptr->next = mem->large_list[pool_id];
385
  /* We maintain space counts in each pool header for statistical purposes,
386
   * even though they are not needed for allocation.
387
   */
388
  hdr_ptr->bytes_used = sizeofobject;
389
  hdr_ptr->bytes_left = 0;
390
  mem->large_list[pool_id] = hdr_ptr;
391
392
  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
393
  data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
394
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
395
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
396
397
  return (void FAR *) data_ptr;
398
}
399
400
401
/*
402
 * Creation of 2-D sample arrays.
403
 * The pointers are in near heap, the samples themselves in FAR heap.
404
 *
405
 * To minimize allocation overhead and to allow I/O of large contiguous
406
 * blocks, we allocate the sample rows in groups of as many rows as possible
407
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
408
 * NB: the virtual array control routines, later in this file, know about
409
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
410
 * object so that it can be saved away if this sarray is the workspace for
411
 * a virtual array.
412
 *
413
 * Since we are often upsampling with a factor 2, we align the size (not
414
 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
415
 * to be as careful about size.
416
 */
417
418
METHODDEF(JSAMPARRAY)
419
alloc_sarray (j_common_ptr cinfo, int pool_id,
420
	      JDIMENSION samplesperrow, JDIMENSION numrows)
421
/* Allocate a 2-D sample array */
422
{
423
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
424
  JSAMPARRAY result;
425
  JSAMPROW workspace;
426
  JDIMENSION rowsperchunk, currow, i;
427
  long ltemp;
428
429
  /* Make sure each row is properly aligned */
430
  if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
431
    out_of_memory(cinfo, 5);	/* safety check */
432
  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
433
434
  /* Calculate max # of rows allowed in one allocation chunk */
435
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
436
	  ((long) samplesperrow * SIZEOF(JSAMPLE));
437
  if (ltemp <= 0)
438
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
439
  if (ltemp < (long) numrows)
440
    rowsperchunk = (JDIMENSION) ltemp;
441
  else
442
    rowsperchunk = numrows;
443
  mem->last_rowsperchunk = rowsperchunk;
444
445
  /* Get space for row pointers (small object) */
446
  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
447
				    (size_t) (numrows * SIZEOF(JSAMPROW)));
448
449
  /* Get the rows themselves (large objects) */
450
  currow = 0;
451
  while (currow < numrows) {
452
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
453
    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
454
	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
455
		  * SIZEOF(JSAMPLE)));
456
    for (i = rowsperchunk; i > 0; i--) {
457
      result[currow++] = workspace;
458
      workspace += samplesperrow;
459
    }
460
  }
461
462
  return result;
463
}
464
465
466
/*
467
 * Creation of 2-D coefficient-block arrays.
468
 * This is essentially the same as the code for sample arrays, above.
469
 */
470
471
METHODDEF(JBLOCKARRAY)
472
alloc_barray (j_common_ptr cinfo, int pool_id,
473
	      JDIMENSION blocksperrow, JDIMENSION numrows)
474
/* Allocate a 2-D coefficient-block array */
475
{
476
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
477
  JBLOCKARRAY result;
478
  JBLOCKROW workspace;
479
  JDIMENSION rowsperchunk, currow, i;
480
  long ltemp;
481
482
  /* Make sure each row is properly aligned */
483
  if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
484
    out_of_memory(cinfo, 6);	/* safety check */
485
486
  /* Calculate max # of rows allowed in one allocation chunk */
487
  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
488
	  ((long) blocksperrow * SIZEOF(JBLOCK));
489
  if (ltemp <= 0)
490
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
491
  if (ltemp < (long) numrows)
492
    rowsperchunk = (JDIMENSION) ltemp;
493
  else
494
    rowsperchunk = numrows;
495
  mem->last_rowsperchunk = rowsperchunk;
496
497
  /* Get space for row pointers (small object) */
498
  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
499
				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
500
501
  /* Get the rows themselves (large objects) */
502
  currow = 0;
503
  while (currow < numrows) {
504
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
505
    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
506
	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
507
		  * SIZEOF(JBLOCK)));
508
    for (i = rowsperchunk; i > 0; i--) {
509
      result[currow++] = workspace;
510
      workspace += blocksperrow;
511
    }
512
  }
513
514
  return result;
515
}
516
517
518
/*
519
 * About virtual array management:
520
 *
521
 * The above "normal" array routines are only used to allocate strip buffers
522
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
523
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
524
 * time, but the memory manager must save the whole array for repeated
525
 * accesses.  The intended implementation is that there is a strip buffer in
526
 * memory (as high as is possible given the desired memory limit), plus a
527
 * backing file that holds the rest of the array.
528
 *
529
 * The request_virt_array routines are told the total size of the image and
530
 * the maximum number of rows that will be accessed at once.  The in-memory
531
 * buffer must be at least as large as the maxaccess value.
532
 *
533
 * The request routines create control blocks but not the in-memory buffers.
534
 * That is postponed until realize_virt_arrays is called.  At that time the
535
 * total amount of space needed is known (approximately, anyway), so free
536
 * memory can be divided up fairly.
537
 *
538
 * The access_virt_array routines are responsible for making a specific strip
539
 * area accessible (after reading or writing the backing file, if necessary).
540
 * Note that the access routines are told whether the caller intends to modify
541
 * the accessed strip; during a read-only pass this saves having to rewrite
542
 * data to disk.  The access routines are also responsible for pre-zeroing
543
 * any newly accessed rows, if pre-zeroing was requested.
544
 *
545
 * In current usage, the access requests are usually for nonoverlapping
546
 * strips; that is, successive access start_row numbers differ by exactly
547
 * num_rows = maxaccess.  This means we can get good performance with simple
548
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
549
 * of the access height; then there will never be accesses across bufferload
550
 * boundaries.  The code will still work with overlapping access requests,
551
 * but it doesn't handle bufferload overlaps very efficiently.
552
 */
553
554
555
METHODDEF(jvirt_sarray_ptr)
556
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557
		     JDIMENSION samplesperrow, JDIMENSION numrows,
558
		     JDIMENSION maxaccess)
559
/* Request a virtual 2-D sample array */
560
{
561
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562
  jvirt_sarray_ptr result;
563
564
  /* Only IMAGE-lifetime virtual arrays are currently supported */
565
  if (pool_id != JPOOL_IMAGE)
566
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
567
568
  /* get control block */
569
  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
570
					  SIZEOF(struct jvirt_sarray_control));
571
572
  result->mem_buffer = NULL;	/* marks array not yet realized */
573
  result->rows_in_array = numrows;
574
  result->samplesperrow = samplesperrow;
575
  result->maxaccess = maxaccess;
576
  result->pre_zero = pre_zero;
577
  result->b_s_open = FALSE;	/* no associated backing-store object */
578
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
579
  mem->virt_sarray_list = result;
580
581
  return result;
582
}
583
584
585
METHODDEF(jvirt_barray_ptr)
586
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
587
		     JDIMENSION blocksperrow, JDIMENSION numrows,
588
		     JDIMENSION maxaccess)
589
/* Request a virtual 2-D coefficient-block array */
590
{
591
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
592
  jvirt_barray_ptr result;
593
594
  /* Only IMAGE-lifetime virtual arrays are currently supported */
595
  if (pool_id != JPOOL_IMAGE)
596
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
597
598
  /* get control block */
599
  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
600
					  SIZEOF(struct jvirt_barray_control));
601
602
  result->mem_buffer = NULL;	/* marks array not yet realized */
603
  result->rows_in_array = numrows;
604
  result->blocksperrow = blocksperrow;
605
  result->maxaccess = maxaccess;
606
  result->pre_zero = pre_zero;
607
  result->b_s_open = FALSE;	/* no associated backing-store object */
608
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
609
  mem->virt_barray_list = result;
610
611
  return result;
612
}
613
614
615
METHODDEF(void)
616
realize_virt_arrays (j_common_ptr cinfo)
617
/* Allocate the in-memory buffers for any unrealized virtual arrays */
618
{
619
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
620
  size_t space_per_minheight, maximum_space, avail_mem;
621
  size_t minheights, max_minheights;
622
  jvirt_sarray_ptr sptr;
623
  jvirt_barray_ptr bptr;
624
625
  /* Compute the minimum space needed (maxaccess rows in each buffer)
626
   * and the maximum space needed (full image height in each buffer).
627
   * These may be of use to the system-dependent jpeg_mem_available routine.
628
   */
629
  space_per_minheight = 0;
630
  maximum_space = 0;
631
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
632
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
633
      space_per_minheight += (long) sptr->maxaccess *
634
			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
635
      maximum_space += (long) sptr->rows_in_array *
636
		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
637
    }
638
  }
639
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
640
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
641
      space_per_minheight += (long) bptr->maxaccess *
642
			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
643
      maximum_space += (long) bptr->rows_in_array *
644
		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
645
    }
646
  }
647
648
  if (space_per_minheight <= 0)
649
    return;			/* no unrealized arrays, no work */
650
651
  /* Determine amount of memory to actually use; this is system-dependent. */
652
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
653
				 mem->total_space_allocated);
654
655
  /* If the maximum space needed is available, make all the buffers full
656
   * height; otherwise parcel it out with the same number of minheights
657
   * in each buffer.
658
   */
659
  if (avail_mem >= maximum_space)
660
    max_minheights = 1000000000L;
661
  else {
662
    max_minheights = avail_mem / space_per_minheight;
663
    /* If there doesn't seem to be enough space, try to get the minimum
664
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
665
     */
666
    if (max_minheights <= 0)
667
      max_minheights = 1;
668
  }
669
670
  /* Allocate the in-memory buffers and initialize backing store as needed. */
671
672
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
673
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
674
      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
675
      if (minheights <= max_minheights) {
676
	/* This buffer fits in memory */
677
	sptr->rows_in_mem = sptr->rows_in_array;
678
      } else {
679
	/* It doesn't fit in memory, create backing store. */
680
	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
681
	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
682
				(long) sptr->rows_in_array *
683
				(long) sptr->samplesperrow *
684
				(long) SIZEOF(JSAMPLE));
685
	sptr->b_s_open = TRUE;
686
      }
687
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
688
				      sptr->samplesperrow, sptr->rows_in_mem);
689
      sptr->rowsperchunk = mem->last_rowsperchunk;
690
      sptr->cur_start_row = 0;
691
      sptr->first_undef_row = 0;
692
      sptr->dirty = FALSE;
693
    }
694
  }
695
696
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
697
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
698
      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
699
      if (minheights <= max_minheights) {
700
	/* This buffer fits in memory */
701
	bptr->rows_in_mem = bptr->rows_in_array;
702
      } else {
703
	/* It doesn't fit in memory, create backing store. */
704
	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
705
	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
706
				(long) bptr->rows_in_array *
707
				(long) bptr->blocksperrow *
708
				(long) SIZEOF(JBLOCK));
709
	bptr->b_s_open = TRUE;
710
      }
711
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
712
				      bptr->blocksperrow, bptr->rows_in_mem);
713
      bptr->rowsperchunk = mem->last_rowsperchunk;
714
      bptr->cur_start_row = 0;
715
      bptr->first_undef_row = 0;
716
      bptr->dirty = FALSE;
717
    }
718
  }
719
}
720
721
722
LOCAL(void)
723
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
724
/* Do backing store read or write of a virtual sample array */
725
{
726
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
727
728
  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
729
  file_offset = ptr->cur_start_row * bytesperrow;
730
  /* Loop to read or write each allocation chunk in mem_buffer */
731
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732
    /* One chunk, but check for short chunk at end of buffer */
733
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734
    /* Transfer no more than is currently defined */
735
    thisrow = (long) ptr->cur_start_row + i;
736
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737
    /* Transfer no more than fits in file */
738
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739
    if (rows <= 0)		/* this chunk might be past end of file! */
740
      break;
741
    byte_count = rows * bytesperrow;
742
    if (writing)
743
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744
					    (void FAR *) ptr->mem_buffer[i],
745
					    file_offset, byte_count);
746
    else
747
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748
					   (void FAR *) ptr->mem_buffer[i],
749
					   file_offset, byte_count);
750
    file_offset += byte_count;
751
  }
752
}
753
754
755
LOCAL(void)
756
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
757
/* Do backing store read or write of a virtual coefficient-block array */
758
{
759
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
760
761
  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
762
  file_offset = ptr->cur_start_row * bytesperrow;
763
  /* Loop to read or write each allocation chunk in mem_buffer */
764
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
765
    /* One chunk, but check for short chunk at end of buffer */
766
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
767
    /* Transfer no more than is currently defined */
768
    thisrow = (long) ptr->cur_start_row + i;
769
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
770
    /* Transfer no more than fits in file */
771
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
772
    if (rows <= 0)		/* this chunk might be past end of file! */
773
      break;
774
    byte_count = rows * bytesperrow;
775
    if (writing)
776
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
777
					    (void FAR *) ptr->mem_buffer[i],
778
					    file_offset, byte_count);
779
    else
780
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
781
					   (void FAR *) ptr->mem_buffer[i],
782
					   file_offset, byte_count);
783
    file_offset += byte_count;
784
  }
785
}
786
787
788
METHODDEF(JSAMPARRAY)
789
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
790
		    JDIMENSION start_row, JDIMENSION num_rows,
791
		    boolean writable)
792
/* Access the part of a virtual sample array starting at start_row */
793
/* and extending for num_rows rows.  writable is true if  */
794
/* caller intends to modify the accessed area. */
795
{
796
  JDIMENSION end_row = start_row + num_rows;
797
  JDIMENSION undef_row;
798
799
  /* debugging check */
800
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
801
      ptr->mem_buffer == NULL)
802
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
803
804
  /* Make the desired part of the virtual array accessible */
805
  if (start_row < ptr->cur_start_row ||
806
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
807
    if (! ptr->b_s_open)
808
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
809
    /* Flush old buffer contents if necessary */
810
    if (ptr->dirty) {
811
      do_sarray_io(cinfo, ptr, TRUE);
812
      ptr->dirty = FALSE;
813
    }
814
    /* Decide what part of virtual array to access.
815
     * Algorithm: if target address > current window, assume forward scan,
816
     * load starting at target address.  If target address < current window,
817
     * assume backward scan, load so that target area is top of window.
818
     * Note that when switching from forward write to forward read, will have
819
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
820
     */
821
    if (start_row > ptr->cur_start_row) {
822
      ptr->cur_start_row = start_row;
823
    } else {
824
      /* use long arithmetic here to avoid overflow & unsigned problems */
825
      long ltemp;
826
827
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
828
      if (ltemp < 0)
829
	ltemp = 0;		/* don't fall off front end of file */
830
      ptr->cur_start_row = (JDIMENSION) ltemp;
831
    }
832
    /* Read in the selected part of the array.
833
     * During the initial write pass, we will do no actual read
834
     * because the selected part is all undefined.
835
     */
836
    do_sarray_io(cinfo, ptr, FALSE);
837
  }
838
  /* Ensure the accessed part of the array is defined; prezero if needed.
839
   * To improve locality of access, we only prezero the part of the array
840
   * that the caller is about to access, not the entire in-memory array.
841
   */
842
  if (ptr->first_undef_row < end_row) {
843
    if (ptr->first_undef_row < start_row) {
844
      if (writable)		/* writer skipped over a section of array */
845
	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
846
      undef_row = start_row;	/* but reader is allowed to read ahead */
847
    } else {
848
      undef_row = ptr->first_undef_row;
849
    }
850
    if (writable)
851
      ptr->first_undef_row = end_row;
852
    if (ptr->pre_zero) {
853
      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
854
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
855
      end_row -= ptr->cur_start_row;
856
      while (undef_row < end_row) {
857
	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
858
	undef_row++;
859
      }
860
    } else {
861
      if (! writable)		/* reader looking at undefined data */
862
	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
863
    }
864
  }
865
  /* Flag the buffer dirty if caller will write in it */
866
  if (writable)
867
    ptr->dirty = TRUE;
868
  /* Return address of proper part of the buffer */
869
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
870
}
871
872
873
METHODDEF(JBLOCKARRAY)
874
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
875
		    JDIMENSION start_row, JDIMENSION num_rows,
876
		    boolean writable)
877
/* Access the part of a virtual block array starting at start_row */
878
/* and extending for num_rows rows.  writable is true if  */
879
/* caller intends to modify the accessed area. */
880
{
881
  JDIMENSION end_row = start_row + num_rows;
882
  JDIMENSION undef_row;
883
884
  /* debugging check */
885
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
886
      ptr->mem_buffer == NULL)
887
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
888
889
  /* Make the desired part of the virtual array accessible */
890
  if (start_row < ptr->cur_start_row ||
891
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
892
    if (! ptr->b_s_open)
893
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
894
    /* Flush old buffer contents if necessary */
895
    if (ptr->dirty) {
896
      do_barray_io(cinfo, ptr, TRUE);
897
      ptr->dirty = FALSE;
898
    }
899
    /* Decide what part of virtual array to access.
900
     * Algorithm: if target address > current window, assume forward scan,
901
     * load starting at target address.  If target address < current window,
902
     * assume backward scan, load so that target area is top of window.
903
     * Note that when switching from forward write to forward read, will have
904
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
905
     */
906
    if (start_row > ptr->cur_start_row) {
907
      ptr->cur_start_row = start_row;
908
    } else {
909
      /* use long arithmetic here to avoid overflow & unsigned problems */
910
      long ltemp;
911
912
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
913
      if (ltemp < 0)
914
	ltemp = 0;		/* don't fall off front end of file */
915
      ptr->cur_start_row = (JDIMENSION) ltemp;
916
    }
917
    /* Read in the selected part of the array.
918
     * During the initial write pass, we will do no actual read
919
     * because the selected part is all undefined.
920
     */
921
    do_barray_io(cinfo, ptr, FALSE);
922
  }
923
  /* Ensure the accessed part of the array is defined; prezero if needed.
924
   * To improve locality of access, we only prezero the part of the array
925
   * that the caller is about to access, not the entire in-memory array.
926
   */
927
  if (ptr->first_undef_row < end_row) {
928
    if (ptr->first_undef_row < start_row) {
929
      if (writable)		/* writer skipped over a section of array */
930
	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
931
      undef_row = start_row;	/* but reader is allowed to read ahead */
932
    } else {
933
      undef_row = ptr->first_undef_row;
934
    }
935
    if (writable)
936
      ptr->first_undef_row = end_row;
937
    if (ptr->pre_zero) {
938
      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
939
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
940
      end_row -= ptr->cur_start_row;
941
      while (undef_row < end_row) {
942
	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
943
	undef_row++;
944
      }
945
    } else {
946
      if (! writable)		/* reader looking at undefined data */
947
	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
948
    }
949
  }
950
  /* Flag the buffer dirty if caller will write in it */
951
  if (writable)
952
    ptr->dirty = TRUE;
953
  /* Return address of proper part of the buffer */
954
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
955
}
956
957
958
/*
959
 * Release all objects belonging to a specified pool.
960
 */
961
962
METHODDEF(void)
963
free_pool (j_common_ptr cinfo, int pool_id)
964
{
965
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
966
  small_pool_ptr shdr_ptr;
967
  large_pool_ptr lhdr_ptr;
968
  size_t space_freed;
969
970
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
971
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
972
973
#ifdef MEM_STATS
974
  if (cinfo->err->trace_level > 1)
975
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
976
#endif
977
978
  /* If freeing IMAGE pool, close any virtual arrays first */
979
  if (pool_id == JPOOL_IMAGE) {
980
    jvirt_sarray_ptr sptr;
981
    jvirt_barray_ptr bptr;
982
983
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
984
      if (sptr->b_s_open) {	/* there may be no backing store */
985
	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
986
	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
987
      }
988
    }
989
    mem->virt_sarray_list = NULL;
990
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
991
      if (bptr->b_s_open) {	/* there may be no backing store */
992
	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
993
	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
994
      }
995
    }
996
    mem->virt_barray_list = NULL;
997
  }
998
999
  /* Release large objects */
1000
  lhdr_ptr = mem->large_list[pool_id];
1001
  mem->large_list[pool_id] = NULL;
1002
1003
  while (lhdr_ptr != NULL) {
1004
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1005
    space_freed = lhdr_ptr->bytes_used +
1006
		  lhdr_ptr->bytes_left +
1007
		  SIZEOF(large_pool_hdr);
1008
    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1009
    mem->total_space_allocated -= space_freed;
1010
    lhdr_ptr = next_lhdr_ptr;
1011
  }
1012
1013
  /* Release small objects */
1014
  shdr_ptr = mem->small_list[pool_id];
1015
  mem->small_list[pool_id] = NULL;
1016
1017
  while (shdr_ptr != NULL) {
1018
    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1019
    space_freed = shdr_ptr->bytes_used +
1020
		  shdr_ptr->bytes_left +
1021
		  SIZEOF(small_pool_hdr);
1022
    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1023
    mem->total_space_allocated -= space_freed;
1024
    shdr_ptr = next_shdr_ptr;
1025
  }
1026
}
1027
1028
1029
/*
1030
 * Close up shop entirely.
1031
 * Note that this cannot be called unless cinfo->mem is non-NULL.
1032
 */
1033
1034
METHODDEF(void)
1035
self_destruct (j_common_ptr cinfo)
1036
{
1037
  int pool;
1038
1039
  /* Close all backing store, release all memory.
1040
   * Releasing pools in reverse order might help avoid fragmentation
1041
   * with some (brain-damaged) malloc libraries.
1042
   */
1043
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1044
    free_pool(cinfo, pool);
1045
  }
1046
1047
  /* Release the memory manager control block too. */
1048
  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1049
  cinfo->mem = NULL;		/* ensures I will be called only once */
1050
1051
  jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1052
}
1053
1054
1055
/*
1056
 * Memory manager initialization.
1057
 * When this is called, only the error manager pointer is valid in cinfo!
1058
 */
1059
1060
GLOBAL(void)
1061
jinit_memory_mgr (j_common_ptr cinfo)
1062
{
1063
  my_mem_ptr mem;
1064
  long max_to_use;
1065
  int pool;
1066
  size_t test_mac;
1067
1068
  cinfo->mem = NULL;		/* for safety if init fails */
1069
1070
  /* Check for configuration errors.
1071
   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1072
   * doesn't reflect any real hardware alignment requirement.
1073
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1074
   * in common if and only if X is a power of 2, ie has only one one-bit.
1075
   * Some compilers may give an "unreachable code" warning here; ignore it.
1076
   */
1077
  if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1078
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1079
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1080
   * a multiple of ALIGN_SIZE.
1081
   * Again, an "unreachable code" warning may be ignored here.
1082
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1083
   */
1084
  test_mac = (size_t) MAX_ALLOC_CHUNK;
1085
  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1086
      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1087
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1088
1089
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1090
1091
  /* Attempt to allocate memory manager's control block */
1092
  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1093
1094
  if (mem == NULL) {
1095
    jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1096
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1097
  }
1098
1099
  /* OK, fill in the method pointers */
1100
  mem->pub.alloc_small = alloc_small;
1101
  mem->pub.alloc_large = alloc_large;
1102
  mem->pub.alloc_sarray = alloc_sarray;
1103
  mem->pub.alloc_barray = alloc_barray;
1104
  mem->pub.request_virt_sarray = request_virt_sarray;
1105
  mem->pub.request_virt_barray = request_virt_barray;
1106
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1107
  mem->pub.access_virt_sarray = access_virt_sarray;
1108
  mem->pub.access_virt_barray = access_virt_barray;
1109
  mem->pub.free_pool = free_pool;
1110
  mem->pub.self_destruct = self_destruct;
1111
1112
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1113
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1114
1115
  /* Initialize working state */
1116
  mem->pub.max_memory_to_use = max_to_use;
1117
1118
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1119
    mem->small_list[pool] = NULL;
1120
    mem->large_list[pool] = NULL;
1121
  }
1122
  mem->virt_sarray_list = NULL;
1123
  mem->virt_barray_list = NULL;
1124
1125
  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1126
1127
  /* Declare ourselves open for business */
1128
  cinfo->mem = & mem->pub;
1129
1130
  /* Check for an environment variable JPEGMEM; if found, override the
1131
   * default max_memory setting from jpeg_mem_init.  Note that the
1132
   * surrounding application may again override this value.
1133
   * If your system doesn't support getenv(), define NO_GETENV to disable
1134
   * this feature.
1135
   */
1136
#ifndef NO_GETENV
1137
  { char * memenv;
1138
1139
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1140
      char ch = 'x';
1141
1142
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1143
	if (ch == 'm' || ch == 'M')
1144
	  max_to_use *= 1000L;
1145
	mem->pub.max_memory_to_use = max_to_use * 1000L;
1146
      }
1147
    }
1148
  }
1149
#endif
1150
1151
}