~ubuntu-branches/ubuntu/quantal/orpie/quantal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
(*  Orpie -- a fullscreen RPN calculator for the console
 *  Copyright (C) 2003-2004, 2005, 2006-2007 Paul Pelzl
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License, Version 2,
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *  Please send bug reports, patches, etc. to Paul Pelzl at 
 *  <pelzlpj@eecs.umich.edu>.
 *)

(* rpc_stack.ml -- implementation of internal calculator stack that holds
 *                 multiple data types
 *
 * The stack is implemented as a dynamically-allocated array.  This approach
 * enables non-standard stack operations such as random access and cyclic rotation of
 * elements.
 *
 * Each stack element contains both data and string (option) representations
 * of the data.  There can be multiple string representations, corresponding to
 * line-oriented and fullscreen displays, four different bases, two
 * different angle modes, and two different complex representations.  The
 * string representations are created immediately when needed; if not
 * immediately needed, they will eventually be precomputed and filled in in by a 
 * background thread (unless conserve_memory = false).
 *
 * Note: arguably, the rendering functions belong with the interface code
 *       rather than with the stack code.  I may make this change at some
 *       point, to better abstract the interface away from the underlying
 *       calculator object.
 *)


open Big_int
open Big_int_str
open Printf

exception Stack_error of string

(* orpie_data_t values are returned by pop(), but the values
 * on the stack are in stack_data_t format *)
type orpie_data_t = | RpcInt of Big_int.big_int
                    | RpcFloatUnit of float * Units.unit_set_t
                    | RpcComplexUnit of Complex.t * Units.unit_set_t
                    | RpcFloatMatrixUnit of Gsl_matrix.matrix * Units.unit_set_t
                    | RpcComplexMatrixUnit of Gsl_matrix_complex.matrix *
                                              Units.unit_set_t
                    | RpcVariable of string

type stack_int_string_t   = {mutable i_bin_line : string option; 
                             mutable i_oct_line : string option;
                             mutable i_dec_line : string option; 
                             mutable i_hex_line : string option;
                             mutable i_bin_fs   : string option; 
                             mutable i_oct_fs   : string option;
                             mutable i_dec_fs   : string option; 
                             mutable i_hex_fs   : string option}
type stack_float_unit_string_t = {mutable fu : string option}
type stack_cmpx_unit_string_t  = {mutable c_rect    : string option;
                                  mutable c_pol_rad : string option;
                                  mutable c_pol_deg : string option}
type stack_fmat_unit_string_t  = {mutable fmat_line : string option;
                                  mutable fmat_fs   : string option}
type stack_cmat_string_t  = {mutable cmat_rect_line    : string option;
                             mutable cmat_pol_rad_line : string option;
                             mutable cmat_pol_deg_line : string option;
                             mutable cmat_rect_fs      : string option;
                             mutable cmat_pol_rad_fs   : string option;
                             mutable cmat_pol_deg_fs   : string option}
type stack_var_string_t   = {mutable v_line : string option;
                             mutable v_fs   : string option}

(* internal storage format of stack elements *)
type stack_data_t = | StackInt of Big_int.big_int * stack_int_string_t
                    | StackFloatUnit of float * Units.unit_set_t * stack_float_unit_string_t
                    | StackComplexUnit of Complex.t * Units.unit_set_t * stack_cmpx_unit_string_t
                    | StackFloatMatrixUnit of Gsl_matrix.matrix * Units.unit_set_t *
                                              stack_fmat_unit_string_t
                    | StackComplexMatrixUnit of Gsl_matrix_complex.matrix *
                                                Units.unit_set_t * stack_cmat_string_t
                    | StackVariable of string * stack_var_string_t

let raise_invalid s = raise (Invalid_argument s)

let orpie_data_of_stack_data (sd : stack_data_t) =
   match sd with
   |StackInt (ii, _)                   -> RpcInt ii
   |StackFloatUnit (ff, uu, _)         -> RpcFloatUnit (ff, uu)
   |StackComplexUnit (cc, uu, _)       -> RpcComplexUnit (cc, uu)
   |StackFloatMatrixUnit (fm, uu, _)   -> RpcFloatMatrixUnit (fm, uu)
   |StackComplexMatrixUnit (cm, uu, _) -> RpcComplexMatrixUnit (cm, uu)
   |StackVariable (vv, _)              -> RpcVariable vv

let stack_data_of_orpie_data (od : orpie_data_t) =
   match od with
   |RpcInt ii ->
      StackInt (ii, 
         {i_bin_line = None;
          i_oct_line = None;
          i_dec_line = None;
          i_hex_line = None;
          i_bin_fs   = None;
          i_oct_fs   = None;
          i_dec_fs   = None;
          i_hex_fs   = None})
   |RpcFloatUnit (ff, uu) ->
      StackFloatUnit (ff, uu,
         {fu = None})
   |RpcComplexUnit (cc, uu) ->
      StackComplexUnit (cc, uu,
         {c_rect    = None;
          c_pol_rad = None;
          c_pol_deg = None})
   |RpcFloatMatrixUnit (fm, uu) ->
      StackFloatMatrixUnit (fm, uu, 
         {fmat_line = None;
          fmat_fs   = None})
   |RpcComplexMatrixUnit (cm, uu) ->
      StackComplexMatrixUnit (cm, uu,
         {cmat_rect_line    = None;
          cmat_pol_rad_line = None;
          cmat_pol_deg_line = None;
          cmat_rect_fs      = None;
          cmat_pol_rad_fs   = None;
          cmat_pol_deg_fs   = None})
   |RpcVariable vv ->
      StackVariable (vv, 
         {v_line = None;
          v_fs   = None})


let funit_of_float (ff : float) : float * Units.unit_set_t = (ff, Units.empty_unit)

let cunit_of_cpx cc = (cc, Units.empty_unit)

let unorm uu = (1.0, uu)

let c_of_f ff = {Complex.re = ff; Complex.im = 0.0}

let has_units uu = uu <> Units.empty_unit

type display_mode_t = | Line | Fullscreen

type angle_mode   = | Rad | Deg
type base_mode    = | Bin | Oct | Hex | Dec
type complex_mode = | Rect | Polar
      
type calculator_modes = {angle : angle_mode; base : base_mode; 
                         complex : complex_mode}

let size_inc = 100
let pi = 3.14159265358979323846

class rpc_stack conserve_memory_in =
   object(self)
      val mutable len = 0
      val mutable stack = 
         let (f0, u0) = funit_of_float 0.0 in
         Array.make size_inc (stack_data_of_orpie_data
         (RpcFloatUnit (f0, u0)))
      val conserve_memory = conserve_memory_in
      val render_stack = Stack.create ()


      method length = len


      method get_state () = (stack, len)

      method set_state (s, l) =
         stack <- s;
         len   <- l

      method backup () =
         let b_stack = Array.copy stack in
         {< stack = b_stack >}


      method private expand_size () =
         (* allocate a new stack if necessary *)
         if len >= Array.length stack then begin
            let new_stack = Array.make ((Array.length stack) + size_inc)
            (stack_data_of_orpie_data (RpcFloatUnit 
            (0.0, Units.empty_unit))) in
            Array.blit stack 0 new_stack 0 (Array.length stack);
            stack <- new_stack
         end else
            ()


      method push (v : orpie_data_t) =
         self#expand_size ();
         let new_el = stack_data_of_orpie_data v in
         stack.(len) <- new_el;
         len <- len + 1;
         if conserve_memory then ()
         else Stack.push new_el render_stack


      method pop () =
         (* compact stack memory by size_inc whenever we have 2 * size_inc
          * elements free *)
         if len < (Array.length stack) - 2 * size_inc then
            let new_stack = Array.sub stack 0 ((Array.length stack) -
            size_inc) in
            stack <- new_stack
         else
            ();
         let pop_result =
            if len > 0 then begin
               len <- len - 1;
               orpie_data_of_stack_data stack.(len)
            end else
               raise (Stack_error "cannot pop empty stack");
         in
         pop_result



      (* duplicate the top stack element *)
      method dup () =
         self#expand_size ();
         if len > 0 then begin
            stack.(len) <- stack.(pred len);
            len <- succ len
         end else
            raise (Stack_error "cannot dup with empty stack")

         
      (* swap the top two stack elements *)
      method swap () =
         if len > 1 then begin
            let temp = ref stack.(pred len) in
            stack.(pred len) <- stack.(len - 2);
            stack.(len - 2) <- !temp
         end else
            raise (Stack_error "cannot swap with less than two elements")


      (* copy a stack element to the top of the stack *)
      method echo el_num =
         self#expand_size ();
         if el_num <= len then begin
            let actual_el_num = len - el_num in
            stack.(len) <- stack.(actual_el_num);
            len <- succ len
         end else
            raise (Invalid_argument "cannot echo nonexistant element")


      (* cyclically roll all stack elements downward (i.e. towards the top
       * of the stack), starting below element number 'num' (inclusive). *)
      method rolldown num =
         if num <= len then
            let temp = stack.(pred len) in
            for i = pred len downto len - num + 1 do
               stack.(i) <- stack.(pred i)
            done;
            stack.(len - num) <- temp
         else
            raise (Stack_error "insufficient stack elements");


      (* cyclically roll all stack elements upward (i.e. away from the top
       * of the stack), starting below element number 'num' (inclusive). *)
      method rollup num =
         if num <= len then
            let temp = stack.(len - num) in
            for i = len - num to len - 2 do
               stack.(i) <- stack.(succ i)
            done;
            stack.(pred len) <- temp
         else
            raise (Stack_error "insufficient stack elements");


      (* delete a particular element *)
      method delete num =
         if num <= len then
            (for i = (len - num) to len do
               stack.(i) <- stack.(succ i)
            done;
            len <- (pred len))
         else
            raise (Stack_error "insufficient stack elements");



      (* delete all elements below level N *)
      method deleteN num =
         if num <= len then
            len <- len - num
         else
            raise (Stack_error "insufficient stack elements");


      (* keep only a particular stack element *)
      method keep num =
         if num <= len then
            (stack.(0) <- stack.(len - num);
            len <- 1)
         else
            raise (Stack_error "insufficient stack elements");


      (* keep all elements below the selected (inclusive) *)
      method keepN num =
         if num <= len then begin
            for i = 0 to num - 1 do
               stack.(i) <- stack.(i + len - num)
            done;
            len <- num
         end else
            raise (Stack_error "insufficient stack elements");



      (* return a particular stack element without removing it from the stack *)
      (* element 1 points to the top of the stack *)
      method peek el_num =
         let peek_result =
            if el_num <= len then
               let actual_el_num = len - el_num in
               orpie_data_of_stack_data stack.(actual_el_num)
            else
               let s = Printf.sprintf "cannot access nonexistant stack element %d"
               el_num in
               raise (Stack_error s);
         in
         peek_result

      
      method private get_display_string_wrap disp_mode line_num calc_modes =
         if line_num > 0 then
            if line_num <= len then
               (* this is the actual index into the array *)
               let index = len - line_num in
               self#lookup_or_create_string disp_mode calc_modes index
            else (* line_num > len *)
               ""
         else (* line_num <= 0 *)
            raise (Stack_error ("cannot display nonexistent stack element " ^
               (string_of_int line_num)))


      (* lookup (or create) a line-oriented display string *)
      method get_display_string line_num calc_modes =
         self#get_display_string_wrap Line line_num calc_modes


      (* lookup (or create) a fullscreen-oriented display string *)
      method get_fullscreen_display_string line_num calc_modes =
         self#get_display_string_wrap Fullscreen line_num calc_modes






      (* perform a table lookup to obtain the string representation of
       * the desired stack element.  If the table lookup fails, then create
       * the representation. *)
      method private lookup_or_create_string disp_mode calc_modes index =
         let stack_el = stack.(index) in
         let lookup_result =
            begin match stack_el with
            |StackInt (ii, ii_str) ->
               let lookup_int_str record =
                  begin match record with
                  |None ->
                     self#create_int_string disp_mode calc_modes ii ii_str
                  |Some ss ->
                     ss
                  end
               in
               begin match disp_mode with
               |Line ->
                  begin match calc_modes.base with
                  |Bin -> lookup_int_str ii_str.i_bin_line
                  |Oct -> lookup_int_str ii_str.i_oct_line
                  |Dec -> lookup_int_str ii_str.i_dec_line
                  |Hex -> lookup_int_str ii_str.i_hex_line
                  end
               |Fullscreen ->
                  begin match calc_modes.base with
                  |Bin -> lookup_int_str ii_str.i_bin_fs
                  |Oct -> lookup_int_str ii_str.i_oct_fs
                  |Dec -> lookup_int_str ii_str.i_dec_fs
                  |Hex -> lookup_int_str ii_str.i_hex_fs
                  end
               end
            |StackFloatUnit (ff, uu, fu_str) ->
               begin match fu_str.fu with
               |None ->
                  self#create_float_unit_string ff uu fu_str
               |Some ss ->
                  ss
               end
            |StackComplexUnit (cc, uu, cc_str) ->
               let lookup_cmpx_str record =
                  begin match record with
                  |None ->
                     self#create_cmpx_unit_string calc_modes cc uu cc_str
                  |Some ss ->
                     ss
                  end
               in
               begin match calc_modes.complex with
               |Rect -> 
                  lookup_cmpx_str cc_str.c_rect
               |Polar ->
                  begin match calc_modes.angle with
                  |Rad -> lookup_cmpx_str cc_str.c_pol_rad
                  |Deg -> lookup_cmpx_str cc_str.c_pol_deg
                  end
               end
            |StackFloatMatrixUnit (fm, uu, fm_str) ->
               begin match disp_mode with
               |Line ->
                  begin match fm_str.fmat_line with
                  |None ->
                     self#create_fmat_unit_string disp_mode fm uu fm_str
                  |Some ss ->
                     ss
                  end
               |Fullscreen ->
                  begin match fm_str.fmat_fs with
                  |None ->
                     self#create_fmat_unit_string disp_mode fm uu fm_str
                  |Some ss ->
                     ss
                  end
               end
            |StackComplexMatrixUnit (cm, uu, cm_str) ->
               let lookup_cmat_str record =
                  begin match record with
                  |None ->
                     self#create_cmat_unit_string disp_mode calc_modes cm uu cm_str
                  |Some ss ->
                     ss
                  end
               in
               begin match disp_mode with
               |Line ->
                  begin match calc_modes.complex with
                  |Rect ->
                     lookup_cmat_str cm_str.cmat_rect_line
                  |Polar ->
                     begin match calc_modes.angle with
                     |Rad -> lookup_cmat_str cm_str.cmat_pol_rad_line
                     |Deg -> lookup_cmat_str cm_str.cmat_pol_deg_line
                     end
                  end
               |Fullscreen ->
                  begin match calc_modes.complex with
                  |Rect ->
                     lookup_cmat_str cm_str.cmat_rect_fs
                  |Polar ->
                     begin match calc_modes.angle with
                     |Rad -> lookup_cmat_str cm_str.cmat_pol_rad_fs
                     |Deg -> lookup_cmat_str cm_str.cmat_pol_deg_fs
                     end
                  end
               end
            |StackVariable (vv, vv_str) ->
               begin match disp_mode with
               |Line ->
                  begin match vv_str.v_line with
                  |None ->
                     self#create_var_string disp_mode vv vv_str
                  |Some ss ->
                     ss
                  end
               |Fullscreen ->
                  begin match vv_str.v_fs with
                  |None ->
                     self#create_var_string disp_mode vv vv_str
                  |Some ss ->
                     ss
                  end
               end
            end;
         in
         lookup_result


      (* render all string representations of a particular stack element. *)
      method private render_all_strings stack_el =
         match stack_el with
         |StackInt (ii, ii_str) ->
            let lookup_int_str d_mode c_mode record =
               begin match record with
               |None ->
                  let _ = self#create_int_string d_mode c_mode ii ii_str in ()
               |Some ss ->
                  ()
               end
            in
            lookup_int_str Line {angle = Rad; base = Dec; complex = Rect} 
               ii_str.i_dec_line;
            lookup_int_str Line {angle = Rad; base = Bin; complex = Rect} 
               ii_str.i_bin_line;
            lookup_int_str Line {angle = Rad; base = Oct; complex = Rect} 
               ii_str.i_oct_line;
            lookup_int_str Line {angle = Rad; base = Hex; complex = Rect} 
               ii_str.i_hex_line
            (* the remaining integer strings will get filled in as
             * side-effects of the previous *)
         |StackFloatUnit (ff, uu, fu_str) ->
            begin match fu_str.fu with
            |None ->
               let _ = self#create_float_unit_string ff uu fu_str in ()
            |Some ss ->
               ()
            end
         |StackComplexUnit (cc, uu, cc_str) ->
            let lookup_cmpx_str c_mode record =
               begin match record with
               |None ->
                  let _ = self#create_cmpx_unit_string c_mode cc uu cc_str in ()
               |Some ss ->
                  ()
               end
            in
            lookup_cmpx_str {angle = Rad; base = Dec; complex = Rect} 
               cc_str.c_rect;
            lookup_cmpx_str {angle = Rad; base = Dec; complex = Polar} 
               cc_str.c_pol_rad;
            lookup_cmpx_str {angle = Deg; base = Dec; complex = Polar} 
               cc_str.c_pol_deg
         |StackFloatMatrixUnit (fm, uu, fm_str) ->
            begin match fm_str.fmat_line with
            |None ->
               let _ = self#create_fmat_unit_string Line fm uu fm_str in ()
            |Some ss ->
               ()
            end;
            begin match fm_str.fmat_fs with
            |None ->
               let _ = self#create_fmat_unit_string Fullscreen fm uu fm_str in ()
            |Some ss ->
               ()
            end
         |StackComplexMatrixUnit (cm, uu, cm_str) ->
            let lookup_cmat_str d_mode c_mode record =
               begin match record with
               |None ->
                  let _ = self#create_cmat_unit_string d_mode c_mode cm uu cm_str in ()
               |Some ss ->
                  ()
               end
            in
            lookup_cmat_str Line {angle = Rad; base = Dec; complex = Rect}
               cm_str.cmat_rect_line;
            lookup_cmat_str Line {angle = Rad; base = Dec; complex = Polar}
               cm_str.cmat_pol_rad_line;
            lookup_cmat_str Line {angle = Deg; base = Dec; complex = Polar}
               cm_str.cmat_pol_deg_line;
            lookup_cmat_str Fullscreen {angle = Rad; base = Dec; complex = Rect}
               cm_str.cmat_rect_fs;
            lookup_cmat_str Fullscreen {angle = Rad; base = Dec; complex = Polar}
               cm_str.cmat_pol_rad_fs;
            lookup_cmat_str Fullscreen {angle = Deg; base = Dec; complex = Polar}
               cm_str.cmat_pol_deg_fs
         |StackVariable (vv, vv_str) ->
            begin match vv_str.v_line with
            |None ->
               let _ = self#create_var_string Line vv vv_str in ()
            |Some ss ->
               ()
            end
            (* fullscreen is filled in as side-effect of previous *)



      (* generate the string representation for an integer, taking into
       * account the desired display mode and base.  Fullscreen and line
       * representations are computed concurrently because they share
       * most of the computation. *)
      method private create_int_string disp_mode calc_modes ii ii_str =
         match calc_modes.base with
         |Bin ->
            let s = string_of_big_int_base ii 2 in
            let line = "# " ^ s ^ "`b"
            and fs   = "#" ^ s ^ "`b" in
            if conserve_memory then () else begin
               ii_str.i_bin_line <- Some line;
               ii_str.i_bin_fs   <- Some fs
            end;
            begin match disp_mode with
            |Line       -> line
            |Fullscreen -> fs
            end
         |Oct ->
            let s = string_of_big_int_base ii 8 in
            let line = "# " ^ s ^ "`o"
            and fs   = "#" ^ s ^ "`o" in
            if conserve_memory then () else begin
               ii_str.i_oct_line <- Some line;
               ii_str.i_oct_fs   <- Some fs
            end;
            begin match disp_mode with
            |Line       -> line
            |Fullscreen -> fs
            end
         |Hex ->
            let s = string_of_big_int_base ii 16 in
            let line = "# " ^ s ^ "`h"
            and fs   = "#" ^ s ^ "`h" in
            if conserve_memory then () else begin
               ii_str.i_hex_line <- Some line;
               ii_str.i_hex_fs   <- Some fs
            end;
            begin match disp_mode with
            |Line       -> line
            |Fullscreen -> fs
            end
         |Dec ->
            let s = string_of_big_int_base_gen ii 10 in
            let line = "# " ^ s ^ "`d"
            and fs   = "#" ^ s ^ "`d" in
            if conserve_memory then () else begin
               ii_str.i_dec_line <- Some line;
               ii_str.i_dec_fs   <- Some fs
            end;
            begin match disp_mode with
            |Line       -> line
            |Fullscreen -> fs
            end


      (* generate a string representation for a floating-point value with a unit *)
      method private create_float_unit_string ff uu fu_str =
         let s = 
            if uu <> Units.empty_unit then
               sprintf "%.15g_%s" ff
               (Units.string_of_units uu)
            else
               sprintf "%.15g" ff
         in
         if conserve_memory then () 
         else fu_str.fu <- Some s;
         s


      (* generate a string representation for a complex value, taking
       * into account the representation mode and angle mode of the calc *)
      method private create_cmpx_unit_string calc_modes cc uu cc_str =
         let append_units ss =
            if uu <> Units.empty_unit then
               ss ^ "_" ^ (Units.string_of_units uu)
            else
               ss
         in
         match calc_modes.complex with
         |Rect ->
            let s = append_units 
            (sprintf "(%.15g, %.15g)" cc.Complex.re cc.Complex.im) in
            if conserve_memory then () 
            else cc_str.c_rect <- Some s;
            s
         |Polar ->
            let r = sqrt (cc.Complex.re *. cc.Complex.re +.
               cc.Complex.im *. cc.Complex.im)
            and theta = atan2 cc.Complex.im cc.Complex.re in
            begin match calc_modes.angle with
            |Rad ->
               let s = append_units (sprintf "(%.15g <%.15g)" r theta) in
               if conserve_memory then () 
               else cc_str.c_pol_rad <- Some s;
               s
            |Deg ->
               let s = append_units 
               (sprintf "(%.15g <%.15g)" r (180.0 /. pi *. theta)) in
               if conserve_memory then () 
               else cc_str.c_pol_deg <- Some s;
               s
            end


      (* generate a string representation for a floating-point matrix,
       * taking into account the display mode. *)
      method private create_fmat_unit_string disp_mode fm uu fm_str =
         let append_units ss = 
            if has_units uu then
               ss ^ "_" ^ Units.string_of_units uu
            else
               ss
         in
         match disp_mode with
         |Line ->
            let s = 
               (* looks like [[ a11, a12 ][ a21, a22 ]] *)
               let rows, cols = (Gsl_matrix.dims fm) in
               let initial_string = "[" in
               let line = ref initial_string in
               for n = 0 to rows - 1 do
                  line := !line ^ "[ ";
                  for m = 0 to cols - 2 do
                     line := !line ^ (sprintf "%.15g, " fm.{n, m})
                  done;
                  line := !line ^ (sprintf "%.15g ]" fm.{n, cols-1})
               done;
               line := !line ^ "]";
               !line
            in
            let ss = append_units s in
            if conserve_memory then () 
            else fm_str.fmat_line <- Some ss;
            ss
         |Fullscreen ->
            let s =
               (* looks like [[ a11, a12 ]
                *             [ a21, a22 ]] 
                * and the columns are aligned. *)
               let rows, cols = (Gsl_matrix.dims fm) in
               (* first get the maximum field width for each column *)
               let max_width = Array.make cols 0 in
               for m = 0 to pred cols do
                  for n = 0 to pred rows do
                     let dummy_string = sprintf "%-.15g" fm.{n, m} in
                     let ds_len = String.length dummy_string in
                     if ds_len > max_width.(m) then
                        max_width.(m) <- ds_len
                     else
                        ()
                  done
               done;
               (* now use the maximum field widths to align the columns
                * during string creation *)
               let initial_string = "[" in
               let line = ref initial_string in
               for n = 0 to rows - 1 do
                  line := !line ^ "[ ";
                  for m = 0 to cols - 2 do
                     line := !line ^ (sprintf "%*.15g, " max_width.(m) fm.{n, m})
                  done;
                  line := !line ^ (sprintf "%*.15g ]" max_width.(cols-1) fm.{n, cols-1});
                  if n < pred rows then
                     line := !line ^ "\n "
                  else
                     ()
               done;
               line := !line ^ "]";
               !line
            in
            let ss = append_units s in
            if conserve_memory then () 
            else fm_str.fmat_fs <- Some ss;
            ss



      (* generate a string representation for a complex matrix,
       * taking into account the display mode. *)
      method private create_cmat_unit_string disp_mode calc_modes cm uu cm_str =
         let append_units ss = 
            if uu <> Units.empty_unit then
               ss ^ "_" ^ Units.string_of_units uu
            else
               ss
         in
         match disp_mode with
         |Line ->
            let s = 
               (* looks like [[ (a11re, a11im), (a12re, a12im) ][ (a21re,
                  a21im), (a22re, a22im) ] *)
               let rows, cols = (Gsl_matrix_complex.dims cm) in
               let initial_string = "[" in
               let line = ref initial_string in
               for n = 0 to rows - 1 do
                  line := !line ^ "[ ";
                  for m = 0 to cols - 2 do
                     match calc_modes.complex with
                     |Rect ->
                        line := !line ^ (sprintf "(%.15g, %.15g), " 
                           cm.{n, m}.Complex.re cm.{n, m}.Complex.im)
                     |Polar ->
                        let rr = cm.{n, m}.Complex.re
                        and ii = cm.{n, m}.Complex.im in
                        let r = sqrt (rr *. rr +. ii *. ii)
                        and theta = atan2 ii rr in
                        begin match calc_modes.angle with
                        |Rad ->
                           line := !line ^ (sprintf "(%.15g <%.15g), " 
                           r theta)
                        |Deg ->
                           line := !line ^ (sprintf "(%.15g <%.15g), " 
                           r (180.0 /. pi *. theta))
                        end
                  done;
                  match calc_modes.complex with
                  |Rect ->
                     line := !line ^ (sprintf "(%.15g, %.15g) ]" 
                        cm.{n, cols-1}.Complex.re cm.{n, cols-1}.Complex.im)
                  |Polar ->
                     let rr = cm.{n, cols-1}.Complex.re
                     and ii = cm.{n, cols-1}.Complex.im in
                     let r = sqrt (rr *. rr +. ii *. ii)
                     and theta = atan2 ii rr in
                     begin match calc_modes.angle with
                     |Rad ->
                        line := !line ^ (sprintf "(%.15g <%.15g) ]" 
                        r theta)
                     |Deg ->
                        line := !line ^ (sprintf "(%.15g <%.15g) ]" 
                        r (180.0 /. pi *. theta))
                     end
               done;
               line := !line ^ "]";
               !line
            in
            let ss = append_units s in
            if conserve_memory then 
               () 
            else
               begin match calc_modes.complex with
               |Rect ->
                  cm_str.cmat_rect_line <- Some ss;
               |Polar ->
                  begin match calc_modes.angle with
                  |Rad -> cm_str.cmat_pol_rad_line <- Some ss
                  |Deg -> cm_str.cmat_pol_deg_line <- Some ss
                  end
               end;
            ss
         |Fullscreen ->
            let s =
               (* looks like [[ (a11re, a11im), (a12re, a12im) ]
                *             [ (a21re, a21im), (a22re, a22im) ] 
                * with properly aligned columns *)
               let rows, cols = (Gsl_matrix_complex.dims cm) in
               (* first get the maximum field width for each column *)
               let max_width = Array.make_matrix cols 2 0 in
               for m = 0 to pred cols do
                  for n = 0 to pred rows do
                     match calc_modes.complex with
                     |Rect ->
                        let dummy_re = sprintf "%-.15g" cm.{n, m}.Complex.re in
                        let dr_len = String.length dummy_re in
                        if dr_len > max_width.(m).(0) then
                           max_width.(m).(0) <- dr_len
                        else
                           ();
                        let dummy_im = sprintf "%-.15g" cm.{n, m}.Complex.im in
                        let di_len = String.length dummy_im in
                        if di_len > max_width.(m).(1) then
                           max_width.(m).(1) <- di_len
                        else
                           ()
                     |Polar ->
                        let rr = cm.{n, m}.Complex.re
                        and ii = cm.{n, m}.Complex.im in
                        let r = sqrt (rr *. rr +. ii *. ii)
                        and theta = atan2 ii rr in
                        let dummy_r = sprintf "%-.15g" r in
                        let r_len = String.length dummy_r in
                        if r_len > max_width.(m).(0) then
                           max_width.(m).(0) <- r_len
                        else
                           ();
                        let dummy_theta = 
                           match calc_modes.angle with
                           |Rad -> sprintf "%-.15g" theta
                           |Deg -> sprintf "%-.15g" (180.0 /. pi *. theta)
                        in
                        let theta_len = String.length dummy_theta in
                        if theta_len > max_width.(m).(1) then
                           max_width.(m).(1) <- theta_len
                        else
                           ();
                  done
               done;
               (* now use the maximum field widths to align the columns
                * during string creation *)
               let initial_string = "[" in
               let line = ref initial_string in
               for n = 0 to rows - 1 do
                  line := !line ^ "[ ";
                  for m = 0 to cols - 2 do
                     match calc_modes.complex with
                     |Rect ->
                        line := !line ^ (sprintf "(%*.15g, %*.15g), " 
                           max_width.(m).(0) cm.{n, m}.Complex.re 
                           max_width.(m).(1) cm.{n, m}.Complex.im)
                     |Polar ->
                        begin
                           let rr = cm.{n, m}.Complex.re
                           and ii = cm.{n, m}.Complex.im in
                           let r = sqrt (rr *. rr +. ii *. ii)
                           and theta = atan2 ii rr in
                           match calc_modes.angle with
                           |Rad ->
                              line := !line ^ (sprintf "(%*.15g <%*.15g), " 
                              max_width.(m).(0) r max_width.(m).(1) theta)
                           |Deg ->
                              line := !line ^ (sprintf "(%*.15g <%*.15g), " 
                              max_width.(m).(0) r max_width.(m).(1) 
                              (180.0 /. pi *. theta))
                        end
                  done;
                  begin match calc_modes.complex with
                  |Rect ->
                     line := !line ^ (sprintf "(%*.15g, %*.15g) ]" 
                        max_width.(cols-1).(0) cm.{n, cols-1}.Complex.re 
                        max_width.(cols-1).(1) cm.{n, cols-1}.Complex.im)
                  |Polar ->
                     begin
                        let rr = cm.{n, cols-1}.Complex.re
                        and ii = cm.{n, cols-1}.Complex.im in
                        let r = sqrt (rr *. rr +. ii *. ii)
                        and theta = atan2 ii rr in
                        match calc_modes.angle with
                        |Rad ->
                           line := !line ^ (sprintf "(%*.15g <%*.15g) ]" 
                           max_width.(cols-1).(0) r max_width.(cols-1).(1) theta)
                        |Deg ->
                           line := !line ^ (sprintf "(%*.15g <%*.15g) ]" 
                           max_width.(cols-1).(0) r max_width.(cols-1).(1) 
                           (180.0 /. pi *. theta))
                     end
                  end;
                  if n < pred rows then
                     line := !line ^ "\n "
                  else
                     ()
               done;
               line := !line ^ "]";
               !line
            in
            let ss = append_units s in
            if conserve_memory then 
               () 
            else
               begin match calc_modes.complex with
               |Rect ->
                  cm_str.cmat_rect_fs <- Some ss;
               |Polar ->
                  begin match calc_modes.angle with
                  |Rad -> cm_str.cmat_pol_rad_fs <- Some ss
                  |Deg -> cm_str.cmat_pol_deg_fs <- Some ss
                  end
               end;
            ss



      (* generate a string representation for a complex matrix,
       * taking into account the display mode. *)
      method private create_var_string disp_mode vv vv_str =
         let line = "@ " ^ vv
         and fs   = "@" ^ vv in
         if conserve_memory then 
            () 
         else begin
            vv_str.v_line <- Some line;
            vv_str.v_fs   <- Some fs
         end;
         match disp_mode with
         |Line       -> line
         |Fullscreen -> fs


      method launch_fill_in_thread () =
         let _ = Thread.create self#fill_in_all_strings () in ()


      (* fill in any unknown string representations from the stack *)
      method private fill_in_all_strings () =
         try
            while true do
               let unrendered_el = Stack.pop render_stack in
               self#render_all_strings unrendered_el
            done
         with
            Stack.Empty -> ()

end


(* arch-tag: DO_NOT_CHANGE_59b80e87-dfde-4203-a7a2-8e1f95813151 *)