~ubuntu-branches/ubuntu/raring/boost-build/raring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# Copyright 2003 Dave Abrahams 
# Copyright 2002, 2003 Rene Rivera 
# Copyright 2002, 2003, 2004 Vladimir Prus 
# Distributed under the Boost Software License, Version 1.0. 
# (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) 

# Various container classes.

import "class" : * ;

# Base for container objects. This lets us construct recursive structures.
# That is containers with containers in them, specifically so we can tell
# literal values from node values.
#
class node 
{
    rule __init__ (
      value ? # Optional value to set node to initially.
    )
    {
        self.value = $(value) ;
    }
        
    # Set the value of this node, passing nothing will clear it.
    #
    rule set ( value * )
    {
        self.value = $(value) ;
    }
    
    # Get the value of this node.
    #
    rule get ( )
    {
        return $(self.value) ;
    }
}


# A simple vector. Interface mimics the C++ std::vector and std::list,
# with the exception that indices are one (1) based to follow Jam standard.
#
# TODO: Possibly add assertion checks.
#
class vector : node 
{
    import numbers : range ;
    import utility ;
    import sequence ;
        
    rule __init__ (
      values * # Initial contents of vector.
    )
    {
        node.__init__ ;
        self.value = $(values) ;
    }    
    
    # Get the value of the first element.
    #
    rule front ( )
    {
        return $(self.value[1]) ;
    }
    
    # Get the value of the last element.
    #
    rule back ( )
    {
        return $(self.value[-1]) ;
    }
    
    # Get the value of the element at the given index, one based.
    # Access to elements of recursive structures is supported directly.
    # Specifying additional index values recursively accesses the elements as
    # containers. For example: [ $(v).at 1 : 2 ] would retrieve the second element
    # of our first element. This assuming the first element is a container.
    #
    rule at (
        index # The element index, one based.
        : * # Additional indices to access recursively.
        )
    {
        local r = $(self.value[$(index)]) ;
        if $(2)
        {
            r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
        }
        return $(r) ;
    }
    
    # Get the value contained in the given element. This has the same
    # functionality and interface as "at" but in addition gets the value
    # of the referenced element, assuming it's a "node".
    #
    rule get-at (
        index # The element index, one based.
        : * # Additional indices to access recursively.
        )
    {
        local r = $(self.value[$(index)]) ;
        if $(2)
        {
            r = [ $(r).at $(2) : $(3) : $(4) : $(5) : $(6) : $(7) : $(8) : $(9) ] ;
        }
        return [ $(r).get ] ;
    }
    
    # Insert the given value into the front of the vector pushing the
    # rest of the elements back.
    #
    rule push-front (
        value # Value to become first element.
        )
    {
        self.value = $(value) $(self.value) ;
    }
    
    # Remove the front element from the vector. Does not return the value.
    # No effect if vector is empty.
    #
    rule pop-front ( )
    {
        self.value = $(self.value[2-]) ;
    }
    
    # Add the given value at the end of the vector.
    #
    rule push-back (
        value # Value to become back element.
        )
    {
        self.value += $(value) ;
    }
    
    # Remove the back element from the vector. Does not return the value.
    # No effect if vector is empty.
    #
    rule pop-back ( )
    {
        self.value = $(self.value[1--2]) ;
    }
    
    # Insert the given value at the given index, one based. The values
    # at and to the right of the of the index are push back to make room
    # for the new value.
    #
    rule insert (
        index # The index to insert at, one based.
        : value # The value to insert.
        )
    {
        local left = $(self.value[1-$(index)]) ;
        left = $(left[1--2]) ;
        local right = $(self.value[$(index)-]) ;
        self.value = $(left) $(value) $(right) ;
    }
    
    # Remove one or more elements from the vector. The range is inclusive,
    # and not specifying an end is equivalent to the [start,start] range.
    #
    rule erase (
        start # Index of first element ro remove.
        end ? # Optional, index of last element to remove.
        )
    {
        end ?= $(start) ;
        local left = $(self.value[1-$(start)]) ;
        left = $(left[1--2]) ;
        local right = $(self.value[$(end)-]) ;
        right = $(right[2-]) ;
        self.value = $(left) $(right) ;
    }
    
    # Remove all elements from the vector.
    #
    rule clear ( )
    {
        self.value = ;
    }
    
    # The number of elements in the vector.
    #
    rule size ( )
    {
        return [ sequence.length $(self.value) ] ;
    }
    
    # Returns "true" if there are NO elements in the vector, empty
    # otherwise.
    #
    rule empty ( )
    {
        if ! $(self.value)
        {
            return true ;
        }
    }

    # Returns the list of all valid indices for this vector.
    rule indices ( )
    {
        if ! [ empty ] 
        {
            local size = [ size ] ;
            return [ range 1 : $(size) ] $(size) ;
        }      
    }

    # Returns the textual representation of content.
    rule str ( )
    {
        return "[" [ sequence.transform utility.str : $(self.value) ] "]" ;
    }

    # Sorts the vector inplace, calling 'utility.less' for
    # comparisons.
    # NOTE: this rule is unused at the moment.
    rule sort ( )
    {
        self.value = 
            [ sequence.insertion-sort $(self.value) : utility.less ] ;
    }

    # Returns true if content is equal to the content of other vector.
    # Uses 'utility.equal' for comparison.
    rule equal ( another )
    {        
        local mismatch ;
        if [ size ] = [ $(another).size ]
        {
            for local i in [ indices ]
            {
                if ! [ utility.equal [ at $(i) ] [ $(another).at $(i) ] ]
                {
                    mismatch = true ;
                }
            }
        } 
        else
        {
            mismatch = true ;
        }
                        
        if ! $(mismatch) 
        {
            return true ;
        }
    }
}

local rule __test__ ( )
{
    import assert ;
    import "class" : new ;
    
    local l = [ new vector ] ;
    assert.result 0 : $(l).size ;
    assert.result : $(l).indices ;
    assert.result "[" "]" : $(l).str ;
    $(l).push-back b ;
    $(l).push-front a ;
    assert.result 1 2 : $(l).indices ;
    assert.result "[" a b "]" : $(l).str ;
    assert.result a : $(l).front ;
    assert.result b : $(l).back ;
    $(l).insert 2 : d ;
    $(l).insert 2 : c ;
    $(l).insert 4 : f ;
    $(l).insert 4 : e ;
    $(l).pop-back ;
    assert.result 5 : $(l).size ;
    assert.result d : $(l).at 3 ;
    $(l).pop-front ;
    assert.result c : $(l).front ;
    assert.false $(l).empty ;
    $(l).erase 3 4 ;
    assert.result 2 : $(l).size ;
    
    local l2 = [ new vector q w e r t y ] ;
    assert.result 6 : $(l2).size ;
    $(l).push-back $(l2) ;
    assert.result 3 : $(l).size ;
    local l2-alias = [ $(l).back ] ;
    assert.result e : $(l2-alias).at 3 ;
    $(l).clear ;
    assert.true $(l).empty ;
    assert.false $(l2-alias).empty ;
    $(l2).pop-back ;
    assert.result t : $(l2-alias).back ;
    
    local l3 = [ new vector ] ;
    $(l3).push-back [ new vector 1 2 3 4 5 ] ;
    $(l3).push-back [ new vector a b c ] ;
    assert.result "[" "[" 1 2 3 4 5 "]" "[" a b c "]" "]" : $(l3).str ;
    $(l3).push-back [ new vector [ new vector x y z ] [ new vector 7 8 9 ] ] ;
    assert.result 1 : $(l3).at 1 : 1 ;
    assert.result b : $(l3).at 2 : 2 ;
    assert.result a b c : $(l3).get-at 2 ;
    assert.result 7 8 9 : $(l3).get-at 3 : 2 ;

    local l4 = [ new vector 4 3 6 ] ;
    $(l4).sort ;
    assert.result 3 4 6 : $(l4).get ;

    assert.false $(l4).equal $(l3) ;
    local l5 = [ new vector 3 4 6 ] ;
    assert.true $(l4).equal $(l5) ;
    # Check that vectors of different sizes are considered non-equal
    $(l5).pop-back ;    
    assert.false $(l4).equal $(l5) ;
    local l6 = [ new vector [ new vector 1 2 3 ] ] ;
    assert.true $(l6).equal [ new vector [ new vector 1 2 3 ] ] ;
}