
CERES SOLVER: TUTORIAL &
REFERENCE

SAMEER AGARWAL

sameeragarwal@google.com
KEIR MIERLE

keir@google.com

May 14, 2012

CONTENTS

Contents 2

1 A Note About This Document 4

2 Introduction 5
2.1 What’s in a name? . 5
2.2 Contributing to Ceres Solver . 5
2.3 Citing Ceres Solver . 6
2.4 Acknowledgements . 6
2.5 License . 7

3 Building Ceres 8
3.1 Dependencies . 8
3.2 Building on Linux . 9
3.3 Building on OS X . 12
3.4 Customizing the Build Process . 13

4 Tutorial 14
4.1 Non-linear Least Squares . 14
4.2 Hello World! . 14
4.3 A Non-linear Example . 17
4.4 Data Fitting . 20
4.5 Bundle Adjustment . 23

5 API Reference 27
5.1 CostFunction . 27
5.2 SizedCostFunction . 28
5.3 AutoDiffCostFunction . 29
5.4 NumericDiffCostFunction . 30
5.5 LossFunction . 31
5.6 LocalParameterization . 33
5.7 Problem . 35
5.8 Solver::Options . 38
5.9 Solver::Summary . 42

6 Theory 43
6.1 The Levenberg-Marquardt Algorithm . 43

2

CONTENTS 3

6.2 DENSE_QR . 44
6.3 SPARSE_NORMAL_CHOLESKY . 45
6.4 DENSE_SCHUR & SPARSE_SCHUR . 45
6.5 ITERATIVE_SCHUR . 46
6.6 CGNR . 49
6.7 Ordering . 49
6.8 Automatic Differentiation . 50
6.9 Loss Function . 50
6.10 Local Parameterizations . 50

7 Frequently Asked Questions 51

8 Further Reading 53

Bibliography 54

A NOTE ABOUT THIS DOCUMENT

Building this pdf from source requires a relatively recent installation of LaTeX 1, minted.sty2

and pygments3.

This document is incomplete and we are working to fix this. In the meanwhile please refer to
the source code.

1http://www.tug.org/texlive/
2http://code.google.com/p/minted/
3http://pygments.org/

4

http://www.tug.org/texlive/
http://code.google.com/p/minted/
http://pygments.org/

INTRODUCTION

Ceres Solver1 is a non-linear least squares solver developed at Google. It is designed to solve
small and large sparse problems accurately and efficiently 2. Amongst its various features
is a simple but expressive API with support for automatic differentiation, robust norms, lo-
cal parameterizations, automatic gradient checking, multithreading and automatic problem
structure detection.

The key computational cost when solving a non-linear least squares problem is the solution
of a linear least squares problem in each iteration. To this end Ceres supports a number of
different linear solvers suited for different needs. This includes dense QR factorization (using
Eigen3) for small scale problems, sparse Cholesky factorization (using CHOLMOD) for general
sparse problems and specialized Schur complement based solvers for problems that arise in
multi-view geometry [5].

Ceres has been used for solving a variety of problems in computer vision and machine learning
at Google with sizes that range from a tens of variables and objective functions with a few
hundred terms to problems with millions of variables and objective functions with tens of
millions of terms.

2.1 WHAT’S IN A NAME?

While there is some debate as to who invented of the method of Least Squares [16]. There
is no debate that it was Carl Friedrich Gauss’s prediction of the orbit of the newly discovered
asteroid Ceres based on just 41 days of observations that brought it to the attention of the
world [17]. We named our solver after Ceres to celebrate this seminal event in the history of
astronomy, statistics and optimization.

2.2 CONTRIBUTING TO CERES SOLVER

We welcome contributions to Ceres, whether they are new features, bug fixes or tests. If you
have ideas on how you would like to contribute to Ceres, please join the Ceres mailing list
(ceres-solver@googlegroups.com) or if you are looking for ideas, please let us know about
your interest and skills and we will be happy to make a suggestion or three.

We follow Google’s C++ Style Guide 3.

1For brevity, in the rest of this document we will just use the term Ceres.
2For a gentle but brief introduction to non-liner least squares problems, please start by reading the Tutorial
3http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

5

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

CHAPTER 2. INTRODUCTION 6

2.3 CITING CERES SOLVER

If you use Ceres for an academic publication, please cite this manual. e.g.,

@manual{ceres-manual,
Author = {Sameer Agarwal and Keir Mierle},
Title = {Ceres Solver: Tutorial \& Reference},
Organization = {Google Inc.}
}

2.4 ACKNOWLEDGEMENTS

A number of people have helped with the development and open sourcing of Ceres.

Fredrik Schaffalitzky when he was at Google started the development of Ceres, and even
though much has changed since then, many of the ideas from his original design are still
present in the current code.

Amongst Ceres’ users at Google two deserve special mention: William Rucklidge and James
Roseborough. William was the first user of Ceres. He bravely took on the task of porting
production code to an as-yet unproven optimization library, reporting bugs and helping fix
them along the way. James is perhaps the most sophisticated user of Ceres at Google. He has
reported and fixed bugs and helped evolve the API for the better.

Nathan Wiegand contributed the MacOS port.

CHAPTER 2. INTRODUCTION 7

2.5 LICENSE

Ceres Solver is licensed under the New BSD license, whose terms are as follows.

Copyright (c) 2010, 2011, 2012, Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. Neither the name of Google Inc., nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

This software is provided by the copyright holders and contributors "AS IS" and
any express or implied warranties, including, but not limited to, the implied war-
ranties of merchantability and fitness for a particular purpose are disclaimed. In
no event shall Google Inc. be liable for any direct, indirect, incidental, special, ex-
emplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption)
however caused and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.

BUILDING CERES

Ceres source code and documentation is hosted at http://code.google.com/p/ceres-solver/.

3.1 DEPENDENCIES

Ceres relies on a number of open source libraries, some of which are optional. However, we
recommend that you start out by building Ceres with all its dependencies. For details on
customizing the build process, please see Section 3.4.

1. cmake 1 is the cross-platform build system used by Ceres.

2. Eigen3 2 is used for doing all the low level matrix and linear algebra operations.

3. google-glog 3 is used for error checking and logging.

Note: Ceres requires glog version 0.3.1 or later. Version 0.3 (which ships with Fedora
16) has a namespace bug which prevents Ceres from building.

4. gflags 4 is used by the code in examples. It is also used by some of the tests. Strictly
speaking it is not required to build the core library, we do not recommend building Ceres
without it.

5. SuiteSparse 5 is used for sparse matrix analysis, ordering and factorization. In partic-
ular Ceres uses the AMD, COLAMD and CHOLMOD libraries. This is an optional dependency.

6. BLAS and LAPACK are needed by SuiteSparse. We recommend either GotoBlas2 6 or
ATLAS 7, both of which ship with BLAS and LAPACK routines.

7. protobuf 8 is an optional dependency that is used for serializing and deserializing linear
least squares problems to disk. This is useful for debugging and testing. Without it, some
of the tests will be disabled.

1http://www.cmake.org/
2http://eigen.tuxfamily.org
3http://code.google.com/p/google-glog
4http://code.google.com/p/gflags
5http://www.cise.ufl.edu/research/sparse/suitesparse/
6http://www.tacc.utexas.edu/tacc-projects/gotoblas2
7http://math-atlas.sourceforge.net/
8http://code.google.com/p/protobuf/

8

http://code.google.com/p/ceres-solver/
http://www.cmake.org/
http://eigen.tuxfamily.org
http://code.google.com/p/google-glog
http://code.google.com/p/gflags
http://www.cise.ufl.edu/research/sparse/suitesparse/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://math-atlas.sourceforge.net/
http://code.google.com/p/protobuf/

CHAPTER 3. BUILDING CERES 9

Currently we support building on Linux and MacOS X. Support for other platforms is forth-
coming.

3.2 BUILDING ON LINUX

We will use Ubuntu as our example platform.

1. cmake

sudo apt-get install cmake

2. gflags can either be installed from source via the autoconf invocation

tar -xvzf gflags-2.0.tar.gz
cd gflags-2.0
./configure --prefix=/usr/local
make
sudo make install.

or via the deb or rpm packages available on the gflags website.

3. google-glog must be configured to use the previously installed gflags, rather than the
stripped down version that is bundled with google-glog. Assuming you have it installed
in /usr/local the following autoconf invocation installs it.

tar -xvzf glog-0.3.2.tar.gz
cd glog-0.3.2
./configure --with-gflags=/usr/local/
make
sudo make install

4. Eigen3

sudo apt-get install libeigen3-dev

5. SuiteSparse

sudo apt-get install libsuitesparse-dev

This should automatically bring in the necessary BLAS and LAPACK dependencies.

6. protobuf

sudo apt-get install libprotobuf-dev

CHAPTER 3. BUILDING CERES 10

We are now ready to build and test Ceres. Note that cmake requires the exact path to the
libglog.a and libgflag.a

tar zxf ceres-solver-1.0.tar.gz
mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver-1.0
make -j3
make test

You can also try running the command line bundling application with one of the included
problems, which comes from the University of Washington’s BAL dataset [1]:

examples/simple_bundle_adjuster \
../ceres-solver-1.0/data/problem-16-22106-pre.txt \

This runs Ceres for a maximum of 10 iterations using the DENSE_SCHUR linear solver. The
output should look something like this.

CHAPTER 3. BUILDING CERES 11

0: f: 1.598216e+06 d: 0.00e+00 g: 5.67e+18 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.116401e+05 d: 1.49e+06 g: 1.42e+18 h: 5.48e+02 rho: 9.50e-01 mu: 3.33e-05 li: 1
2: f: 4.923547e+04 d: 6.24e+04 g: 8.57e+17 h: 3.21e+02 rho: 6.79e-01 mu: 3.18e-05 li: 1
3: f: 1.884538e+04 d: 3.04e+04 g: 1.45e+17 h: 1.25e+02 rho: 9.81e-01 mu: 1.06e-05 li: 1
4: f: 1.807384e+04 d: 7.72e+02 g: 3.88e+16 h: 6.23e+01 rho: 9.57e-01 mu: 3.53e-06 li: 1
5: f: 1.803397e+04 d: 3.99e+01 g: 1.35e+15 h: 1.16e+01 rho: 9.99e-01 mu: 1.18e-06 li: 1
6: f: 1.803390e+04 d: 6.16e-02 g: 6.69e+12 h: 7.31e-01 rho: 1.00e+00 mu: 3.93e-07 li: 1

Ceres Solver Report

Original Reduced
Parameter blocks 22122 22122
Parameters 66462 66462
Residual blocks 83718 83718
Residual 167436 167436

Given Used
Linear solver DENSE_SCHUR DENSE_SCHUR
Preconditioner N/A N/A
Ordering SCHUR SCHUR
num_eliminate_blocks N/A 22106
Threads: 1 1
Linear Solver Threads: 1 1

Cost:
Initial 1.598216e+06
Final 1.803390e+04
Change 1.580182e+06

Number of iterations:
Successful 6
Unsuccessful 0
Total 6

Time (in seconds):
Preprocessor 0.000000e+00
Minimizer 2.000000e+00
Total 2.000000e+00
Termination: FUNCTION_TOLERANCE

CHAPTER 3. BUILDING CERES 12

3.3 BUILDING ON OS X

On OS X, we recommend using the homebrew 9 package manager.

1. cmake

brew install cmake

2. glog and gflags

Installing google-glog takes also brings in gflags as a dependency.

brew install glog

3. Eigen3

brew install eigen

4. SuiteSparse

brew install suite-sparse

5. protobuf

brew install protobuf

We are now ready to build and test Ceres.

tar zxf ceres-solver-1.0.tar.gz
mkdir ceres-bin
cd ceres-bin
cmake ../ceres-solver-1.0
make -j3
make test

Like the Linux build, you should now be able to run examples/simple_bundle_adjuster.

9http://mxcl.github.com/homebrew/

http://mxcl.github.com/homebrew/

CHAPTER 3. BUILDING CERES 13

3.4 CUSTOMIZING THE BUILD PROCESS

It is possible to reduce the libraries needed to build Ceres and customize the build process
by passing appropriate flags to cmake. But unless you really know what you are doing, we
recommend against disabling any of the following flags.

1. protobuf

Protocol Buffers is a big dependency and if you do not care for the tests that depend on
it and the logging support it enables, you can turn it off by using

-DPROTOBUF=OFF.

2. SuiteSparse

By default, Ceres will only link to SuiteSparse if all its dependencies are present. To
build Ceres without SuiteSparse use

-DSUITESPARSE=OFF.

This will also disable dependency checking for LAPACK and BLAS. This saves on binary
size, but the resulting version of Ceres is not suited to large scale problems due to the
lack of a sparse Cholesky solver. This will reduce Ceres’ dependencies down to Eigen3,
gflags and google-glog.

3. gflags

To build Ceres without gflags, use

-DGFLAGS=OFF.

Disabling this flag will prevent some of the example code from building.

4. Template Specializations

If you are concerned about binary size/compilation time over some small (10-20%) per-
formance gains in the SPARSE_SCHUR solver, you can disable some of the template spe-
cializations by using

-DSCHUR_SPECIALIZATIONS=OFF.

5. OpenMP

On certain platforms like Android, multithreading with OpenMP is not supported. OpenMP
support can be disabled by using

-DOPENMP=OFF.

TUTORIAL

4.1 NON-LINEAR LEAST SQUARES

Let x ∈ Rn be an n-dimensional vector of variables, and F(x) = [f1(x); . . . ; fk(x)] be a vector of
residuals f i(x). The function f i(x) can be a scalar or a vector valued function. We are interested
in finding the solution to the following optimization problem

argmin
x

1
2

k∑
i=1

‖ f i(x)‖2. (4.1)

Here ‖ ·‖ denotes the Euclidean norm of a vector.

Such optimization problems arise in almost every area of science and engineering. Whenever
there is data to be analyzed, curves to be fitted, there is usually a linear or a non-linear least
squares problem lurking in there somewhere.

Perhaps the simplest example of such a problem is the problem of Ordinary Linear Regression,
where given observations (x1, y1), . . . , (xk, yk), we wish to find the line y = mx+ c, that best
explains y as a function of x. One way to solve this problem is to find the solution to the
following optimization problem

argmin
m,c

k∑
i=1

(yi −mxi − c)2. (4.2)

With a little bit of calculus, this problem can be solved easily by hand. But what if, instead of
a line we were interested in a more complicated relationship between x and y, say for example
y= emx+c. Then the optimization problem becomes

argmin
m,c

k∑
i=1

(
yi − emxi+c)2 . (4.3)

This is a non-linear regression problem and solving it by hand is much more tedious. Ceres is
designed to help you model and solve problems like this easily and efficiently.

4.2 HELLO WORLD!

Let us consider the problem of finding the minimum of the function

g(x)= 1
2

(10− x)2. (4.4)

14

CHAPTER 4. TUTORIAL 15

This is a trivial problem, whose minimum is easy to see is located at 10, but it is a good place
to start to illustrate the basics of solving a problem with Ceres. Let us write this problem as a
non-linear least squares problem by defining the scalar residual function f1(x) = 10− x. Then
F(x)= [f1(x)] is a residual vector with exactly one component.

When solving a problem with Ceres, the first thing to do is to define a CostFunction object1. It
is responsible for computing the value of the residual function and its derivative (also known
as the Jacobian) with respect to x. Listing 4.2 has the code.

class SimpleCostFunction
: public ceres::SizedCostFunction<1 /* number of residuals */ ,

1 /* size of first parameter */ > {
public:
virtual ~SimpleCostFunction() {}
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) const {

double x = parameters[0][0];
// f(x) = 10 - x.
residuals[0] = 10 - x;
if (jacobians != NULL) {

// If the jacobians are asked for,
// then compute the derivative.

jacobians[0][0] = -1;
}
return true;

}
};

A CostFunction for f = 10− x

SimpleCostFunction is provided with an input array of parameters, an output array for resid-
uals and an optimal output array for Jacobians. In our example, there is just one parame-
ter and one residual and this is known at compile time, therefore we inherit from templated
SizedCostFunction class. The jacobians array is optional, Evaluate is expected to check

1Full working code for this and other examples in this manual can be found in the examples directory. Code
for this example can be found in examples/quadratic.cc

CHAPTER 4. TUTORIAL 16

when it is non-null, and if it is the case then fill it with the values of the derivative of the
residual function. In this case since the residual function is linear, the Jacobian is constant.

Let us now look at the construction and solution of the problem using this CostFunction.

int main(int argc, char** argv) {
double x = 5.0;
ceres::Problem problem;

// The problem object takes ownership of the newly allocated
// SimpleCostFunction and uses it to optimize the value of x.
problem.AddResidualBlock(new SimpleCostFunction, NULL, &x);

// Configure the solver.
ceres::Solver::Options options;
options.max_num_iterations = 2;
// Small, simple problem so we will use the Dense QR
// factorization based solver.
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;

ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
std::cout << "x : 5.0 -> " << x << "\n";
return 0;

}

Problem construction and solution for F(x)= 1
2 (x−10)2

Compiling and running this program gives us

0: f: 1.250000e+01 d: 0.00e+00 g: 5.00e+00 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.249750e-07 d: 1.25e+01 g: 5.00e-04 h: 5.00e+00 rho: 1.00e+00 mu: 3.33e-05 li: 1
2: f: 1.388518e-16 d: 1.25e-07 g: 1.67e-08 h: 5.00e-04 rho: 1.00e+00 mu: 1.11e-05 li: 1
Ceres Solver Report: Iterations: 2, Initial cost: 1.250000e+01, \
Final cost: 1.388518e-16, Termination: PARAMETER_TOLERANCE.
x : 5 -> 10

CHAPTER 4. TUTORIAL 17

Starting from a x = 5, the solver in two iterations goes to 10. The careful reader will note
that this is a linear problem and one linear solve should be enough to get the optimal value.
The default configuration of the solver is aimed at non-linear problems, and for reasons of
simplicity we did not change it in this example. It is indeed possible to obtain the solution to
this problem using Ceres in one iteration. Also note that the solver did get very close to the
optimal function value of 0 in the very first iteration. We will discuss these issues in greater
detail when we talk about convergence and initial parameter setting for Ceres.

4.3 A NON-LINEAR EXAMPLE

Consider now a slightly more complicated example – the minimization of Powell’s function. Let
x = [x1, x2, x3, x4] and

f1(x)= x1 +10∗ x2 (4.5)

f2(x)=
p

5∗ (x3 − x4) (4.6)

f3(x)= (x2 −2∗ x3)2 (4.7)

f4(x)=
p

10∗ (x1 − x4)2 (4.8)

F(x)= 1
2

(
f 2
1 (x)+ f 2

2 (x)+ f 2
3 (x)+ f 2

4 (x)
)

(4.9)

F(x) is a function of four parameters, and has four residuals. Now, one way to solve this
problem would be to define four CostFunctions that computes the residual and Jacobian. e.g.
Listing 4.3 shows the implementation for f4(x).

CHAPTER 4. TUTORIAL 18

class F4 : public ceres::SizedCostFunction<1, 4> {
public:
virtual ~F4() {}
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) const {

double x1 = parameters[0][0];
double x4 = parameters[1][0];

// f4 = p
10 ∗ (x1 − x4)2

residuals[0] = sqrt(10.0) * (x1 - x4) * (x1 - x4)
if (jacobians != NULL) {

// ∂x1 f1(x)
jacobians[0][0] = 2.0 * sqrt(10.0) * (x1 - x4);
// ∂x2 f1(x)
jacobians[0][1] = 0.0;
// ∂x3 f1(x)
jacobians[0][2] = 0.0;
// ∂x4 f1(x)
jacobians[0][3] = -2.0 * sqrt(10.0) * (x1 - x4);

}
return true;

}
};

A full CostFunction implementation of f4(x)=p
10∗ (x1 − x4)2.

But this can get painful very quickly, especially for residuals involving complicated multivari-
ate terms. Ceres provides two ways around this problem. Numeric and automatic symbolic
differentiation.

Automatic Differentiation

With its automatic differentiation support, Ceres allows you to define templated objects that
will compute the residual and it takes care of computing the Jacobians as needed and filling
the jacobians arrays with them. For example, for f4(x) we define

CHAPTER 4. TUTORIAL 19

class F4 {
public:
template <typename T> bool operator()(const T* const x1,

const T* const x4,
T* residual) const {

// f4 = p
10 ∗ (x1 − x4)2

residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
return true;

}
};

Templated functor implementing f4(x)=p
10∗ (x1 − x4)2 for use in automatic differentiation.

The important thing to note here is that the operator() is a templated method, which assumes
that all its inputs and outputs are of some type T. Note also that the parameters are not packed
into a single array, they are instead passed as separate arguments to operator(). Similarly
we can define classes F1,F2 and F4. Then let us consider the construction and solution of the
problem. For brevity we only describe the relevant bits of code. The full source code for this
example can be found in examples/powell.cc.

double x1 = 3.0; double x2 = -1.0; double x3 = 0.0; double x4 = 1.0;

// Add residual terms to the problem using the using the autodiff
// wrapper to get the derivatives automatically. The parameters, x1 through
// x4, are modified in place.
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x1, &x2);
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x3, &x4);
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x2, &x3)
problem.AddResidualBlock(

new ceres::AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x1, &x4);

Problem construction using AutoDiffCostFunction for Powell’s function.

CHAPTER 4. TUTORIAL 20

A few things are worth noting in the code above. First, the object being added to the Problem
is an AutoDiffCostFunction with F1, F2, F3 and F4 as template parameters. Second, each
ResidualBlock only depends on the two parameters that the corresponding residual object
depends on and not on all four parameters.

Compiling and running powell.cc gives us:

Initial x1 = 3, x2 = -1, x3 = 0, x4 = 1
0: f: 1.075000e+02 d: 0.00e+00 g: 1.55e+02 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 5.036190e+00 d: 1.02e+02 g: 2.00e+01 h: 2.16e+00 rho: 9.53e-01 mu: 3.33e-05 li: 1
2: f: 3.148168e-01 d: 4.72e+00 g: 2.50e+00 h: 6.23e-01 rho: 9.37e-01 mu: 1.11e-05 li: 1
3: f: 1.967760e-02 d: 2.95e-01 g: 3.13e-01 h: 3.08e-01 rho: 9.37e-01 mu: 3.70e-06 li: 1
4: f: 1.229900e-03 d: 1.84e-02 g: 3.91e-02 h: 1.54e-01 rho: 9.37e-01 mu: 1.23e-06 li: 1
5: f: 7.687123e-05 d: 1.15e-03 g: 4.89e-03 h: 7.69e-02 rho: 9.37e-01 mu: 4.12e-07 li: 1
6: f: 4.804625e-06 d: 7.21e-05 g: 6.11e-04 h: 3.85e-02 rho: 9.37e-01 mu: 1.37e-07 li: 1
7: f: 3.003028e-07 d: 4.50e-06 g: 7.64e-05 h: 1.92e-02 rho: 9.37e-01 mu: 4.57e-08 li: 1
8: f: 1.877006e-08 d: 2.82e-07 g: 9.54e-06 h: 9.62e-03 rho: 9.37e-01 mu: 1.52e-08 li: 1
9: f: 1.173223e-09 d: 1.76e-08 g: 1.19e-06 h: 4.81e-03 rho: 9.37e-01 mu: 5.08e-09 li: 1

10: f: 7.333425e-11 d: 1.10e-09 g: 1.49e-07 h: 2.40e-03 rho: 9.37e-01 mu: 1.69e-09 li: 1
11: f: 4.584044e-12 d: 6.88e-11 g: 1.86e-08 h: 1.20e-03 rho: 9.37e-01 mu: 5.65e-10 li: 1

Ceres Solver Report: Iterations: 12, Initial cost: 1.075000e+02, \
Final cost: 2.865573e-13, Termination: GRADIENT_TOLERANCE.
Final x1 = 0.000583994, x2 = -5.83994e-05, x3 = 9.55401e-05, x4 = 9.55401e-05

It is easy to see that the optimal solution to this problem is at x1 = 0, x2 = 0, x3 = 0, x4 = 0
with an objective function value of 0. In 10 iterations, Ceres finds a solution with an objective
function value of 4×10−12.

If a templated implementation is not possible then a NumericDiffCostFunction object can be
used. examples/quadratic_numeric_diff.cc shows a numerically differentiated implemen-
tation of examples/quadratic.cc.

When possible, automatic differentiation should be used. The use of C++ templates makes
automatic differentiation extremely efficient, whereas numeric differentiation can be quite
expensive, prone to numeric errors and leads to slower convergence.

4.4 DATA FITTING

The examples we have seen until now are simple optimization problems with no data. The
original purpose of least squares and non-linear least squares analysis was fitting curves to

CHAPTER 4. TUTORIAL 21

data. It is only appropriate that we now consider an example of such a problem. Let us fit
some data to the curve

y= emx+c. (4.10)

The full code and data for this example can be found in examples/data_fitting.cc. It con-
tains data generated by sampling the curve y= e0.3x+0.1 and adding Gaussian noise with stan-
dard deviation σ= 0.2.

We begin by defining a templated object to evaluate the residual. There will be a residual for
each observation.

class ExponentialResidual {
public:
ExponentialResidual(double x, double y)

: x_(x), y_(y) {}

template <typename T> bool operator()(const T* const m,
const T* const c,
T* residual) const {

// y − emx + c

residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
return true;

}

private:
// Observations for a sample.
const double x_;
const double y_;

};

Templated functor to compute the residual for the exponential model fitting problem. Note that one
instance of the functor is responsible for computing the residual for one observation.

Assuming the observations are in a 2n sized array called data, the problem construction is a
simple matter of creating a CostFunction for every observation.

CHAPTER 4. TUTORIAL 22

double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {

problem.AddResidualBlock(
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(

new ExponentialResidual(data[2 * i], data[2 * i + 1])),
NULL,
&m, &c);

}

Problem construction for the exponential data fitting problem. A ResidualBlock is added for each
observation.

Compiling and running data_fitting.cc gives us

0: f: 1.211734e+02 d: 0.00e+00 g: 3.61e+02 h: 0.00e+00 rho: 0.00e+00 mu: 1.00e-04 li: 0
1: f: 1.211734e+02 d:-2.21e+03 g: 3.61e+02 h: 7.52e-01 rho:-1.87e+01 mu: 2.00e-04 li: 1
2: f: 1.211734e+02 d:-2.21e+03 g: 3.61e+02 h: 7.51e-01 rho:-1.86e+01 mu: 8.00e-04 li: 1
3: f: 1.211734e+02 d:-2.19e+03 g: 3.61e+02 h: 7.48e-01 rho:-1.85e+01 mu: 6.40e-03 li: 1
4: f: 1.211734e+02 d:-2.02e+03 g: 3.61e+02 h: 7.22e-01 rho:-1.70e+01 mu: 1.02e-01 li: 1
5: f: 1.211734e+02 d:-7.34e+02 g: 3.61e+02 h: 5.78e-01 rho:-6.32e+00 mu: 3.28e+00 li: 1
6: f: 3.306595e+01 d: 8.81e+01 g: 4.10e+02 h: 3.18e-01 rho: 1.37e+00 mu: 1.09e+00 li: 1
7: f: 6.426770e+00 d: 2.66e+01 g: 1.81e+02 h: 1.29e-01 rho: 1.10e+00 mu: 3.64e-01 li: 1
8: f: 3.344546e+00 d: 3.08e+00 g: 5.51e+01 h: 3.05e-02 rho: 1.03e+00 mu: 1.21e-01 li: 1
9: f: 1.987485e+00 d: 1.36e+00 g: 2.33e+01 h: 8.87e-02 rho: 9.94e-01 mu: 4.05e-02 li: 1

10: f: 1.211585e+00 d: 7.76e-01 g: 8.22e+00 h: 1.05e-01 rho: 9.89e-01 mu: 1.35e-02 li: 1
11: f: 1.063265e+00 d: 1.48e-01 g: 1.44e+00 h: 6.06e-02 rho: 9.97e-01 mu: 4.49e-03 li: 1
12: f: 1.056795e+00 d: 6.47e-03 g: 1.18e-01 h: 1.47e-02 rho: 1.00e+00 mu: 1.50e-03 li: 1
13: f: 1.056751e+00 d: 4.39e-05 g: 3.79e-03 h: 1.28e-03 rho: 1.00e+00 mu: 4.99e-04 li: 1
Ceres Solver Report: Iterations: 13, Initial cost: 1.211734e+02, \
Final cost: 1.056751e+00, Termination: FUNCTION_TOLERANCE.
Initial m: 0 c: 0
Final m: 0.291861 c: 0.131439

Starting from parameter values m = 0, c = 0 with an initial objective function value of 121.173

CHAPTER 4. TUTORIAL 23

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

y

x

Ground Truth Curve
Observations
Fitted Curve

Least squares data fitting to the curve y = e0.3x+0.1. Observations were generated by sampling this curve
uniformly in the interval x = (0,5) and adding Gaussian noise with σ= 0.2.

Ceres finds a solution m = 0.291861, c = 0.131439 with an objective function value of 1.05675.
These values are a a bit different than the parameters of the original model m = 0.3, c = 0.1, but
this is normal. When reconstructing a curve from noisy data, we expect to see such deviations.
Indeed, if you were to evaluate the objective function for m = 0.3, c = 0.1, the fit is worse with
an objective function value of 1.082425. Figure 4.4 illustrates the fit.

4.5 BUNDLE ADJUSTMENT

CHAPTER 4. TUTORIAL 24

One of the main reasons for writing Ceres was our desire to solve large scale bundle adjustment
problems [5, 19].

Given a set of measured image feature locations and correspondences, the goal of bundle ad-
justment is to find 3D point positions and camera parameters that minimize the reprojection
error. This optimization problem is usually formulated as a non-linear least squares problem,
where the error is the squared L2 norm of the difference between the observed feature location
and the projection of the corresponding 3D point on the image plane of the camera.

Ceres has extensive support for solving bundle adjustment problems. Let us consider the
solution of a problem from the BAL [1] dataset. The code for this example can be found in
examples/simple_bundle_adjuster.cc.

The first step is to define the CostFunction. Each residual in a BAL problem depends on
a three dimensional point and a nine parameter camera. The details of this camera model
can be found on Noah Snavely’s Bundler homepage 2 and the BAL homepage 3. Listing 4.5
describes the templated functor for computing the residual. Unlike the examples before this
is a non-trivial function and computing its analytic Jacobian is a bit of a pain. Automatic
differentiation makes our life very simple here. Given this functor, let us look at the problem
construction.

// Create residuals for each observation in the bundle adjustment problem. The
// parameters for cameras and points are added automatically.
ceres::Problem problem;
for (int i = 0; i < bal_problem.num_observations(); ++i) {

// Each Residual block takes a point and a camera as input and outputs a 2
// dimensional residual. Internally, the cost function stores the observed
// image location and compares the reprojection against the observation.
ceres::CostFunction* cost_function =

new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
new SnavelyReprojectionError(

bal_problem.observations()[2 * i + 0],
bal_problem.observations()[2 * i + 1]));

problem.AddResidualBlock(cost_function,
NULL /* squared loss */ ,
bal_problem.mutable_camera_for_observation(i),

2http://phototour.cs.washington.edu/bundler/
3http://grail.cs.washington.edu/projects/bal/

http://phototour.cs.washington.edu/bundler/
http://grail.cs.washington.edu/projects/bal/

CHAPTER 4. TUTORIAL 25

bal_problem.mutable_point_for_observation(i));
}

}

Note that the problem construction for bundle adjustment is not very different from the data
fitting example. One extra feature here is the optional use of a robust loss function. If the user
wants, instead of just using a squared reprojection error as the objective function we robustify
it using Huber’s loss. More details of the various loss functions available in Ceres and their
characteristics can be found in loss_function.h.

One way to solve this problem would be to set Solver::Options::linear_solver_type to
SPARSE_NORMAL_CHOLESKY and call Solve. And while this is a reasonable thing to do, bundle
adjustment problems have a special sparsity structure that can be exploited to solve them
much more efficiently. Ceres provides three specialized solvers (collectively known as Schur
based solvers) for this task. The example code uses the simplest of them DENSE_SCHUR. For
more details on the available solvers and how they work see Chapter 6.

For a more sophisticated example of bundle adjustment which demonstrates the use of the vari-
ous linear solvers, robust loss functions and local parameterizations see examples/bundle_adjuster.cc.

CHAPTER 4. TUTORIAL 26

struct SnavelyReprojectionError {
SnavelyReprojectionError(double observed_x, double observed_y)

: observed_x(observed_x), observed_y(observed_y) {}

template <typename T>
bool operator()(const T* const camera,

const T* const point,
T* residuals) const {

// camera[0,1,2] are the angle-axis rotation.
T p[3];
ceres::AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5];

// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely’s Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
const T& focal = camera[6];
T xp = - focal * p[0] / p[2];
T yp = - focal * p[1] / p[2];

// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
T r2 = xp*xp + yp*yp;
T distortion = T(1.0) + r2 * (l1 + l2 * r2);

// Compute final projected point position.
T predicted_x = distortion * xp;
T predicted_y = distortion * yp;

// The error is the difference between the predicted and observed position.
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;

}

double observed_x;
double observed_y;

};

Templated functor to compute the residual using the Bundler camera. Note that the structure of this
functor is similar to the ExponentialResidual 4.4, in that there is an instance of this object responsible
for each image observation. The camera has nine parameters. Three for rotation as a Rodriquez axis-angle
vector, three for translation, one for focal length and two for radial distortion. AngleAxisRotatePoint
can be found in rotation.h.

API REFERENCE

Ceres solves robustified non-linear least squares problems of the form

1
2

k∑
i=1

ρ i

(∥∥ f i
(
xi1 , . . . , xki

)∥∥2
)
. (5.1)

Where f i() is a cost function that depends on the parameter blocks
[
xi1 , . . . , xik

]
and ρ i is a loss

function. In most optimization problems small groups of scalars occur together. For example
the three components of a translation vector and the four components of the quaternion that
define the pose of a camera. We refer to such a group of small scalars as a Parameter Block.
Of course a parameter block can just have a single parameter. The term ρ i

(∥∥ f i
(
xi1 , . . . , xki

)∥∥2
)

is known as a residual block. A Ceres problem is a collection of residual blocks, each of which
depends on a subset of the parameter blocks.

5.1 costfunction

Given parameter blocks
[
xi1 , . . . , xik

]
, a CostFunction is responsible for computing a vector of

residuals and if asked a vector of Jacobian matrices, i.e., given
[
xi1, . . . , xik

]
, compute the vector

f i
(
xi1 , . . . , xki

)
and the matrices

Ji j = ∂

∂xi j

f i
(
xi1 , . . . , xki

)
, ∀ j = i1, . . . , ik (5.2)

class CostFunction {
public:
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) = 0;

const vector<int16>& parameter_block_sizes();
int num_residuals() const;

protected:
vector<int16>* mutable_parameter_block_sizes();
void set_num_residuals(int num_residuals);

};

The signature of the function (number and sizes of input parameter blocks and number of out-
puts) is stored in parameter_block_sizes_ and num_residuals_ respectively. User code in-

27

CHAPTER 5. API REFERENCE 28

heriting from this class is expected to set these two members with the corresponding accessors.
This information will be verified by the Problem when added with Problem::AddResidualBlock.

The most important method here is Evaluate. It implements the residual and Jacobian com-
putation.

parameters is an array of pointers to arrays containing the various parameter blocks. param-
eters has the same number of elements as parameter_block_sizes_. Parameter blocks are in
the same order as parameter_block_sizes_.

residuals is an array of size num_residuals_.

jacobians is an array of size parameter_block_sizes_ containing pointers to storage for Ja-
cobian matrices corresponding to each parameter block. Jacobian matrices are in the same or-
der as parameter_block_sizes_, i.e., jacobians[i], is an array that contains num_residuals_
* parameter_block_sizes_[i] elements. Each Jacobian matrix is stored in row-major order,
i.e.,

jacobians[i][r*parameter_block_size_[i] + c]= ∂residual[r]
∂parameters[i][c]

(5.3)

If jacobians is NULL, then no derivatives are returned; this is the case when computing cost
only. If jacobians[i] is NULL, then the Jacobian matrix corresponding to the ith parameter
block must not be returned, this is the case when the a parameter block is marked constant.

5.2 sizedcostfunction

If the size of the parameter blocks and the size of the residual vector is known at compile
time (this is the common case), Ceres provides SizedCostFunction, where these values can
be specified as template parameters.

template<int kNumResiduals,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>

class SizedCostFunction : public CostFunction {
public:
virtual bool Evaluate(double const* const* parameters,

double* residuals,
double** jacobians) = 0;

};

In this case the user only needs to implement the Evaluate method.

CHAPTER 5. API REFERENCE 29

5.3 autodiffcostfunction

But even defining the SizedCostFunction can be a tedious affair if complicated derivative
computations are involved. To this end Ceres provides automatic differentiation.

To get an auto differentiated cost function, you must define a class with a templated operator()
(a functor) that computes the cost function in terms of the template parameter T. The autodiff
framework substitutes appropriate Jet objects for T in order to compute the derivative when
necessary, but this is hidden, and you should write the function as if T were a scalar type (e.g.
a double-precision floating point number).

The function must write the computed value in the last argument (the only non-const one)
and return true to indicate success.

For example, consider a scalar error e = k − x>y, where both x and y are two-dimensional
vector parameters and k is a constant. The form of this error, which is the difference between
a constant and an expression, is a common pattern in least squares problems. For example,
the value x>y might be the model expectation for a series of measurements, where there is an
instance of the cost function for each measurement k.

The actual cost added to the total problem is e2, or (k− x>y)2; however, the squaring is implic-
itly done by the optimization framework.

To write an auto-differentiable cost function for the above model, first define the object

class MyScalarCostFunction {
MyScalarCostFunction(double k): k_(k) {}
template <typename T>
bool operator()(const T* const x , const T* const y, T* e) const {

e[0] = T(k_) - x[0] * y[0] + x[1] * y[1]
return true;

}

private:
double k_;

};

Note that in the declaration of operator() the input parameters x and y come first, and are
passed as const pointers to arrays of T. If there were three input parameters, then the third
input parameter would come after y. The output is always the last parameter, and is also a
pointer to an array. In the example above, e is a scalar, so only e[0] is set.

CHAPTER 5. API REFERENCE 30

Then given this class definition, the auto differentiated cost function for it can be constructed
as follows.

CostFunction* cost_function
= new AutoDiffCostFunction<MyScalarCostFunction, 1, 2, 2>(

new MyScalarCostFunction(1.0)); ^ ^ ^
| | |

Dimension of residual ------+ | |
Dimension of x ----------------+ |
Dimension of y -------------------+

In this example, there is usually an instance for each measurement of k.

In the instantiation above, the template parameters following MyScalarCostFunction, <1,
2, 2> describe the functor as computing a 1-dimensional output from two arguments, both
2-dimensional.

The framework can currently accommodate cost functions of up to 6 independent variables,
and there is no limit on the dimensionality of each of them.

WARNING 1 Since the functor will get instantiated with different types for T, you must con-
vert from other numeric types to T before mixing computations with other variables of type
T. In the example above, this is seen where instead of using k_ directly, k_ is wrapped with
T(k_).

WARNING 2 A common beginner’s error when first using AutoDiffCostFunction is to get the
sizing wrong. In particular, there is a tendency to set the template parameters to (dimension of
residual, number of parameters) instead of passing a dimension parameter for every parameter
block. In the example above, that would be <MyScalarCostFunction, 1, 2>, which is missing
the 2 as the last template argument.

5.4 numericdiffcostfunction

To get a numerically differentiated cost function, define a subclass of CostFunction such that
the Evaluate function ignores the jacobian parameter. The numeric differentiation wrapper
will fill in the jacobians array if necessary by repeatedly calling the Evaluate method with
small changes to the appropriate parameters, and computing the slope. For performance, the
numeric differentiation wrapper class is templated on the concrete cost function, even though
it could be implemented only in terms of the virtual CostFunction interface.

CHAPTER 5. API REFERENCE 31

template <typename CostFunctionNoJacobian,
NumericDiffMethod method = CENTRAL, int M = 0,
int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0, int N5 = 0>

class NumericDiffCostFunction
: public SizedCostFunction<M, N0, N1, N2, N3, N4, N5> {

};

The numerically differentiated version of a cost function for a cost function can be constructed
as follows:

CostFunction* cost_function
= new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(

new MyCostFunction(...), TAKE_OWNERSHIP);

where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8 respectively.
Look at the tests for a more detailed example.

The central difference method is considerably more accurate at the cost of twice as many func-
tion evaluations than forward difference. Consider using central differences begin with, and
only after that works, trying forward difference to improve performance.

5.5 lossfunction

For least squares problems where the minimization may encounter input terms that contain
outliers, that is, completely bogus measurements, it is important to use a loss function that
reduces their influence.

Consider a structure from motion problem. The unknowns are 3D points and camera parame-
ters, and the measurements are image coordinates describing the expected reprojected position
for a point in a camera. For example, we want to model the geometry of a street scene with fire
hydrants and cars, observed by a moving camera with unknown parameters, and the only 3D
points we care about are the pointy tippy-tops of the fire hydrants. Our magic image processing
algorithm, which is responsible for producing the measurements that are input to Ceres, has
found and matched all such tippy-tops in all image frames, except that in one of the frame it
mistook a car’s headlight for a hydrant. If we didn’t do anything special the residual for the er-
roneous measurement will result in the entire solution getting pulled away from the optimum
to reduce the large error that would otherwise be attributed to the wrong measurement.

Using a robust loss function, the cost for large residuals is reduced. In the example above, this
leads to outlier terms getting down-weighted so they do not overly influence the final solution.

CHAPTER 5. API REFERENCE 32

class LossFunction {
public:
virtual void Evaluate(double s, double out[3]) const = 0;

};

The key method is Evaluate, which given a non-negative scalar s, computes

out= [
ρ(s), ρ′(s), ρ′′(s)

]
(5.4)

Here the convention is that the contribution of a term to the cost function is given by 1
2ρ(s),

where s = ‖ f i‖2. Calling the method with a negative value of s is an error and the implemen-
tations are not required to handle that case.

Most sane choices of ρ satisfy:

ρ(0)= 0 (5.5)

ρ′(0)= 1 (5.6)

ρ′(s)< 1 in the outlier region (5.7)

ρ′′(s)< 0 in the outlier region (5.8)

so that they mimic the squared cost for small residuals.

Scaling

Given one robustifier ρ(s) one can change the length scale at which robustification takes place,
by adding a scale factor a > 0 which gives us ρ(s,a)= a2ρ(s/a2) and the first and second deriva-
tives as ρ′(s/a2) and (1/a2)ρ′′(s/a2) respectively.

The reason for the appearance of squaring is that a is in the units of the residual vector norm
whereas s is a squared norm. For applications it is more convenient to specify a than its square.

Here are some common loss functions implemented in Ceres. For simplicity we described their
unscaled versions. Figure 5.5 illustrates their shape graphically.

ρ(s)= s (NullLoss)

ρ(s)=
{

s s ≤ 1
2
p

s−1 s > 1
(HuberLoss)

ρ(s)= 2(
p

1+ s−1) (SoftLOneLoss)

ρ(s)= log(1+ s) (CauchyLoss)

CHAPTER 5. API REFERENCE 33

0

5

10

15

20

25

0 1 2 3 4 5

Lo
ss
Fu
nc
tio
n(
x2
)

x

NullLoss
HuberLoss

SoftLOneLoss
Cauchy

Shape of the various common loss functions.

5.6 localparameterization

Sometimes the parameters x can overparameterize a problem. In that case it is desirable to
choose a parameterization to remove the null directions of the cost. More generally, if x lies
on a manifold of a smaller dimension than the ambient space that it is embedded in, then it is
numerically and computationally more effective to optimize it using a parameterization that
lives in the tangent space of that manifold at each point.

For example, a sphere in three dimensions is a two dimensional manifold, embedded in a three
dimensional space. At each point on the sphere, the plane tangent to it defines a two dimen-
sional tangent space. For a cost function defined on this sphere, given a point x, moving in
the direction normal to the sphere at that point is not useful. Thus a better way to parameter-

CHAPTER 5. API REFERENCE 34

ize a point on a sphere is to optimize over two dimensional vector ∆x in the tangent space at
the point on the sphere point and then "move" to the point x+∆x, where the move operation
involves projecting back onto the sphere. Doing so removes a redundant dimension from the
optimization, making it numerically more robust and efficient.

More generally we can define a function

x′ =�(x,∆x), (5.9)

where x′ has the same size as x, and ∆x is of size less than or equal to x. The function �,
generalizes the definition of vector addition. Thus it satisfies the identity

� (x,0)= x, ∀x. (5.10)

Instances of LocalParameterization implement the � operation and its derivative with re-
spect to ∆x at ∆x = 0.

class LocalParameterization {
public:
virtual ~LocalParameterization() {}
virtual bool Plus(const double* x,

const double* delta,
double* x_plus_delta) const = 0;

virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
virtual int GlobalSize() const = 0;
virtual int LocalSize() const = 0;

};

GlobalSize is the dimension of the ambient space in which the parameter block x lives.
LocalSize is the size of the tangent space that ∆x lives in. Plus implements �(x,∆x) and
ComputeJacobian computes the Jacobian matrix

J = ∂

∂∆x
� (x,∆x)

∣∣∣∣
∆x=0

(5.11)

in row major form.

A trivial version of � is when delta is of the same size as x and

� (x,∆x)= x+∆x (5.12)

CHAPTER 5. API REFERENCE 35

A more interesting case if x is a two dimensional vector, and the user wishes to hold the first
coordinate constant. Then, ∆x is a scalar and � is defined as

� (x,∆x)= x+
[

0
1

]
∆x (5.13)

SubsetParameterization generalizes this construction to hold any part of a parameter block
constant.

Another example that occurs commonly in Structure from Motion problems is when camera
rotations are parameterized using a quaternion. There, it is useful only to make updates
orthogonal to that 4-vector defining the quaternion. One way to do this is to let ∆x be a 3
dimensional vector and define � to be

� (x,∆x)=
[
cos(|∆x|), sin(|∆x|)

|∆x| ∆x
]
∗ x (5.14)

The multiplication between the two 4-vectors on the right hand side is the standard quaternion
product. QuaternionParameterization is an implementation of (5.14).

5.7 problem

class Problem {
public:
struct Options {

Options();
Ownership cost_function_ownership;
Ownership loss_function_ownership;
Ownership local_parameterization_ownership;

};

Problem();
explicit Problem(const Options& options);
~Problem();

ResidualBlockId AddResidualBlock(CostFunction* cost_function,
LossFunction* loss_function,
const vector<double*>& parameter_blocks);

void AddParameterBlock(double* values, int size);

CHAPTER 5. API REFERENCE 36

void AddParameterBlock(double* values,
int size,
LocalParameterization* local_parameterization);

void SetParameterBlockConstant(double* values);
void SetParameterBlockVariable(double* values);
void SetParameterization(double* values,

LocalParameterization* local_parameterization);

int NumParameterBlocks() const;
int NumParameters() const;
int NumResidualBlocks() const;
int NumResiduals() const;

};

The Problem objects holds the robustified non-linear least squares problem (5.1). To create a
least squares problem, use the Problem::AddResidualBlock and Problem::AddParameterBlock
methods.

For example a problem containing 3 parameter blocks of sizes 3, 4 and 5 respectively and two
residual blocks of size 2 and 6:

double x1[] = { 1.0, 2.0, 3.0 };
double x2[] = { 1.0, 2.0, 3.0, 5.0 };
double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };

Problem problem;
problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);

AddResidualBlock as the name implies, adds a residual block to the problem. It adds a cost
function, an optional loss function, and connects the cost function to a set of parameter blocks.

The cost function carries with it information about the sizes of the parameter blocks it expects.
The function checks that these match the sizes of the parameter blocks listed in parameter_blocks.
The program aborts if a mismatch is detected. loss_function can be NULL, in which case the
cost of the term is just the squared norm of the residuals.

The user has the option of explicitly adding the parameter blocks using AddParameterBlock.
This causes additional correctness checking; however, AddResidualBlock implicitly adds the

CHAPTER 5. API REFERENCE 37

parameter blocks if they are not present, so calling AddParameterBlock explicitly is not re-
quired.

Problem by default takes ownership of the cost_function and loss_function pointers.
These objects remain live for the life of the Problem object. If the user wishes to keep control
over the destruction of these objects, then they can do this by setting the corresponding enums
in the Options struct.

Note that even though the Problem takes ownership of cost_function and loss_function, it
does not preclude the user from re-using them in another residual block. The destructor takes
care to call delete on each cost_function or loss_function pointer only once, regardless of
how many residual blocks refer to them.

AddParameterBlock explicitly adds a parameter block to the Problem. Optionally it allows
the user to associate a LocalParameterization object with the parameter block too. Repeated
calls with the same arguments are ignored. Repeated calls with the same double pointer but a
different size results in undefined behaviour.

You can set any parameter block to be constant using

Problem::SetParameterBlockConstant

and undo this using

Problem::SetParameterBlockVariable.

In fact you can set any number of parameter blocks to be constant, and Ceres is smart enough
to figure out what part of the problem you have constructed depends on the parameter blocks
that are free to change and only spends time solving it. So for example if you constructed a
problem with a million parameter blocks and 2 million residual blocks, but then set all but
one parameter blocks to be constant and say only 10 residual blocks depend on this one non-
constant parameter block. Then the computational effort Ceres spends in solving this problem
will be the same if you had defined a problem with one parameter block and 10 residual blocks.

Problem by default takes ownership of the cost_function, loss_function and
local_parameterization pointers. These objects remain live for the life of the Problem object.
If the user wishes to keep control over the destruction of these objects, then they can do this by
setting the corresponding enums in the Options struct. Even though Problem takes ownership
of these pointers, it does not preclude the user from re-using them in another residual or
parameter block. The destructor takes care to call delete on each pointer only once.

CHAPTER 5. API REFERENCE 38

5.8 solver::options

Solver::Options controls the overall behavior of the solver. We list the various settings and
their default values below.

1. minimizer_type(LEVENBERG_MARQUARDT) The minimization algorithm used by Ceres. LEVENBERG_MARQUARDT
is currently the only valid value.

2. max_num_iterations(50) Maximum number of iterations for Levenberg-Marquardt.

3. max_solver_time_sec(1e9) Maximum amount of time (in seconds) for which the solver
should run.

4. num_threads(1) Number of threads used by Ceres to evaluate the Jacobian.

5. tau(1e-4) Initial value of the regularization parameter µ used by the Levenberg-Marquardt
algorithm. The size of this parameter indicate the user’s guess of how far the initial so-
lution is from the minimum. Large values indicates that the solution is far away.

6. min_mu(1e-20) For Levenberg-Marquardt, the minimum value of the regularizer. For
well constrained problems there shold be no need to modify the default value, but in
some cases, going below a certain minimum reliably triggers rank deficiency in the nor-
mal equations. In such cases, the Levenberg-Marquardt algorithm can oscillate between
lowering the value of mu, seeing a numerical failure, and then increasing it making some
progress and then reducing it again.

In such cases, it is useful to set a higher value for min_mu.

7. min_relative_decrease(1e-3) Lower threshold for relative decrease before a Levenberg-
Marquardt step is acceped.

8. function_tolerance(1e-6) Solver terminates if

|∆cost|
cost

< function_tolerance (5.15)

where, ∆cost is the change in objective function value (up or down) in the current itera-
tion of Levenberg-Marquardt.

9. Solver::Options::gradient_tolerance Solver terminates if

‖g(x)‖∞
‖g(x0)‖∞

< gradient_tolerance (5.16)

where ‖ ·‖∞ refers to the max norm, and x0 is the vector of initial parameter values.

CHAPTER 5. API REFERENCE 39

10. parameter_tolerance(1e-8) Solver terminates if

‖∆x‖
‖x‖+parameter_tolerance

< parameter_tolerance (5.17)

where ∆x is the step computed by the linear solver in the current iteration of Levenberg-
Marquardt.

11. linear_solver_type(SPARSE_NORMAL_CHOLESKY/DENSE_QR) Type of linear solver used
to compute the solution to the linear least squares problem in each iteration of the
Levenberg-Marquardt algorithm. If Ceres is build with SuiteSparselinked in then the
default is SPARSE_NORMAL_CHOLESKY, it is DENSE_QR otherwise.

12. preconditioner_type(JACOBI) The preconditioner used by the iterative linear solver.
The default is the block Jacobi preconditioner. Valid values are (in increasing order of
complexity) IDENTITY,JACOBI, SCHUR_JACOBI, CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL.

13. num_linear_solver_threads(1) Number of threads used by the linear solver.

14. num_eliminate_blocks(0) For Schur reduction based methods, the first 0 to num blocks
are eliminated using the Schur reduction. For example, when solving traditional struc-
ture from motion problems where the parameters are in two classes (cameras and points)
then num_eliminate_blocks would be the number of points.

15. ordering_type(NATURAL) Internally Ceres reorders the parameter blocks to help the var-
ious linear solvers. This parameter allows the user to influence the re-ordering strategy
used. For structure from motion problems use SCHUR, for other problems NATURAL (de-
fault) is a good choice. In case you wish to specify your own ordering scheme, for example
in conjunction with num_eliminate_blocks, use USER.

16. ordering The ordering of the parameter blocks. The solver pays attention to it if the
ordering_type is set to USER and the ordering vector is non-empty.

17. linear_solver_min_num_iterations(1) Minimum number of iterations used by the lin-
ear solver. This only makes sense when the linear solver is an iterative solver, e.g.,
ITERATIVE_SCHUR.

18. linear_solver_max_num_iterations(500) Minimum number of iterations used by the
linear solver. This only makes sense when the linear solver is an iterative solver, e.g.,
ITERATIVE_SCHUR.

19. eta(1e-1) Forcing sequence parameter. The truncated Newton solver uses this number
to control the relative accuracy with which the Newton step is computed. This constant

CHAPTER 5. API REFERENCE 40

is passed to ConjugateGradientsSolver which uses it to terminate the iterations when

Q i −Q i−1

Q i
< η

i
(5.18)

20. jacobi_scaling(true) true means that the Jacobian is scaled by the norm of its columns
before being passed to the linear solver. This improves the numerical conditioning of the
normal equations.

21. logging_type(PER_MINIMIZER_ITERATION)

22. minimizer_progress_to_stdout(false) By default the Minimizer progress is logged to
STDERR depending on the vlog level. If this flag is set to true, and logging_type is not
SILENT, the logging output is sent to STDOUT.

23. return_initial_residuals(false)

24. return_final_residuals(false)

25. lsqp_iterations_to_dump List of iterations at which the optimizer should dump the
linear least squares problem to disk. Useful for testing and benchmarking. If empty
(default), no problems are dumped.

26. lsqp_dump_directory (/tmp) If lsqp_iterations_to_dump is non-empty, then this set-
ting determines the directory to which the files containing the linear least squares prob-
lems are written to.

27. lsqp_dump_formatTEXTFILE The format in which linear least squares problems should
be logged when lsqp_iterations_to_dump is non-empty. There are three options

• CONSOLE prints the linear least squares problem in a human readable format to
stderr. The Jacobian is printed as a dense matrix. The vectors D, x and f are
printed as dense vectors. This should only be used for small problems.

• PROTOBUF Write out the linear least squares problem to the directory pointed to by
lsqp_dump_directory as a protocol buffer. linear_least_squares_problems.h/cc
contains routines for loading these problems. For details on the on disk format used,
see matrix.proto. The files are named lm_iteration_???.lsqp. This requires
that protobuf be linked into Ceres Solver.

• TEXTFILE Write out the linear least squares problem to the directory pointed to by
lsqp_dump_directory as text files which can be read into MATLAB/Octave. The
Jacobian is dumped as a text file containing (i, j, s) triplets, the vectors D, x and f
are dumped as text files containing a list of their values.
A MATLAB/Octave script called lm_iteration_???.m is also output, which can be
used to parse and load the problem into memory.

CHAPTER 5. API REFERENCE 41

28. crash_and_dump_lsqp_on_failure(false) Dump the linear least squares problem to
disk if the minimizer fails due to NUMERICAL_FAILURE and crash the process. This flag
is useful for generating debugging information. The problem is dumped in a file whose
name is determined by lsqp_dump_format. Note that this requires a version of Ceres
built with protocol buffers.

29. check_gradients(false) Check all Jacobians computed by each residual block with fi-
nite differences. This is expensive since it involves computing the derivative by normal
means (e.g. user specified, autodiff, etc), then also computing it using finite differences.
The results are compared, and if they differ substantially, details are printed to the log.

30. gradient_check_relative_precision(1e-8) Relative precision to check for in the gra-
dient checker. If the relative difference between an element in a Jacobian exceeds this
number, then the Jacobian for that cost term is dumped.

31. numeric_derivative_relative_step_size(1e-6) Relative shift used for taking numeric
derivatives. For finite differencing, each dimension is evaluated at slightly shifted val-
ues, e.g. for forward differences, the numerical derivative is

δ= numeric_derivative_relative_step_size (5.19)

∆ f = f ((1+δ)x)− f (x)
δx

(5.20)

The finite differencing is done along each dimension. The reason to use a relative (rather
than absolute) step size is that this way, numeric differentiation works for functions
where the arguments are typically large (e.g. 1e9) and when the values are small (e.g. 1e-
5). It is possible to construct "torture cases" which break this finite difference heuristic,
but they do not come up often in practice.

32. callbacks Callbacks that are executed at the end of each iteration of the Minimizer.
They are executed in the order that they are specified in this vector. By default, pa-
rameter blocks are updated only at the end of the optimization, i.e when the Minimizer
terminates. This behavior is controlled by update_state_every_variable. If the user
wishes to have access to the update parameter blocks when his/her callbacks are exe-
cuted, then set update_state_every_iteration to true.

The solver does NOT take ownership of these pointers.

33. update_state_every_iteration(false) Normally the parameter blocks are only up-
dated when the solver terminates. Setting this to true update them in every iteration.
This setting is useful when building an interactive application using Ceres and using an
IterationCallback.

CHAPTER 5. API REFERENCE 42

5.9 solver::summary

TBD

THEORY

Effective use of Ceres requires some familiarity with the underlying theory. In this chapter
we will provide a brief exposition to Ceres’s approach to solving non-linear least squares opti-
mization. Much of the material in this section comes from [1, 6, 21].

6.1 THE LEVENBERG-MARQUARDT ALGORITHM

The Levenberg-Marquardt algorithm [7, 11] is the most popular algorithm for solving non-
linear least squares problems. Ceres implements an exact step [9] and an inexact step variant
of the Levenberg-Marquardt algorithm [13, 20]. We begin by taking a brief look at how the
Levenberg-Marquardt algorithm works.

Let x ∈ Rn be an n-dimensional vector of variables, and F(x) = [f1(x), . . . , fm(x)]> be a m-
dimensional function of x. We are interested in solving the following optimization problem,

argmin
x

1
2
‖F(x)‖2 . (6.1)

The Jacobian J(x) of F(x) is an m× n matrix, where Ji j(x) = ∂ j f i(x) and the gradient vector
g(x)=∇1

2‖F(x)‖2 = J(x)>F(x). Since the efficient global optimization of (6.1) for general F(x) is
an intractable problem, we will have to settle for finding a local minimum.

The general strategy when solving non-linear optimization problems is to solve a sequence of
approximations to the original problem [14]. At each iteration, the approximation is solved to
determine a correction ∆x to the vector x. For non-linear least squares, an approximation can
be constructed by using the linearization F(x+∆x)≈ F(x)+J(x)∆x, which leads to the following
linear least squares problem:

min
∆x

1
2
‖J(x)∆x+F(x)‖2 (6.2)

Unfortunately, naïvely solving a sequence of these problems and updating x ← x+∆x leads to
an algorithm that may not converge. To get a convergent algorithm, we need to control the size
of the step ∆x. One way to do this is to introduce a regularization term:

min
∆x

1
2
‖J(x)∆x+F(x)‖2 +µ‖D(x)∆x‖2 . (6.3)

Here, D(x) is a non-negative diagonal matrix, typically the square root of the diagonal of the
matrix J(x)>J(x) and µ is a non-negative parameter that controls the strength of regulariza-
tion. It is straightforward to show that the step size ‖∆x‖ is inversely related to µ. Levenberg-
Marquardt updates the value of µ at each step based on how well the Jacobian J(x) approxi-

43

CHAPTER 6. THEORY 44

mates F(x). The quality of this fit is measured by the ratio of the actual decrease in the objec-
tive function to the decrease in the value of the linearized model L(∆x)= 1

2‖J(x)∆x+F(x)‖2.

ρ = ‖F(x+∆x)‖2 −‖F(x)‖2

‖J(x)∆x+F(x)‖2 −‖F(x)‖2 (6.4)

If ρ is large, that means the linear model is a good approximation to the non-linear model
and it is worth trusting it more in the computation of ∆x, so we decrease µ. If ρ is small, the
linear model is a poor approximation and µ is increased. This kind of reasoning is the basis of
Trust-region methods, of which Levenberg-Marquardt is an early example [14].

Before going further, let us make some notational simplifications. We will assume that the
matrix p

µD has been concatenated at the bottom of the matrix J and similarly a vector of
zeros has been added to the bottom of the vector f and the rest of our discussion will be in
terms of J and f , i.e. the linear least squares problem.

min
∆x

1
2
‖J(x)∆x+ f (x)‖2. (6.5)

Further, let H(x) = J(x)>J(x) and g(x) = −J(x)> f (x). For notational convenience let us also
drop the dependence on x. Then it is easy to see that solving (6.5) is equivalent to solving the
normal equations

H∆x = g (6.6)

For all but the smallest problems the solution of (6.6) in each iteration of the Levenberg-
Marquardt algorithm is the dominant computational cost in Ceres. Ceres provides a number
of different options for solving (6.6).

6.2 dense_qr

For small problems (a couple of hundred parameters and a few thousand residuals) with
relatively dense Jacobians, DENSE_QR is the method of choice [2]. Let J = QR be the QR-
decomposition of J, where Q is an orthonormal matrix and R is an upper triangular ma-
trix [18]. Then it can be shown that the solution to (6.6) is given by

∆x∗ =−R−1Q> f (6.7)

Ceres uses Eigen’s dense QR decomposition routines.

CHAPTER 6. THEORY 45

6.3 sparse_normal_cholesky

Large non-linear least square problems are usually sparse. In such cases, using a dense QR
factorization is inefficient. Let H = R>R be the Cholesky factorization of the normal equations,
where R is an upper triangular matrix, then the solution to (6.6) is given by

∆x∗ = R−1R−>g. (6.8)

The observant reader will note that the R in the Cholesky factorization of H is the same upper
triangular matrix R in the QR factorization of J. Since Q is an orthonormal matrix, J = QR
implies that J>J = R>Q>QR = R>R.

There are two variants of Cholesky factorization – sparse and dense. SPARSE_NORMAL_CHOLESKY,
as the name implies performs a sparse Cholesky factorization of the normal equations. This
leads to substantial savings in time and memory for large sparse problems. We use the Pro-
fessor Tim Davis’ CHOLMOD library (part of the SuiteSparse package) to perform the sparse
cholesky [4].

6.4 dense_schur & sparse_schur

While it is possible to use SPARSE_NORMAL_CHOLESKY to solve bundle adjustment problems,
bundle adjustment problem have a special structure, and a more efficient scheme for solv-
ing (6.6) can be constructed.

Suppose that the SfM problem consists of p cameras and q points and the variable vector x has
the block structure x = [y1, . . . , yp, z1, . . . , zq]. Where, y and z correspond to camera and point
parameters, respectively. Further, let the camera blocks be of size c and the point blocks be of
size s (for most problems c = 6–9 and s = 3). Ceres does not impose any constancy requirement
on these block sizes, but choosing them to be constant simplifies the exposition.

A key characteristic of the bundle adjustment problem is that there is no term f i that includes
two or more point blocks. This in turn implies that the matrix H is of the form

H =
[

B E
E> C

]
, (6.9)

where, B ∈ Rpc×pc is a block sparse matrix with p blocks of size c× c and C ∈ Rqs×qs is a block
diagonal matrix with q blocks of size s× s. E ∈Rpc×qs is a general block sparse matrix, with a
block of size c× s for each observation. Let us now block partition ∆x = [∆y,∆z] and g = [v,w]
to restate (6.6) as the block structured linear system[

B E
E> C

][
∆y
∆z

]
=

[
v
w

]
, (6.10)

CHAPTER 6. THEORY 46

and apply Gaussian elimination to it. As we noted above, C is a block diagonal matrix, with
small diagonal blocks of size s×s. Thus, calculating the inverse of C by inverting each of these
blocks is cheap. This allows us to eliminate ∆z by observing that ∆z = C−1(w−E>∆y), giving
us [

B−EC−1E>]
∆y= v−EC−1w . (6.11)

The matrix
S = B−EC−1E> , (6.12)

is the Schur complement of C in H. It is also known as the reduced camera matrix, because the
only variables participating in (6.11) are the ones corresponding to the cameras. S ∈Rpc×pc is
a block structured symmetric positive definite matrix, with blocks of size c× c. The block Si j
corresponding to the pair of images i and j is non-zero if and only if the two images observe at
least one common point.

Now, (6.10) can be solved by first forming S, solving for ∆y, and then back-substituting ∆y
to obtain the value of ∆z. Thus, the solution of what was an n×n, n = pc+ qs linear system
is reduced to the inversion of the block diagonal matrix C, a few matrix-matrix and matrix-
vector multiplies, and the solution of block sparse pc× pc linear system (6.11). For almost all
problems, the number of cameras is much smaller than the number of points, p ¿ q, thus solv-
ing (6.11) is significantly cheaper than solving (6.10). This is the Schur complement trick [3].

This still leaves open the question of solving (6.11). The method of choice for solving symmetric
positive definite systems exactly is via the Cholesky factorization [18] and depending upon the
structure of the matrix, there are, in general, two options. The first is direct factorization,
where we store and factor S as a dense matrix [18]. This method has O(p2) space complexity
and O(p3) time complexity and is only practical for problems with up to a few hundred cameras.
Ceres implements this strategy as the DENSE_SCHUR solver.

But, S is typically a fairly sparse matrix, as most images only see a small fraction of the scene.
This leads us to the second option: sparse direct methods. These methods store S as a sparse
matrix, use row and column re-ordering algorithms to maximize the sparsity of the Cholesky
decomposition, and focus their compute effort on the non-zero part of the factorization [4].
Sparse direct methods, depending on the exact sparsity structure of the Schur complement,
allow bundle adjustment algorithms to significantly scale up over those based on dense factor-
ization. Ceres implements this strategy as the SPARSE_SCHUR solver.

6.5 iterative_schur

The factorization methods described above are based on computing an exact solution of (6.3).
But it is not clear if an exact solution of (6.3) is necessary at each step of the LM algorithm
to solve (6.1). In fact, we have already seen evidence that this may not be the case, as (6.3) is

CHAPTER 6. THEORY 47

itself a regularized version of (6.2). Indeed, it is possible to construct non-linear optimization
algorithms in which the linearized problem is solved approximately. These algorithms are
known as inexact Newton or truncated Newton methods [14].

An inexact Newton method requires two ingredients. First, a cheap method for approximately
solving systems of linear equations. Typically an iterative linear solver like the Conjugate
Gradients method is used for this purpose [14]. Second, a termination rule for the iterative
solver. A typical termination rule is of the form

‖H(x)∆x+ g(x)‖ ≤ ηk‖g(x)‖. (6.13)

Here, k indicates the Levenberg-Marquardt iteration number and 0 < ηk < 1 is known as the
forcing sequence. Wright & Holt [20] prove that a truncated Levenberg-Marquardt algorithm
that uses an inexact Newton step based on (6.13) converges for any sequence ηk ≤ η0 < 1 and
the rate of convergence depends on the choice of the forcing sequence ηk.

The convergence rate of Conjugate Gradients for solving (6.6) depends on the distribution of
eigenvalues of H [15]. A useful upper bound is

p
κ(H), where, κ(H)f is the condition number of

the matrix H. For most bundle adjustment problems, κ(H) is high and a direct application of
Conjugate Gradients to (6.6) results in extremely poor performance.

The solution to this problem is to replace (6.6) with a preconditioned system. Given a linear
system, Ax = b and a preconditioner M the preconditioned system is given by M−1 Ax = M−1b.
The resulting algorithm is known as Preconditioned Conjugate Gradients algorithm (PCG) and
its worst case complexity now depends on the condition number of the preconditioned matrix
κ(M−1 A).

Preconditioning

The computational cost of using a preconditioner M is the cost of computing M and evaluating
the product M−1 y for arbitrary vectors y. Thus, there are two competing factors to consider:
How much of H’s structure is captured by M so that the condition number κ(HM−1) is low,
and the computational cost of constructing and using M. The ideal preconditioner would be
one for which κ(M−1 A) = 1. M = A achieves this, but it is not a practical choice, as applying
this preconditioner would require solving a linear system equivalent to the unpreconditioned
problem. It is usually the case that the more information M has about H, the more expensive
it is use. For example, Incomplete Cholesky factorization based preconditioners have much
better convergence behavior than the Jacobi preconditioner, but are also much more expensive.

The simplest of all preconditioners is the diagonal or Jacobi preconditioner, i.e. , M = diag(A),
which for block structured matrices like H can be generalized to the block Jacobi precondi-
tioner. Another option is to apply PCG to the reduced camera matrix S instead of H. One

CHAPTER 6. THEORY 48

reason to do this is that S is a much smaller matrix than H, but more importantly, it can be
shown that κ(S) ≤ κ(H). Ceres implements PCG on S as the ITERATIVE_SCHUR solver. When
the user chooses ITERATIVE_SCHUR as the linear solver, Ceres automatically switches from the
exact step algorithm to an inexact step algorithm.

There are two obvious choices for block diagonal preconditioners for S. The block diagonal of
the matrix B [10] and the block diagonal S, i.e. the block Jacobi preconditioner for S. Ceres’s
implements both of these preconditioners and refers to them as JACOBI and SCHUR_JACOBI
respectively.

As discussed earlier, the cost of forming and storing the Schur complement S can be prohibitive
for large problems. Indeed, for an inexact Newton solver that computes S and runs PCG on
it, almost all of its time is spent in constructing S; the time spent inside the PCG algorithm
is negligible in comparison. Because PCG only needs access to S via its product with a vector,
one way to evaluate Sx is to observe that

x1 = E>x

x2 = C−1x1

x3 = Ex2

x4 = Bx

Sx = x4 − x3 . (6.14)

Thus, we can run PCG on S with the same computational effort per iteration as PCG on H,
while reaping the benefits of a more powerful preconditioner. In fact, we do not even need to
compute H, (6.14) can be implemented using just the columns of J.

Equation (6.14) is closely related to Domain Decomposition methods for solving large linear
systems that arise in structural engineering and partial differential equations. In the lan-
guage of Domain Decomposition, each point in a bundle adjustment problem is a domain,
and the cameras form the interface between these domains. The iterative solution of the
Schur complement then falls within the sub-category of techniques known as Iterative Sub-
structuring [12, 15].

For bundle adjustment problems, particularly those arising in reconstruction from community
photo collections, more effective preconditioners can be constructed by analyzing and exploit-
ing the camera-point visibility structure of the scene [6]. Ceres implements the two visibility
based preconditioners described by Kushal & Agarwal as CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL.
These are fairly new preconditioners and Ceres’ implementation of them is in its early stages
and is not as mature as the other preconditioners described above.

CHAPTER 6. THEORY 49

6.6 cgnr

For general sparse problems, if the problem is too large for CHOLMOD or SuiteSparse is not
linked into Ceres, another option is the CGNR solver. This solver uses the Conjugate Gradients
solver on the normal equations, but without forming the normal equations explicitly. It exploits
the relation

Hx = J>Jx = J>(Jx) (6.15)

Currently only the JACOBI preconditioner is available for use with this solver. It uses the block
diagonal of H as a preconditioner.

6.7 ORDERING

All three of the Schur based solvers depend on the user indicating to the solver, which of the
parameter blocks correspond to the points and which correspond to the cameras. Ceres refers
to them as e_blocks and f_blocks. The only constraint on e_blocks is that there should be
no term in the objective function with two or more e_blocks.

As we saw in Section 4.5, there are two ways to indicate e_blocks to Ceres. The first is
to explicitly create an ordering vector Solver::Options::ordering containing the parameter
blocks such that all the e_blocks/points occur before the f_blocks, and setting Solver::Options::num_eliminate_blocks
to the number e_blocks.

For some problems this is an easy thing to do and we recommend its use. In some problems
though, this is onerous and it would be better if Ceres could automatically determine e_blocks.
Setting Solver::Options::ordering_type to SCHUR achieves this.

The SCHUR ordering algorithm is based on the observation that the constraint that no two
e_block co-occur in a residual block means that if we were to treat the sparsity structure of the
block matrix H as a graph, then the set of e_blocks is an independent set in this graph. The
larger the number of e_block, the smaller is the size of the Schur complement S. Indeed the
reason Schur based solvers are so efficient at solving bundle adjustment problems is because
the number of points in a bundle adjustment problem is usually an order of magnitude or two
larger than the number of cameras.

Thus, the aim of the SCHUR ordering algorithm is to identify the largest independent set in the
graph of H. Unfortunately this is an NP-Hard problem. But there is a greedy approximation
algorithm that performs well [8] and we use it to identify e_blocks in Ceres.

CHAPTER 6. THEORY 50

6.8 AUTOMATIC DIFFERENTIATION

TBD

6.9 LOSS FUNCTION

TBD

6.10 LOCAL PARAMETERIZATIONS

TBD

FREQUENTLY ASKED QUESTIONS

1. Why does Ceres use blocks (ParameterBlocks and ResidualBlocks) ?

Most non-linear solvers we are aware of, define the problem and residuals in terms of
scalars and it is possible to do this with Ceres also. However, it is our experience that
in most problems small groups of scalars occur together. For example the three compo-
nents of a translation vector and the four components of the quaternion that define the
pose of a camera. Same is true for residuals, where it is common to have small vectors
of residuals rather than just scalars. There are a number of advantages of using blocks.
It saves on indexing information, which for large problems can be substantial. Blocks
translate into contiguous storage in memory which is more cache friendly and last but
not the least, it allows us to use SIMD/SSE based BLAS routines to significantly speed
up various matrix operations.

2. What is a good ParameterBlock?

In most problems there is a natural parameter block structure, as there is a semantic
meaning associated with groups of scalars – mean vector of a distribution, color of a
pixel etc. To group two scalar variables, ask yourself if residual blocks will always use
these two variables together. If the answer is yes, then the two variables belong to the
same parameter block.

3. What is a good ResidualBlock?

While it is often the case that problems have a natural blocking of parameters into pa-
rameter blocks, it is not always clear what a good residual block structure is. One rule
of thumb for non-linear least squares problems since they often come from data fitting
problems is to create one residual block per observation. So if you are solving a Structure
from Motion problem, one 2 dimensional residual block per 2d image projection is a good
idea.

The flips side is that sometimes, when modeling the problem it is tempting to group a
large number of residuals together into a single residual block as it reduces the number
of CostFunctions you have to define.

For example consider the following residual block of size 18 which depends on four pa-
rameter blocks of size 4 each. Shown below is the Jacobian structure of this residual
block, the numbers in the columns indicate the size, and the numbers in the rows show
a grouping of the matrix that best capture its sparsity structure. X indicates a non-zero
block, the rest of the blocks are zero.

51

CHAPTER 7. FREQUENTLY ASKED QUESTIONS 52

4 4 4 4
2 X X X X
4 X
4 X
4 X
4 X

Notice that out of the 20 cells, only 8 are non-zero, in fact out of the 288 entries only 48
entries are non-zero, thus we are hiding substantial sparsity from the solver, and using
up much more memory. It is much better to break this up into 5 residual blocks. One
residual block of size 2 that depends on all four parameter block and four residual blocks
of size 4 each that depend on one parameter block at a time.

4. Can I set part of a parameter block constant?

Yes, use SubsetParameterization as a local parameterization for the parameter block
of interest. See local_parameterization.h for more details.

5. Can Ceres solve constrained non-linear least squares?

Not at this time. We have some ideas on how to do this, but we have not had very many
requests to justify the effort involved. If you have a problem that requires such a func-
tionality we would like to hear about it as it will help us decide directions for future work.
In the meanwhile, if you are interested in solving bounds constrained problems, consider
using some of the tricks described by John D’Errico in his fminsearchbnd toolkit 1.

6. Can Ceres solve problems that cannot be written as robustified non-linear least squares?

No. Ceres was designed from the grounds up to be a non-linear least squares solver.
Currently we have no plans of extending it into a general purpose non-linear solver.

1http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd

http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd

FURTHER READING

For a short but informative introduction to the subject we recommend the booklet by Madsel et
al. [9]. For a general introduction to non-linear optimization we recommend the text by Nocedal
& Wright [14]. Björck’s book remains the seminal reference on least squares problems [2].
Trefethen & Bau’s book is our favourite text on introductory numerical linear algebra [18].
Triggs et al., provide a thorough coverage of the bundle adjustment problem [19].

53

BIBLIOGRAPHY

[1] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle adjustment in the large. In
Proceedings of the European Conference on Computer Vision, pages 29–42, 2010.

[2] A. Björck. Numerical methods for least squares problems. SIAM, 1996.

[3] D. C. Brown. A solution to the general problem of multiple station analytical stereo tri-
angulation. Technical Report 43, Patrick Airforce Base, Florida, 1958.

[4] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887: CHOLMOD,
Supernodal Sparse Cholesky Factorization and Update/Downdate. TOMS, 35(3), 2008.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2003.

[6] A. Kushal and S. Agarwal. Visibility based preconditioning for bundle adjustment. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[7] K. Levenberg. A method for the solution of certain nonlinear problems in least squares.
Quart. Appl. Math, 2(2):164–168, 1944.

[8] Na Li and Y. Saad. Miqr: A multilevel incomplete qr preconditioner for large sparse
least-squares problems. SIAM Journal on Matrix Analysis and Applications, 28(2):524–
550, 2007.

[9] K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for non-linear least squares problems.
2004.

[10] J. Mandel. On block diagonal and Schur complement preconditioning. Numer. Math.,
58(1):79–93, 1990.

[11] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J.
SIAM, 11(2):431–441, 1963.

[12] T.P.A. Mathew. Domain decomposition methods for the numerical solution of partial dif-
ferential equations. Springer Verlag, 2008.

[13] S.G. Nash and A. Sofer. Assessing a search direction within a truncated-newton method.
Operations Research Letters, 9(4):219–221, 1990.

[14] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2000.

[15] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

54

BIBLIOGRAPHY 55

[16] S.M. Stigler. Gauss and the invention of least squares. The Annals of Statistics, 9(3):465–
474, 1981.

[17] J. Tennenbaum and B. Director. How Gauss Determined the Orbit of Ceres.

[18] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

[19] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle Adjustment - A
Modern Synthesis. In Vision Algorithms, pages 298–372, 1999.

[20] S. J. Wright and J. N. Holt. An Inexact Levenberg-Marquardt Method for Large Sparse
Nonlinear Least Squares. Journal of the Australian Mathematical Society Series B,
26(4):387–403, 1985.

[21] C. Wu, S. Agarwal, B. Curless, and S.M. Seitz. Multicore bundle adjustment. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3057–
3064, 2011.

