~ubuntu-branches/ubuntu/raring/linux-lowlatency/raring

24 by Andy Whitcroft, Andy Whitcroft
[ Andy Whitcroft ]
1
/*
2
 * The file intends to implement PE based on the information from
3
 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4
 * All the PEs should be organized as hierarchy tree. The first level
5
 * of the tree will be associated to existing PHBs since the particular
6
 * PE is only meaningful in one PHB domain.
7
 *
8
 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9
 *
10
 * This program is free software; you can redistribute it and/or modify
11
 * it under the terms of the GNU General Public License as published by
12
 * the Free Software Foundation; either version 2 of the License, or
13
 * (at your option) any later version.
14
 *
15
 * This program is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
 * GNU General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU General Public License
21
 * along with this program; if not, write to the Free Software
22
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23
 */
24
25
#include <linux/export.h>
26
#include <linux/gfp.h>
27
#include <linux/init.h>
28
#include <linux/kernel.h>
29
#include <linux/pci.h>
30
#include <linux/string.h>
31
32
#include <asm/pci-bridge.h>
33
#include <asm/ppc-pci.h>
34
35
static LIST_HEAD(eeh_phb_pe);
36
37
/**
38
 * eeh_pe_alloc - Allocate PE
39
 * @phb: PCI controller
40
 * @type: PE type
41
 *
42
 * Allocate PE instance dynamically.
43
 */
44
static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
45
{
46
	struct eeh_pe *pe;
47
48
	/* Allocate PHB PE */
49
	pe = kzalloc(sizeof(struct eeh_pe), GFP_KERNEL);
50
	if (!pe) return NULL;
51
52
	/* Initialize PHB PE */
53
	pe->type = type;
54
	pe->phb = phb;
55
	INIT_LIST_HEAD(&pe->child_list);
56
	INIT_LIST_HEAD(&pe->child);
57
	INIT_LIST_HEAD(&pe->edevs);
58
59
	return pe;
60
}
61
62
/**
63
 * eeh_phb_pe_create - Create PHB PE
64
 * @phb: PCI controller
65
 *
66
 * The function should be called while the PHB is detected during
67
 * system boot or PCI hotplug in order to create PHB PE.
68
 */
69
int __devinit eeh_phb_pe_create(struct pci_controller *phb)
70
{
71
	struct eeh_pe *pe;
72
73
	/* Allocate PHB PE */
74
	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
75
	if (!pe) {
76
		pr_err("%s: out of memory!\n", __func__);
77
		return -ENOMEM;
78
	}
79
80
	/* Put it into the list */
81
	eeh_lock();
82
	list_add_tail(&pe->child, &eeh_phb_pe);
83
	eeh_unlock();
84
85
	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
86
87
	return 0;
88
}
89
90
/**
91
 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
92
 * @phb: PCI controller
93
 *
94
 * The overall PEs form hierarchy tree. The first layer of the
95
 * hierarchy tree is composed of PHB PEs. The function is used
96
 * to retrieve the corresponding PHB PE according to the given PHB.
97
 */
98
static struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
99
{
100
	struct eeh_pe *pe;
101
102
	list_for_each_entry(pe, &eeh_phb_pe, child) {
103
		/*
104
		 * Actually, we needn't check the type since
105
		 * the PE for PHB has been determined when that
106
		 * was created.
107
		 */
108
		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
109
			return pe;
110
	}
111
112
	return NULL;
113
}
114
115
/**
116
 * eeh_pe_next - Retrieve the next PE in the tree
117
 * @pe: current PE
118
 * @root: root PE
119
 *
120
 * The function is used to retrieve the next PE in the
121
 * hierarchy PE tree.
122
 */
123
static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
124
				  struct eeh_pe *root)
125
{
126
	struct list_head *next = pe->child_list.next;
127
128
	if (next == &pe->child_list) {
129
		while (1) {
130
			if (pe == root)
131
				return NULL;
132
			next = pe->child.next;
133
			if (next != &pe->parent->child_list)
134
				break;
135
			pe = pe->parent;
136
		}
137
	}
138
139
	return list_entry(next, struct eeh_pe, child);
140
}
141
142
/**
143
 * eeh_pe_traverse - Traverse PEs in the specified PHB
144
 * @root: root PE
145
 * @fn: callback
146
 * @flag: extra parameter to callback
147
 *
148
 * The function is used to traverse the specified PE and its
149
 * child PEs. The traversing is to be terminated once the
150
 * callback returns something other than NULL, or no more PEs
151
 * to be traversed.
152
 */
153
static void *eeh_pe_traverse(struct eeh_pe *root,
154
			eeh_traverse_func fn, void *flag)
155
{
156
	struct eeh_pe *pe;
157
	void *ret;
158
159
	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
160
		ret = fn(pe, flag);
161
		if (ret) return ret;
162
	}
163
164
	return NULL;
165
}
166
167
/**
168
 * eeh_pe_dev_traverse - Traverse the devices from the PE
169
 * @root: EEH PE
170
 * @fn: function callback
171
 * @flag: extra parameter to callback
172
 *
173
 * The function is used to traverse the devices of the specified
174
 * PE and its child PEs.
175
 */
176
void *eeh_pe_dev_traverse(struct eeh_pe *root,
177
		eeh_traverse_func fn, void *flag)
178
{
179
	struct eeh_pe *pe;
180
	struct eeh_dev *edev;
181
	void *ret;
182
183
	if (!root) {
184
		pr_warning("%s: Invalid PE %p\n", __func__, root);
185
		return NULL;
186
	}
187
188
	eeh_lock();
189
190
	/* Traverse root PE */
191
	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
192
		eeh_pe_for_each_dev(pe, edev) {
193
			ret = fn(edev, flag);
194
			if (ret) {
195
				eeh_unlock();
196
				return ret;
197
			}
198
		}
199
	}
200
201
	eeh_unlock();
202
203
	return NULL;
204
}
205
206
/**
207
 * __eeh_pe_get - Check the PE address
208
 * @data: EEH PE
209
 * @flag: EEH device
210
 *
211
 * For one particular PE, it can be identified by PE address
212
 * or tranditional BDF address. BDF address is composed of
213
 * Bus/Device/Function number. The extra data referred by flag
214
 * indicates which type of address should be used.
215
 */
216
static void *__eeh_pe_get(void *data, void *flag)
217
{
218
	struct eeh_pe *pe = (struct eeh_pe *)data;
219
	struct eeh_dev *edev = (struct eeh_dev *)flag;
220
221
	/* Unexpected PHB PE */
222
	if (pe->type & EEH_PE_PHB)
223
		return NULL;
224
225
	/* We prefer PE address */
226
	if (edev->pe_config_addr &&
227
	   (edev->pe_config_addr == pe->addr))
228
		return pe;
229
230
	/* Try BDF address */
231
	if (edev->pe_config_addr &&
232
	   (edev->config_addr == pe->config_addr))
233
		return pe;
234
235
	return NULL;
236
}
237
238
/**
239
 * eeh_pe_get - Search PE based on the given address
240
 * @edev: EEH device
241
 *
242
 * Search the corresponding PE based on the specified address which
243
 * is included in the eeh device. The function is used to check if
244
 * the associated PE has been created against the PE address. It's
245
 * notable that the PE address has 2 format: traditional PE address
246
 * which is composed of PCI bus/device/function number, or unified
247
 * PE address.
248
 */
249
static struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
250
{
251
	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
252
	struct eeh_pe *pe;
253
254
	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
255
256
	return pe;
257
}
258
259
/**
260
 * eeh_pe_get_parent - Retrieve the parent PE
261
 * @edev: EEH device
262
 *
263
 * The whole PEs existing in the system are organized as hierarchy
264
 * tree. The function is used to retrieve the parent PE according
265
 * to the parent EEH device.
266
 */
267
static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
268
{
269
	struct device_node *dn;
270
	struct eeh_dev *parent;
271
272
	/*
273
	 * It might have the case for the indirect parent
274
	 * EEH device already having associated PE, but
275
	 * the direct parent EEH device doesn't have yet.
276
	 */
277
	dn = edev->dn->parent;
278
	while (dn) {
279
		/* We're poking out of PCI territory */
280
		if (!PCI_DN(dn)) return NULL;
281
282
		parent = of_node_to_eeh_dev(dn);
283
		/* We're poking out of PCI territory */
284
		if (!parent) return NULL;
285
286
		if (parent->pe)
287
			return parent->pe;
288
289
		dn = dn->parent;
290
	}
291
292
	return NULL;
293
}
294
295
/**
296
 * eeh_add_to_parent_pe - Add EEH device to parent PE
297
 * @edev: EEH device
298
 *
299
 * Add EEH device to the parent PE. If the parent PE already
300
 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
301
 * we have to create new PE to hold the EEH device and the new
302
 * PE will be linked to its parent PE as well.
303
 */
304
int eeh_add_to_parent_pe(struct eeh_dev *edev)
305
{
306
	struct eeh_pe *pe, *parent;
307
308
	eeh_lock();
309
310
	/*
311
	 * Search the PE has been existing or not according
312
	 * to the PE address. If that has been existing, the
313
	 * PE should be composed of PCI bus and its subordinate
314
	 * components.
315
	 */
316
	pe = eeh_pe_get(edev);
317
	if (pe && !(pe->type & EEH_PE_INVALID)) {
318
		if (!edev->pe_config_addr) {
319
			eeh_unlock();
320
			pr_err("%s: PE with addr 0x%x already exists\n",
321
				__func__, edev->config_addr);
322
			return -EEXIST;
323
		}
324
325
		/* Mark the PE as type of PCI bus */
326
		pe->type = EEH_PE_BUS;
327
		edev->pe = pe;
328
329
		/* Put the edev to PE */
330
		list_add_tail(&edev->list, &pe->edevs);
331
		eeh_unlock();
332
		pr_debug("EEH: Add %s to Bus PE#%x\n",
333
			edev->dn->full_name, pe->addr);
334
335
		return 0;
336
	} else if (pe && (pe->type & EEH_PE_INVALID)) {
337
		list_add_tail(&edev->list, &pe->edevs);
338
		edev->pe = pe;
339
		/*
340
		 * We're running to here because of PCI hotplug caused by
341
		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
342
		 */
343
		parent = pe;
344
		while (parent) {
345
			if (!(parent->type & EEH_PE_INVALID))
346
				break;
347
			parent->type &= ~EEH_PE_INVALID;
348
			parent = parent->parent;
349
		}
350
		eeh_unlock();
351
		pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
352
			edev->dn->full_name, pe->addr, pe->parent->addr);
353
354
		return 0;
355
	}
356
357
	/* Create a new EEH PE */
358
	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
359
	if (!pe) {
360
		eeh_unlock();
361
		pr_err("%s: out of memory!\n", __func__);
362
		return -ENOMEM;
363
	}
364
	pe->addr	= edev->pe_config_addr;
365
	pe->config_addr	= edev->config_addr;
366
367
	/*
368
	 * Put the new EEH PE into hierarchy tree. If the parent
369
	 * can't be found, the newly created PE will be attached
370
	 * to PHB directly. Otherwise, we have to associate the
371
	 * PE with its parent.
372
	 */
373
	parent = eeh_pe_get_parent(edev);
374
	if (!parent) {
375
		parent = eeh_phb_pe_get(edev->phb);
376
		if (!parent) {
377
			eeh_unlock();
378
			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
379
				__func__, edev->phb->global_number);
380
			edev->pe = NULL;
381
			kfree(pe);
382
			return -EEXIST;
383
		}
384
	}
385
	pe->parent = parent;
386
387
	/*
388
	 * Put the newly created PE into the child list and
389
	 * link the EEH device accordingly.
390
	 */
391
	list_add_tail(&pe->child, &parent->child_list);
392
	list_add_tail(&edev->list, &pe->edevs);
393
	edev->pe = pe;
394
	eeh_unlock();
395
	pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
396
		edev->dn->full_name, pe->addr, pe->parent->addr);
397
398
	return 0;
399
}
400
401
/**
402
 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
403
 * @edev: EEH device
404
 * @purge_pe: remove PE or not
405
 *
406
 * The PE hierarchy tree might be changed when doing PCI hotplug.
407
 * Also, the PCI devices or buses could be removed from the system
408
 * during EEH recovery. So we have to call the function remove the
409
 * corresponding PE accordingly if necessary.
410
 */
411
int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe)
412
{
413
	struct eeh_pe *pe, *parent, *child;
414
	int cnt;
415
416
	if (!edev->pe) {
417
		pr_warning("%s: No PE found for EEH device %s\n",
418
			__func__, edev->dn->full_name);
419
		return -EEXIST;
420
	}
421
422
	eeh_lock();
423
424
	/* Remove the EEH device */
425
	pe = edev->pe;
426
	edev->pe = NULL;
427
	list_del(&edev->list);
428
429
	/*
430
	 * Check if the parent PE includes any EEH devices.
431
	 * If not, we should delete that. Also, we should
432
	 * delete the parent PE if it doesn't have associated
433
	 * child PEs and EEH devices.
434
	 */
435
	while (1) {
436
		parent = pe->parent;
437
		if (pe->type & EEH_PE_PHB)
438
			break;
439
440
		if (purge_pe) {
441
			if (list_empty(&pe->edevs) &&
442
			    list_empty(&pe->child_list)) {
443
				list_del(&pe->child);
444
				kfree(pe);
445
			} else {
446
				break;
447
			}
448
		} else {
449
			if (list_empty(&pe->edevs)) {
450
				cnt = 0;
451
				list_for_each_entry(child, &pe->child_list, child) {
28 by Andy Whitcroft, Andy Whitcroft, Ubuntu: 3.7.0-4.12, Ubuntu: 3.7.0-4.11, Ubuntu: 3.7.0-4.10
[ Andy Whitcroft ]
452
					if (!(child->type & EEH_PE_INVALID)) {
24 by Andy Whitcroft, Andy Whitcroft
[ Andy Whitcroft ]
453
						cnt++;
454
						break;
455
					}
456
				}
457
458
				if (!cnt)
459
					pe->type |= EEH_PE_INVALID;
460
				else
461
					break;
462
			}
463
		}
464
465
		pe = parent;
466
	}
467
468
	eeh_unlock();
469
470
	return 0;
471
}
472
473
/**
474
 * __eeh_pe_state_mark - Mark the state for the PE
475
 * @data: EEH PE
476
 * @flag: state
477
 *
478
 * The function is used to mark the indicated state for the given
479
 * PE. Also, the associated PCI devices will be put into IO frozen
480
 * state as well.
481
 */
482
static void *__eeh_pe_state_mark(void *data, void *flag)
483
{
484
	struct eeh_pe *pe = (struct eeh_pe *)data;
485
	int state = *((int *)flag);
486
	struct eeh_dev *tmp;
487
	struct pci_dev *pdev;
488
489
	/*
490
	 * Mark the PE with the indicated state. Also,
491
	 * the associated PCI device will be put into
492
	 * I/O frozen state to avoid I/O accesses from
493
	 * the PCI device driver.
494
	 */
495
	pe->state |= state;
496
	eeh_pe_for_each_dev(pe, tmp) {
497
		pdev = eeh_dev_to_pci_dev(tmp);
498
		if (pdev)
499
			pdev->error_state = pci_channel_io_frozen;
500
	}
501
502
	return NULL;
503
}
504
505
/**
506
 * eeh_pe_state_mark - Mark specified state for PE and its associated device
507
 * @pe: EEH PE
508
 *
509
 * EEH error affects the current PE and its child PEs. The function
510
 * is used to mark appropriate state for the affected PEs and the
511
 * associated devices.
512
 */
513
void eeh_pe_state_mark(struct eeh_pe *pe, int state)
514
{
515
	eeh_lock();
516
	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
517
	eeh_unlock();
518
}
519
520
/**
521
 * __eeh_pe_state_clear - Clear state for the PE
522
 * @data: EEH PE
523
 * @flag: state
524
 *
525
 * The function is used to clear the indicated state from the
526
 * given PE. Besides, we also clear the check count of the PE
527
 * as well.
528
 */
529
static void *__eeh_pe_state_clear(void *data, void *flag)
530
{
531
	struct eeh_pe *pe = (struct eeh_pe *)data;
532
	int state = *((int *)flag);
533
534
	pe->state &= ~state;
535
	pe->check_count = 0;
536
537
	return NULL;
538
}
539
540
/**
541
 * eeh_pe_state_clear - Clear state for the PE and its children
542
 * @pe: PE
543
 * @state: state to be cleared
544
 *
545
 * When the PE and its children has been recovered from error,
546
 * we need clear the error state for that. The function is used
547
 * for the purpose.
548
 */
549
void eeh_pe_state_clear(struct eeh_pe *pe, int state)
550
{
551
	eeh_lock();
552
	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
553
	eeh_unlock();
554
}
555
556
/**
557
 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
558
 * @data: EEH device
559
 * @flag: Unused
560
 *
561
 * Loads the PCI configuration space base address registers,
562
 * the expansion ROM base address, the latency timer, and etc.
563
 * from the saved values in the device node.
564
 */
565
static void *eeh_restore_one_device_bars(void *data, void *flag)
566
{
567
	int i;
568
	u32 cmd;
569
	struct eeh_dev *edev = (struct eeh_dev *)data;
570
	struct device_node *dn = eeh_dev_to_of_node(edev);
571
572
	for (i = 4; i < 10; i++)
573
		eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
574
	/* 12 == Expansion ROM Address */
575
	eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
576
577
#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
578
#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
579
580
	eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
581
		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
582
	eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
583
		SAVED_BYTE(PCI_LATENCY_TIMER));
584
585
	/* max latency, min grant, interrupt pin and line */
586
	eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
587
588
	/*
589
	 * Restore PERR & SERR bits, some devices require it,
590
	 * don't touch the other command bits
591
	 */
592
	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
593
	if (edev->config_space[1] & PCI_COMMAND_PARITY)
594
		cmd |= PCI_COMMAND_PARITY;
595
	else
596
		cmd &= ~PCI_COMMAND_PARITY;
597
	if (edev->config_space[1] & PCI_COMMAND_SERR)
598
		cmd |= PCI_COMMAND_SERR;
599
	else
600
		cmd &= ~PCI_COMMAND_SERR;
601
	eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
602
603
	return NULL;
604
}
605
606
/**
607
 * eeh_pe_restore_bars - Restore the PCI config space info
608
 * @pe: EEH PE
609
 *
610
 * This routine performs a recursive walk to the children
611
 * of this device as well.
612
 */
613
void eeh_pe_restore_bars(struct eeh_pe *pe)
614
{
615
	/*
616
	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
617
	 * will take that.
618
	 */
619
	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
620
}
621
622
/**
623
 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
624
 * @pe: EEH PE
625
 *
626
 * Retrieve the PCI bus according to the given PE. Basically,
627
 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
628
 * primary PCI bus will be retrieved. The parent bus will be
629
 * returned for BUS PE. However, we don't have associated PCI
630
 * bus for DEVICE PE.
631
 */
632
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
633
{
634
	struct pci_bus *bus = NULL;
635
	struct eeh_dev *edev;
636
	struct pci_dev *pdev;
637
638
	eeh_lock();
639
640
	if (pe->type & EEH_PE_PHB) {
641
		bus = pe->phb->bus;
642
	} else if (pe->type & EEH_PE_BUS) {
643
		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
644
		pdev = eeh_dev_to_pci_dev(edev);
645
		if (pdev)
646
			bus = pdev->bus;
647
	}
648
649
	eeh_unlock();
650
651
	return bus;
652
}