~ubuntu-branches/ubuntu/raring/linux-ppc/raring-proposed

1 by Ben Collins, Ben Collins
[ Ben Collins ]
1
/*
2
 * PRNG: Pseudo Random Number Generator
3
 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
4
 *       AES 128 cipher
5
 *
6
 *  (C) Neil Horman <nhorman@tuxdriver.com>
7
 *
8
 *  This program is free software; you can redistribute it and/or modify it
9
 *  under the terms of the GNU General Public License as published by the
10
 *  Free Software Foundation; either version 2 of the License, or (at your
11
 *  any later version.
12
 *
13
 *
14
 */
15
16
#include <crypto/internal/rng.h>
17
#include <linux/err.h>
18
#include <linux/init.h>
19
#include <linux/module.h>
20
#include <linux/moduleparam.h>
21
#include <linux/string.h>
22
23
#include "internal.h"
24
25
#define DEFAULT_PRNG_KEY "0123456789abcdef"
26
#define DEFAULT_PRNG_KSZ 16
27
#define DEFAULT_BLK_SZ 16
28
#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
29
30
/*
31
 * Flags for the prng_context flags field
32
 */
33
34
#define PRNG_FIXED_SIZE 0x1
35
#define PRNG_NEED_RESET 0x2
36
37
/*
38
 * Note: DT is our counter value
39
 *	 I is our intermediate value
40
 *	 V is our seed vector
41
 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
42
 * for implementation details
43
 */
44
45
46
struct prng_context {
47
	spinlock_t prng_lock;
48
	unsigned char rand_data[DEFAULT_BLK_SZ];
49
	unsigned char last_rand_data[DEFAULT_BLK_SZ];
50
	unsigned char DT[DEFAULT_BLK_SZ];
51
	unsigned char I[DEFAULT_BLK_SZ];
52
	unsigned char V[DEFAULT_BLK_SZ];
53
	u32 rand_data_valid;
54
	struct crypto_cipher *tfm;
55
	u32 flags;
56
};
57
58
static int dbg;
59
60
static void hexdump(char *note, unsigned char *buf, unsigned int len)
61
{
62
	if (dbg) {
63
		printk(KERN_CRIT "%s", note);
64
		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
65
				16, 1,
66
				buf, len, false);
67
	}
68
}
69
70
#define dbgprint(format, args...) do {\
71
if (dbg)\
72
	printk(format, ##args);\
73
} while (0)
74
75
static void xor_vectors(unsigned char *in1, unsigned char *in2,
76
			unsigned char *out, unsigned int size)
77
{
78
	int i;
79
80
	for (i = 0; i < size; i++)
81
		out[i] = in1[i] ^ in2[i];
82
83
}
84
/*
85
 * Returns DEFAULT_BLK_SZ bytes of random data per call
86
 * returns 0 if generation succeeded, <0 if something went wrong
87
 */
88
static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
89
{
90
	int i;
91
	unsigned char tmp[DEFAULT_BLK_SZ];
92
	unsigned char *output = NULL;
93
94
95
	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
96
		ctx);
97
98
	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
99
	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
100
	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
101
102
	/*
103
	 * This algorithm is a 3 stage state machine
104
	 */
105
	for (i = 0; i < 3; i++) {
106
107
		switch (i) {
108
		case 0:
109
			/*
110
			 * Start by encrypting the counter value
111
			 * This gives us an intermediate value I
112
			 */
113
			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
114
			output = ctx->I;
115
			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
116
			break;
117
		case 1:
118
119
			/*
120
			 * Next xor I with our secret vector V
121
			 * encrypt that result to obtain our
122
			 * pseudo random data which we output
123
			 */
124
			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
125
			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
126
			output = ctx->rand_data;
127
			break;
128
		case 2:
129
			/*
130
			 * First check that we didn't produce the same
131
			 * random data that we did last time around through this
132
			 */
133
			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
134
					DEFAULT_BLK_SZ)) {
135
				if (cont_test) {
136
					panic("cprng %p Failed repetition check!\n",
137
						ctx);
138
				}
139
140
				printk(KERN_ERR
141
					"ctx %p Failed repetition check!\n",
142
					ctx);
143
144
				ctx->flags |= PRNG_NEED_RESET;
145
				return -EINVAL;
146
			}
147
			memcpy(ctx->last_rand_data, ctx->rand_data,
148
				DEFAULT_BLK_SZ);
149
150
			/*
151
			 * Lastly xor the random data with I
152
			 * and encrypt that to obtain a new secret vector V
153
			 */
154
			xor_vectors(ctx->rand_data, ctx->I, tmp,
155
				DEFAULT_BLK_SZ);
156
			output = ctx->V;
157
			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
158
			break;
159
		}
160
161
162
		/* do the encryption */
163
		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
164
165
	}
166
167
	/*
168
	 * Now update our DT value
169
	 */
170
	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
171
		ctx->DT[i] += 1;
172
		if (ctx->DT[i] != 0)
173
			break;
174
	}
175
176
	dbgprint("Returning new block for context %p\n", ctx);
177
	ctx->rand_data_valid = 0;
178
179
	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
180
	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
181
	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
182
	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
183
184
	return 0;
185
}
186
187
/* Our exported functions */
188
static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
189
				int do_cont_test)
190
{
191
	unsigned char *ptr = buf;
192
	unsigned int byte_count = (unsigned int)nbytes;
193
	int err;
194
195
196
	spin_lock_bh(&ctx->prng_lock);
197
198
	err = -EINVAL;
199
	if (ctx->flags & PRNG_NEED_RESET)
200
		goto done;
201
202
	/*
203
	 * If the FIXED_SIZE flag is on, only return whole blocks of
204
	 * pseudo random data
205
	 */
206
	err = -EINVAL;
207
	if (ctx->flags & PRNG_FIXED_SIZE) {
208
		if (nbytes < DEFAULT_BLK_SZ)
209
			goto done;
210
		byte_count = DEFAULT_BLK_SZ;
211
	}
212
213
	err = byte_count;
214
215
	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
216
		byte_count, ctx);
217
218
219
remainder:
220
	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
221
		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
222
			memset(buf, 0, nbytes);
223
			err = -EINVAL;
224
			goto done;
225
		}
226
	}
227
228
	/*
229
	 * Copy any data less than an entire block
230
	 */
231
	if (byte_count < DEFAULT_BLK_SZ) {
232
empty_rbuf:
233
		for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
234
			ctx->rand_data_valid++) {
235
			*ptr = ctx->rand_data[ctx->rand_data_valid];
236
			ptr++;
237
			byte_count--;
238
			if (byte_count == 0)
239
				goto done;
240
		}
241
	}
242
243
	/*
244
	 * Now copy whole blocks
245
	 */
246
	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
247
		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
248
			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
249
				memset(buf, 0, nbytes);
250
				err = -EINVAL;
251
				goto done;
252
			}
253
		}
254
		if (ctx->rand_data_valid > 0)
255
			goto empty_rbuf;
256
		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
257
		ctx->rand_data_valid += DEFAULT_BLK_SZ;
258
		ptr += DEFAULT_BLK_SZ;
259
	}
260
261
	/*
262
	 * Now go back and get any remaining partial block
263
	 */
264
	if (byte_count)
265
		goto remainder;
266
267
done:
268
	spin_unlock_bh(&ctx->prng_lock);
269
	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
270
		err, ctx);
271
	return err;
272
}
273
274
static void free_prng_context(struct prng_context *ctx)
275
{
276
	crypto_free_cipher(ctx->tfm);
277
}
278
279
static int reset_prng_context(struct prng_context *ctx,
280
			      unsigned char *key, size_t klen,
281
			      unsigned char *V, unsigned char *DT)
282
{
283
	int ret;
284
	unsigned char *prng_key;
285
286
	spin_lock_bh(&ctx->prng_lock);
287
	ctx->flags |= PRNG_NEED_RESET;
288
289
	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
290
291
	if (!key)
292
		klen = DEFAULT_PRNG_KSZ;
293
294
	if (V)
295
		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
296
	else
297
		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
298
299
	if (DT)
300
		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
301
	else
302
		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
303
304
	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
305
	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
306
307
	ctx->rand_data_valid = DEFAULT_BLK_SZ;
308
309
	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
310
	if (ret) {
311
		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
312
			crypto_cipher_get_flags(ctx->tfm));
313
		goto out;
314
	}
315
316
	ret = 0;
317
	ctx->flags &= ~PRNG_NEED_RESET;
318
out:
319
	spin_unlock_bh(&ctx->prng_lock);
320
	return ret;
321
}
322
323
static int cprng_init(struct crypto_tfm *tfm)
324
{
325
	struct prng_context *ctx = crypto_tfm_ctx(tfm);
326
327
	spin_lock_init(&ctx->prng_lock);
328
	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
329
	if (IS_ERR(ctx->tfm)) {
330
		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
331
				ctx);
332
		return PTR_ERR(ctx->tfm);
333
	}
334
335
	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
336
		return -EINVAL;
337
338
	/*
339
	 * after allocation, we should always force the user to reset
340
	 * so they don't inadvertently use the insecure default values
341
	 * without specifying them intentially
342
	 */
343
	ctx->flags |= PRNG_NEED_RESET;
344
	return 0;
345
}
346
347
static void cprng_exit(struct crypto_tfm *tfm)
348
{
349
	free_prng_context(crypto_tfm_ctx(tfm));
350
}
351
352
static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
353
			    unsigned int dlen)
354
{
355
	struct prng_context *prng = crypto_rng_ctx(tfm);
356
357
	return get_prng_bytes(rdata, dlen, prng, 0);
358
}
359
360
/*
361
 *  This is the cprng_registered reset method the seed value is
362
 *  interpreted as the tuple { V KEY DT}
363
 *  V and KEY are required during reset, and DT is optional, detected
364
 *  as being present by testing the length of the seed
365
 */
366
static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
367
{
368
	struct prng_context *prng = crypto_rng_ctx(tfm);
369
	u8 *key = seed + DEFAULT_BLK_SZ;
370
	u8 *dt = NULL;
371
372
	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
373
		return -EINVAL;
374
375
	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
376
		dt = key + DEFAULT_PRNG_KSZ;
377
378
	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
379
380
	if (prng->flags & PRNG_NEED_RESET)
381
		return -EINVAL;
382
	return 0;
383
}
384
385
#ifdef CONFIG_CRYPTO_FIPS
386
static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
387
			    unsigned int dlen)
388
{
389
	struct prng_context *prng = crypto_rng_ctx(tfm);
390
391
	return get_prng_bytes(rdata, dlen, prng, 1);
392
}
393
394
static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
395
{
396
	u8 rdata[DEFAULT_BLK_SZ];
397
	u8 *key = seed + DEFAULT_BLK_SZ;
398
	int rc;
399
400
	struct prng_context *prng = crypto_rng_ctx(tfm);
401
402
	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
403
		return -EINVAL;
404
405
	/* fips strictly requires seed != key */
406
	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
407
		return -EINVAL;
408
409
	rc = cprng_reset(tfm, seed, slen);
410
411
	if (!rc)
412
		goto out;
413
414
	/* this primes our continuity test */
415
	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416
	prng->rand_data_valid = DEFAULT_BLK_SZ;
417
418
out:
419
	return rc;
420
}
421
#endif
422
423
static struct crypto_alg rng_algs[] = { {
424
	.cra_name		= "stdrng",
425
	.cra_driver_name	= "ansi_cprng",
426
	.cra_priority		= 100,
427
	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
428
	.cra_ctxsize		= sizeof(struct prng_context),
429
	.cra_type		= &crypto_rng_type,
430
	.cra_module		= THIS_MODULE,
431
	.cra_init		= cprng_init,
432
	.cra_exit		= cprng_exit,
433
	.cra_u			= {
434
		.rng = {
435
			.rng_make_random	= cprng_get_random,
436
			.rng_reset		= cprng_reset,
437
			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
438
		}
439
	}
440
#ifdef CONFIG_CRYPTO_FIPS
441
}, {
442
	.cra_name		= "fips(ansi_cprng)",
443
	.cra_driver_name	= "fips_ansi_cprng",
444
	.cra_priority		= 300,
445
	.cra_flags		= CRYPTO_ALG_TYPE_RNG,
446
	.cra_ctxsize		= sizeof(struct prng_context),
447
	.cra_type		= &crypto_rng_type,
448
	.cra_module		= THIS_MODULE,
449
	.cra_init		= cprng_init,
450
	.cra_exit		= cprng_exit,
451
	.cra_u			= {
452
		.rng = {
453
			.rng_make_random	= fips_cprng_get_random,
454
			.rng_reset		= fips_cprng_reset,
455
			.seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
456
		}
457
	}
458
#endif
459
} };
460
461
/* Module initalization */
462
static int __init prng_mod_init(void)
463
{
464
	return crypto_register_algs(rng_algs, ARRAY_SIZE(rng_algs));
465
}
466
467
static void __exit prng_mod_fini(void)
468
{
469
	crypto_unregister_algs(rng_algs, ARRAY_SIZE(rng_algs));
470
}
471
472
MODULE_LICENSE("GPL");
473
MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
474
MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
475
module_param(dbg, int, 0);
476
MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
477
module_init(prng_mod_init);
478
module_exit(prng_mod_fini);
479
MODULE_ALIAS("stdrng");