~ubuntu-branches/ubuntu/raring/makedumpfile/raring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/* 
 * x86_64.c
 *
 * Copyright (C) 2006, 2007  NEC Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */
#ifdef __x86_64__

#include "makedumpfile.h"

int
is_vmalloc_addr(ulong vaddr)
{
	/*
	 *  vmalloc, virtual memmap, and module space as VMALLOC space.
	 */
	return ((vaddr >= VMALLOC_START && vaddr <= VMALLOC_END)
	    || (vaddr >= VMEMMAP_START && vaddr <= VMEMMAP_END)
	    || (vaddr >= MODULES_VADDR && vaddr <= MODULES_END));
}

int
get_phys_base_x86_64()
{
	int i;
	struct pt_load_segment *pls;

	/*
	 * Get the relocatable offset
	 */
	info->phys_base = 0; /* default/traditional */

	for (i = 0; i < info->num_load_memory; i++) {
		pls = &info->pt_load_segments[i];
		if ((pls->virt_start >= __START_KERNEL_map) &&
		    !(is_vmalloc_addr(pls->virt_start))) {

			info->phys_base = pls->phys_start -
			    (pls->virt_start & ~(__START_KERNEL_map));

			break;
		}
	}

	return TRUE;
}

int
get_machdep_info_x86_64()
{
	info->section_size_bits = _SECTION_SIZE_BITS;
	info->max_physmem_bits  = _MAX_PHYSMEM_BITS;

	return TRUE;
}

/*
 * Translate a virtual address to a physical address by using 4 levels paging.
 */
unsigned long long
vtop4_x86_64(unsigned long vaddr)
{
	unsigned long page_dir, pml4, pgd_paddr, pgd_pte, pmd_paddr, pmd_pte;
	unsigned long pte_paddr, pte;

	if (SYMBOL(init_level4_pgt) == NOT_FOUND_SYMBOL) {
		ERRMSG("Can't get the symbol of init_level4_pgt.\n");
		return NOT_PADDR;
	}

	/*
	 * Get PGD.
	 */
	page_dir  = SYMBOL(init_level4_pgt);
	page_dir += pml4_index(vaddr) * sizeof(unsigned long);
	if (!readmem(VADDR, page_dir, &pml4, sizeof pml4)) {
		ERRMSG("Can't get pml4 (page_dir:%lx).\n", page_dir);
		return NOT_PADDR;
	}
	if (!(pml4 & _PAGE_PRESENT)) {
		ERRMSG("Can't get a valid pml4.\n");
		return NOT_PADDR;
	}

	/*
	 * Get PUD.
	 */
	pgd_paddr  = pml4 & PHYSICAL_PAGE_MASK;
	pgd_paddr += pgd_index(vaddr) * sizeof(unsigned long);
	if (!readmem(PADDR, pgd_paddr, &pgd_pte, sizeof pgd_pte)) {
		ERRMSG("Can't get pgd_pte (pgd_paddr:%lx).\n", pgd_paddr);
		return NOT_PADDR;
	}
	if (!(pgd_pte & _PAGE_PRESENT)) {
		ERRMSG("Can't get a valid pgd_pte.\n");
		return NOT_PADDR;
	}

	/*
	 * Get PMD.
	 */
	pmd_paddr  = pgd_pte & PHYSICAL_PAGE_MASK;
	pmd_paddr += pmd_index(vaddr) * sizeof(unsigned long);
	if (!readmem(PADDR, pmd_paddr, &pmd_pte, sizeof pmd_pte)) {
		ERRMSG("Can't get pmd_pte (pmd_paddr:%lx).\n", pmd_paddr);
		return NOT_PADDR;
	}
	if (!(pmd_pte & _PAGE_PRESENT)) {
		ERRMSG("Can't get a valid pmd_pte.\n");
		return NOT_PADDR;
	}
	if (pmd_pte & _PAGE_PSE)
		return (PAGEBASE(pmd_pte) & PHYSICAL_PAGE_MASK)
			+ (vaddr & ~_2MB_PAGE_MASK);

	/*
	 * Get PTE.
	 */
	pte_paddr  = pmd_pte & PHYSICAL_PAGE_MASK;
	pte_paddr += pte_index(vaddr) * sizeof(unsigned long);
	if (!readmem(PADDR, pte_paddr, &pte, sizeof pte)) {
		ERRMSG("Can't get pte (pte_paddr:%lx).\n", pte_paddr);
		return NOT_PADDR;
	}
	if (!(pte & _PAGE_PRESENT)) {
		ERRMSG("Can't get a valid pte.\n");
		return NOT_PADDR;
	}
	return (PAGEBASE(pte) & PHYSICAL_PAGE_MASK) + PAGEOFFSET(vaddr);
}

off_t
vaddr_to_offset_x86_64(unsigned long vaddr)
{
	int i;
	off_t offset;
	unsigned long phys_base;
	unsigned long long paddr;
	struct pt_load_segment *pls;

	/*
	 * Check the relocatable kernel.
	 */
	if (SYMBOL(phys_base) != NOT_FOUND_SYMBOL)
		phys_base = info->phys_base;
	else
		phys_base = 0;

	if (is_vmalloc_addr(vaddr)) {
		if ((paddr = vtop4_x86_64(vaddr)) == NOT_PADDR) {
			ERRMSG("Can't convert a virtual address(%lx) to " \
			    "physical address.\n", vaddr);
			return 0x0;
		}
	}
	else if (vaddr >= __START_KERNEL_map)
		paddr = vaddr - __START_KERNEL_map + phys_base;
	else
		paddr = vaddr - PAGE_OFFSET;

	for (i = offset = 0; i < info->num_load_memory; i++) {
		pls = &info->pt_load_segments[i];
		if ((paddr >= pls->phys_start)
		    && (paddr < pls->phys_end)) {
			offset = (off_t)(paddr - pls->phys_start) +
				pls->file_offset;
				break;
		}
	}
	return offset;
}

/*
 * for Xen extraction
 */
unsigned long long
kvtop_xen_x86_64(unsigned long kvaddr)
{
	unsigned long long dirp, entry;

	if (!is_xen_vaddr(kvaddr))
		return NOT_PADDR;

	if (is_direct(kvaddr))
		return (unsigned long)kvaddr - DIRECTMAP_VIRT_START;

	if ((dirp = kvtop_xen_x86_64(SYMBOL(pgd_l4))) == NOT_PADDR)
		return NOT_PADDR;
	dirp += pml4_index(kvaddr) * sizeof(unsigned long long);
	if (!readmem(PADDR, dirp, &entry, sizeof(entry)))
		return NOT_PADDR;

	if (!(entry & _PAGE_PRESENT))
		return NOT_PADDR;

	dirp = entry & ENTRY_MASK;
	dirp += pgd_index(kvaddr) * sizeof(unsigned long long);
	if (!readmem(PADDR, dirp, &entry, sizeof(entry)))
		return NOT_PADDR;
 
	if (!(entry & _PAGE_PRESENT))
		return NOT_PADDR;

	dirp = entry & ENTRY_MASK;
	dirp += pmd_index(kvaddr) * sizeof(unsigned long long);
	if (!readmem(PADDR, dirp, &entry, sizeof(entry)))
		return NOT_PADDR;

	if (!(entry & _PAGE_PRESENT))
		return NOT_PADDR;

	if (entry & _PAGE_PSE) {
		entry = (entry & ENTRY_MASK) + (kvaddr & ((1UL << PMD_SHIFT) - 1));
		return entry;
	}
	dirp = entry & ENTRY_MASK;
	dirp += pte_index(kvaddr) * sizeof(unsigned long long);
	if (!readmem(PADDR, dirp, &entry, sizeof(entry)))
		return NOT_PADDR;

	if (!(entry & _PAGE_PRESENT)) {
		return NOT_PADDR;
	}

	entry = (entry & ENTRY_MASK) + (kvaddr & ((1UL << PTE_SHIFT) - 1));

	return entry;
}

int get_xen_info_x86_64()
{
	unsigned long frame_table_vaddr;
	unsigned long xen_end;
	int i;

	if (SYMBOL(pgd_l4) == NOT_FOUND_SYMBOL) {
		ERRMSG("Can't get pml4.\n");
		return FALSE;
	}

	if (SYMBOL(frame_table) == NOT_FOUND_SYMBOL) {
		ERRMSG("Can't get the symbol of frame_table.\n");
		return FALSE;
	}
	if (!readmem(VADDR_XEN, SYMBOL(frame_table), &frame_table_vaddr,
	    sizeof(frame_table_vaddr))) {
		ERRMSG("Can't get the value of frame_table.\n");
		return FALSE;
	}
	info->frame_table_vaddr = frame_table_vaddr;

	if (SYMBOL(xenheap_phys_end) == NOT_FOUND_SYMBOL) {
		ERRMSG("Can't get the symbol of xenheap_phys_end.\n");
		return FALSE;
	}
	if (!readmem(VADDR_XEN, SYMBOL(xenheap_phys_end), &xen_end,
	    sizeof(xen_end))) {
		ERRMSG("Can't get the value of xenheap_phys_end.\n");
		return FALSE;
	}
	info->xen_heap_end = (xen_end >> PAGESHIFT());
	info->xen_heap_start = 0;

	/*
	 * pickled_id == domain addr for x86_64
	 */
	for (i = 0; i < info->num_domain; i++) {
		info->domain_list[i].pickled_id =
			info->domain_list[i].domain_addr;
	}

	return TRUE;
}

#endif /* x86_64 */