~ubuntu-branches/ubuntu/saucy/lxml/saucy-updates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
==============================
Parsing XML and HTML with lxml
==============================

lxml provides a very simple and powerful API for parsing XML and HTML.  It
supports one-step parsing as well as step-by-step parsing using an
event-driven API (currently only for XML).

.. contents::
.. 
   1  Parsers
     1.1  Parser options
     1.2  Error log
     1.3  Parsing HTML
     1.4  Doctype information
   2  The target parser interface
   3  The feed parser interface
   4  iterparse and iterwalk
     4.1  Selective tag events
     4.2  Comments and PIs
     4.3  Modifying the tree
     4.4  iterwalk
   5  Python unicode strings
     5.1  Serialising to Unicode strings


The usual setup procedure:

.. sourcecode:: pycon

  >>> from lxml import etree

..
  >>> from lxml import usedoctest

  >>> try: from StringIO import StringIO
  ... except ImportError:
  ...    from io import BytesIO
  ...    def StringIO(s):
  ...        if isinstance(s, str): s = s.encode("UTF-8")
  ...        return BytesIO(s)

  >>> try: unicode = __builtins__["unicode"]
  ... except (NameError, KeyError): unicode = str

  >>> import sys
  >>> from lxml import etree as _etree
  >>> if sys.version_info[0] >= 3:
  ...   class etree_mock(object):
  ...     def __getattr__(self, name): return getattr(_etree, name)
  ...     def tostring(self, *args, **kwargs):
  ...       s = _etree.tostring(*args, **kwargs)
  ...       if isinstance(s, bytes) and bytes([10]) in s: s = s.decode("utf-8") # CR
  ...       if s[-1] == '\n': s = s[:-1]
  ...       return s
  ... else:
  ...   class etree_mock(object):
  ...     def __getattr__(self, name): return getattr(_etree, name)
  ...     def tostring(self, *args, **kwargs):
  ...       s = _etree.tostring(*args, **kwargs)
  ...       if s[-1] == '\n': s = s[:-1]
  ...       return s
  >>> etree = etree_mock()


Parsers
=======

Parsers are represented by parser objects.  There is support for parsing both
XML and (broken) HTML.  Note that XHTML is best parsed as XML, parsing it with
the HTML parser can lead to unexpected results.  Here is a simple example for
parsing XML from an in-memory string:

.. sourcecode:: pycon

  >>> xml = '<a xmlns="test"><b xmlns="test"/></a>'

  >>> root = etree.fromstring(xml)
  >>> etree.tostring(root)
  b'<a xmlns="test"><b xmlns="test"/></a>'

To read from a file or file-like object, you can use the ``parse()`` function,
which returns an ``ElementTree`` object:

.. sourcecode:: pycon

  >>> tree = etree.parse(StringIO(xml))
  >>> etree.tostring(tree.getroot())
  b'<a xmlns="test"><b xmlns="test"/></a>'

Note how the ``parse()`` function reads from a file-like object here.  If
parsing is done from a real file, it is more common (and also somewhat more
efficient) to pass a filename:

.. sourcecode:: pycon

  >>> tree = etree.parse("doc/test.xml")

lxml can parse from a local file, an HTTP URL or an FTP URL.  It also
auto-detects and reads gzip-compressed XML files (.gz).

If you want to parse from memory and still provide a base URL for the document
(e.g. to support relative paths in an XInclude), you can pass the ``base_url``
keyword argument:

.. sourcecode:: pycon

  >>> root = etree.fromstring(xml, base_url="http://where.it/is/from.xml")


Parser options
--------------

The parsers accept a number of setup options as keyword arguments.  The above
example is easily extended to clean up namespaces during parsing:

.. sourcecode:: pycon

  >>> parser = etree.XMLParser(ns_clean=True)
  >>> tree   = etree.parse(StringIO(xml), parser)
  >>> etree.tostring(tree.getroot())
  b'<a xmlns="test"><b/></a>'

The keyword arguments in the constructor are mainly based on the libxml2
parser configuration.  A DTD will also be loaded if validation or attribute
default values are requested.

Available boolean keyword arguments:

* attribute_defaults - read the DTD (if referenced by the document) and add
  the default attributes from it

* dtd_validation - validate while parsing (if a DTD was referenced)

* load_dtd - load and parse the DTD while parsing (no validation is performed)

* no_network - prevent network access when looking up external
  documents (on by default)

* ns_clean - try to clean up redundant namespace declarations

* recover - try hard to parse through broken XML

* remove_blank_text - discard blank text nodes between tags

* remove_comments - discard comments

* remove_pis - discard processing instructions

* strip_cdata - replace CDATA sections by normal text content (on by
  default)

* resolve_entities - replace entities by their text value (on by
  default)

* huge_tree - disable security restrictions and support very deep trees
  and very long text content (only affects libxml2 2.7+)

* compact - use compact storage for short text content (on by default)


Error log
---------

Parsers have an ``error_log`` property that lists the errors of the
last parser run:

.. sourcecode:: pycon

  >>> parser = etree.XMLParser()
  >>> print(len(parser.error_log))
  0

  >>> tree = etree.XML("<root></b>", parser)
  Traceback (most recent call last):
    ...
  lxml.etree.XMLSyntaxError: Opening and ending tag mismatch: root line 1 and b, line 1, column 11

  >>> print(len(parser.error_log))
  1

  >>> error = parser.error_log[0]
  >>> print(error.message)
  Opening and ending tag mismatch: root line 1 and b
  >>> print(error.line)
  1
  >>> print(error.column)
  11


Parsing HTML
------------

HTML parsing is similarly simple.  The parsers have a ``recover``
keyword argument that the HTMLParser sets by default.  It lets libxml2
try its best to return a valid HTML tree with all content it can
manage to parse.  It will not raise an exception on parser errors.
You should use libxml2 version 2.6.21 or newer to take advantage of
this feature.

.. sourcecode:: pycon

  >>> broken_html = "<html><head><title>test<body><h1>page title</h3>"

  >>> parser = etree.HTMLParser()
  >>> tree   = etree.parse(StringIO(broken_html), parser)

  >>> result = etree.tostring(tree.getroot(),
  ...                         pretty_print=True, method="html")
  >>> print(result)
  <html>
    <head>
      <title>test</title>
    </head>
    <body>
      <h1>page title</h1>
    </body>
  </html>

Lxml has an HTML function, similar to the XML shortcut known from
ElementTree:

.. sourcecode:: pycon

  >>> html = etree.HTML(broken_html)
  >>> result = etree.tostring(html, pretty_print=True, method="html")
  >>> print(result)
  <html>
    <head>
      <title>test</title>
    </head>
    <body>
      <h1>page title</h1>
    </body>
  </html>

The support for parsing broken HTML depends entirely on libxml2's recovery
algorithm.  It is *not* the fault of lxml if you find documents that are so
heavily broken that the parser cannot handle them.  There is also no guarantee
that the resulting tree will contain all data from the original document.  The
parser may have to drop seriously broken parts when struggling to keep
parsing.  Especially misplaced meta tags can suffer from this, which may lead
to encoding problems.

Note that the result is a valid HTML tree, but it may not be a
well-formed XML tree.  For example, XML forbids double hyphens in
comments, which the HTML parser will happily accept in recovery mode.
Therefore, if your goal is to serialise an HTML document as an
XML/XHTML document after parsing, you may have to apply some manual
preprocessing first.


Doctype information
-------------------

The use of the libxml2 parsers makes some additional information available at
the API level.  Currently, ElementTree objects can access the DOCTYPE
information provided by a parsed document, as well as the XML version and the
original encoding:

.. sourcecode:: pycon

  >>> pub_id  = "-//W3C//DTD XHTML 1.0 Transitional//EN"
  >>> sys_url = "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
  >>> doctype_string = '<!DOCTYPE html PUBLIC "%s" "%s">' % (pub_id, sys_url)
  >>> xml_header = '<?xml version="1.0" encoding="ascii"?>'
  >>> xhtml = xml_header + doctype_string + '<html><body></body></html>'

  >>> tree = etree.parse(StringIO(xhtml))
  >>> docinfo = tree.docinfo
  >>> print(docinfo.public_id)
  -//W3C//DTD XHTML 1.0 Transitional//EN
  >>> print(docinfo.system_url)
  http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
  >>> docinfo.doctype == doctype_string
  True

  >>> print(docinfo.xml_version)
  1.0
  >>> print(docinfo.encoding)
  ascii


The target parser interface
===========================

.. _`As in ElementTree`: http://effbot.org/elementtree/elementtree-xmlparser.htm

`As in ElementTree`_, and similar to a SAX event handler, you can pass
a target object to the parser:

.. sourcecode:: pycon

  >>> class EchoTarget:
  ...     def start(self, tag, attrib):
  ...         print("start %s %s" % (tag, attrib))
  ...     def end(self, tag):
  ...         print("end %s" % tag)
  ...     def data(self, data):
  ...         print("data %r" % data)
  ...     def comment(self, text):
  ...         print("comment %s" % text)
  ...     def close(self):
  ...         print("close")
  ...         return "closed!"

  >>> parser = etree.XMLParser(target = EchoTarget())

  >>> result = etree.XML("<element>some<!--comment-->text</element>",
  ...                    parser)
  start element {}
  data u'some'
  comment comment
  data u'text'
  end element
  close

  >>> print(result)
  closed!

It is important for the ``.close()`` method to reset the parser target
to a usable state, so that you can reuse the parser as often as you
like:

.. sourcecode:: pycon

  >>> result = etree.XML("<element>some<!--comment-->text</element>",
  ...                    parser)
  start element {}
  data u'some'
  comment comment
  data u'text'
  end element
  close

  >>> print(result)
  closed!

Note that the parser does *not* build a tree when using a parser
target.  The result of the parser run is whatever the target object
returns from its ``.close()`` method.  If you want to return an XML
tree here, you have to create it programmatically in the target
object.  An example for a parser target that builds a tree is the
``TreeBuilder``.

  >>> parser = etree.XMLParser(target = etree.TreeBuilder())

  >>> result = etree.XML("<element>some<!--comment-->text</element>",
  ...                    parser)

  >>> print(result.tag)
  element
  >>> print(result[0].text)
  comment


The feed parser interface
=========================

Since lxml 2.0, the parsers have a feed parser interface that is
compatible to the `ElementTree parsers`_.  You can use it to feed data
into the parser in a controlled step-by-step way.

In lxml.etree, you can use both interfaces to a parser at the same
time: the ``parse()`` or ``XML()`` functions, and the feed parser
interface.  Both are independent and will not conflict (except if used
in conjunction with a parser target object as described above).

.. _`ElementTree parsers`: http://effbot.org/elementtree/elementtree-xmlparser.htm

To start parsing with a feed parser, just call its ``feed()`` method
to feed it some data.

.. sourcecode:: pycon

  >>> parser = etree.XMLParser()

  >>> for data in ('<?xml versio', 'n="1.0"?', '><roo', 't><a', '/></root>'):
  ...     parser.feed(data)

When you are done parsing, you **must** call the ``close()`` method to
retrieve the root Element of the parse result document, and to unlock the
parser:

.. sourcecode:: pycon

  >>> root = parser.close()

  >>> print(root.tag)
  root
  >>> print(root[0].tag)
  a

If you do not call ``close()``, the parser will stay locked and
subsequent feeds will keep appending data, usually resulting in a non
well-formed document and an unexpected parser error.  So make sure you
always close the parser after use, also in the exception case.

Another way of achieving the same step-by-step parsing is by writing your own
file-like object that returns a chunk of data on each ``read()`` call.  Where
the feed parser interface allows you to actively pass data chunks into the
parser, a file-like object passively responds to ``read()`` requests of the
parser itself.  Depending on the data source, either way may be more natural.

Note that the feed parser has its own error log called
``feed_error_log``.  Errors in the feed parser do not show up in the
normal ``error_log`` and vice versa.

You can also combine the feed parser interface with the target parser:

.. sourcecode:: pycon

  >>> parser = etree.XMLParser(target = EchoTarget())

  >>> parser.feed("<eleme")
  >>> parser.feed("nt>some text</elem")
  start element {}
  data u'some text'
  >>> parser.feed("ent>")
  end element

  >>> result = parser.close()
  close
  >>> print(result)
  closed!

Again, this prevents the automatic creation of an XML tree and leaves
all the event handling to the target object.  The ``close()`` method
of the parser forwards the return value of the target's ``close()``
method.


iterparse and iterwalk
======================

As known from ElementTree, the ``iterparse()`` utility function
returns an iterator that generates parser events for an XML file (or
file-like object), while building the tree.  The values are tuples
``(event-type, object)``.  The event types supported by ElementTree
and lxml.etree are the strings 'start', 'end', 'start-ns' and
'end-ns'.

The 'start' and 'end' events represent opening and closing elements.
They are accompanied by the respective Element instance.  By default,
only 'end' events are generated:

.. sourcecode:: pycon

  >>> xml = '''\
  ... <root>
  ...   <element key='value'>text</element>
  ...   <element>text</element>tail
  ...   <empty-element xmlns="http://testns/" />
  ... </root>
  ... '''

  >>> context = etree.iterparse(StringIO(xml))
  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  end: element
  end: element
  end: {http://testns/}empty-element
  end: root

The resulting tree is available through the ``root`` property of the iterator:

.. sourcecode:: pycon

  >>> context.root.tag
  'root'

The other event types can be activated with the ``events`` keyword argument:

.. sourcecode:: pycon

  >>> events = ("start", "end")
  >>> context = etree.iterparse(StringIO(xml), events=events)
  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  start: root
  start: element
  end: element
  start: element
  end: element
  start: {http://testns/}empty-element
  end: {http://testns/}empty-element
  end: root

The 'start-ns' and 'end-ns' events notify about namespace
declarations.  They do not come with Elements.  Instead, the value of
the 'start-ns' event is a tuple ``(prefix, namespaceURI)`` that
designates the beginning of a prefix-namespace mapping.  The
corresponding ``end-ns`` event does not have a value (None).  It is
common practice to use a list as namespace stack and pop the last
entry on the 'end-ns' event.

.. sourcecode:: pycon

  >>> print(xml[:-1])
  <root>
    <element key='value'>text</element>
    <element>text</element>tail
    <empty-element xmlns="http://testns/" />
  </root>

  >>> events = ("start", "end", "start-ns", "end-ns")
  >>> context = etree.iterparse(StringIO(xml), events=events)
  >>> for action, elem in context:
  ...     if action in ('start', 'end'):
  ...         print("%s: %s" % (action, elem.tag))
  ...     elif action == 'start-ns':
  ...         print("%s: %s" % (action, elem))
  ...     else:
  ...         print(action)
  start: root
  start: element
  end: element
  start: element
  end: element
  start-ns: ('', 'http://testns/')
  start: {http://testns/}empty-element
  end: {http://testns/}empty-element
  end-ns
  end: root


Selective tag events
--------------------

As an extension over ElementTree, lxml.etree accepts a ``tag`` keyword
argument just like ``element.iter(tag)``.  This restricts events to a
specific tag or namespace:

.. sourcecode:: pycon

  >>> context = etree.iterparse(StringIO(xml), tag="element")
  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  end: element
  end: element

  >>> events = ("start", "end")
  >>> context = etree.iterparse(
  ...             StringIO(xml), events=events, tag="{http://testns/}*")
  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  start: {http://testns/}empty-element
  end: {http://testns/}empty-element


Comments and PIs
----------------

As an extension over ElementTree, the ``iterparse()`` function in
lxml.etree also supports the event types 'comment' and 'pi' for the
respective XML structures.

.. sourcecode:: pycon

  >>> commented_xml = '''\
  ... <?some pi ?>
  ... <!-- a comment -->
  ... <root>
  ...   <element key='value'>text</element>
  ...   <!-- another comment -->
  ...   <element>text</element>tail
  ...   <empty-element xmlns="http://testns/" />
  ... </root>
  ... '''

  >>> events = ("start", "end", "comment", "pi")
  >>> context = etree.iterparse(StringIO(commented_xml), events=events)
  >>> for action, elem in context:
  ...     if action in ('start', 'end'):
  ...         print("%s: %s" % (action, elem.tag))
  ...     elif action == 'pi':
  ...         print("%s: -%s=%s-" % (action, elem.target, elem.text))
  ...     else: # 'comment'
  ...         print("%s: -%s-" % (action, elem.text))
  pi: -some=pi -
  comment: - a comment -
  start: root
  start: element
  end: element
  comment: - another comment -
  start: element
  end: element
  start: {http://testns/}empty-element
  end: {http://testns/}empty-element
  end: root

  >>> print(context.root.tag)
  root


Modifying the tree
------------------

You can modify the element and its descendants when handling the 'end' event.
To save memory, for example, you can remove subtrees that are no longer
needed:

.. sourcecode:: pycon

  >>> context = etree.iterparse(StringIO(xml))
  >>> for action, elem in context:
  ...     print(len(elem))
  ...     elem.clear()
  0
  0
  0
  3
  >>> context.root.getchildren()
  []

**WARNING**: During the 'start' event, the descendants and following siblings
are not yet available and should not be accessed.  During the 'end' event, the
element and its descendants can be freely modified, but its following siblings
should not be accessed.  During either of the two events, you **must not**
modify or move the ancestors (parents) of the current element.  You should
also avoid moving or discarding the element itself.  The golden rule is: do
not touch anything that will have to be touched again by the parser later on.

If you have elements with a long list of children in your XML file and want to
save more memory during parsing, you can clean up the preceding siblings of
the current element:

.. sourcecode:: pycon

  >>> for event, element in etree.iterparse(StringIO(xml)):
  ...     # ... do something with the element
  ...     element.clear()                 # clean up children
  ...     while element.getprevious() is not None: 
  ...         del element.getparent()[0]  # clean up preceding siblings

The ``while`` loop deletes multiple siblings in a row.  This is only necessary
if you skipped over some of them using the ``tag`` keyword argument.
Otherwise, a simple ``if`` should do.  The more selective your tag is,
however, the more thought you will have to put into finding the right way to
clean up the elements that were skipped.  Therefore, it is sometimes easier to
traverse all elements and do the tag selection by hand in the event handler
code.


iterwalk
--------

A second extension over ElementTree is the ``iterwalk()`` function.  It
behaves exactly like ``iterparse()``, but works on Elements and ElementTrees:

.. sourcecode:: pycon


  >>> root = etree.XML(xml)
  >>> context = etree.iterwalk(
  ...             root, events=("start", "end"), tag="element")
  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  start: element
  end: element
  start: element
  end: element

  >>> f = StringIO(xml)
  >>> context = etree.iterparse(
  ...             f, events=("start", "end"), tag="element")

  >>> for action, elem in context:
  ...     print("%s: %s" % (action, elem.tag))
  start: element
  end: element
  start: element
  end: element


Python unicode strings
======================

lxml.etree has broader support for Python unicode strings than the ElementTree
library.  First of all, where ElementTree would raise an exception, the
parsers in lxml.etree can handle unicode strings straight away.  This is most
helpful for XML snippets embedded in source code using the ``XML()``
function:

.. sourcecode:: pycon

  >>> uxml = u'<test> \uf8d1 + \uf8d2 </test>'
  >>> uxml
  u'<test> \uf8d1 + \uf8d2 </test>'
  >>> root = etree.XML(uxml)

This requires, however, that unicode strings do not specify a conflicting
encoding themselves and thus lie about their real encoding:

.. sourcecode:: pycon

  >>> etree.XML( u'<?xml version="1.0" encoding="ASCII"?>\n' + uxml )
  Traceback (most recent call last):
    ...
  ValueError: Unicode strings with encoding declaration are not supported.

Similarly, you will get errors when you try the same with HTML data in a
unicode string that specifies a charset in a meta tag of the header.  You
should generally avoid converting XML/HTML data to unicode before passing it
into the parsers.  It is both slower and error prone.


Serialising to Unicode strings
------------------------------

To serialize the result, you would normally use the ``tostring()``
module function, which serializes to plain ASCII by default or a
number of other byte encodings if asked for:

.. sourcecode:: pycon

  >>> etree.tostring(root)
  b'<test> &#63697; + &#63698; </test>'

  >>> etree.tostring(root, encoding='UTF-8', xml_declaration=False)
  b'<test> \xef\xa3\x91 + \xef\xa3\x92 </test>'

As an extension, lxml.etree recognises the unicode type as an argument to the
encoding parameter to build a Python unicode representation of a tree:

.. sourcecode:: pycon

  >>> etree.tostring(root, encoding=unicode)
  u'<test> \uf8d1 + \uf8d2 </test>'

  >>> el = etree.Element("test")
  >>> etree.tostring(el, encoding=unicode)
  u'<test/>'

  >>> subel = etree.SubElement(el, "subtest")
  >>> etree.tostring(el, encoding=unicode)
  u'<test><subtest/></test>'

  >>> tree = etree.ElementTree(el)
  >>> etree.tostring(tree, encoding=unicode)
  u'<test><subtest/></test>'

The result of ``tostring(encoding=unicode)`` can be treated like any
other Python unicode string and then passed back into the parsers.
However, if you want to save the result to a file or pass it over the
network, you should use ``write()`` or ``tostring()`` with a byte
encoding (typically UTF-8) to serialize the XML.  The main reason is
that unicode strings returned by ``tostring(encoding=unicode)`` are
not byte streams and they never have an XML declaration to specify
their encoding.  These strings are most likely not parsable by other
XML libraries.

For normal byte encodings, the ``tostring()`` function automatically
adds a declaration as needed that reflects the encoding of the
returned string.  This makes it possible for other parsers to
correctly parse the XML byte stream.  Note that using ``tostring()``
with UTF-8 is also considerably faster in most cases.