~ubuntu-branches/ubuntu/saucy/mozjs17/saucy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */


/**
   File Name:          11.5.3.js
   ECMA Section:       11.5.3 Applying the % operator
   Description:

   The binary % operator is said to yield the remainder of its operands from
   an implied division; the left operand is the dividend and the right operand
   is the divisor. In C and C++, the remainder operator accepts only integral
   operands, but in ECMAScript, it also accepts floating-point operands.

   The result of a floating-point remainder operation as computed by the %
   operator is not the same as the "remainder" operation defined by IEEE 754.
   The IEEE 754 "remainder" operation computes the remainder from a rounding
   division, not a truncating division, and so its behavior is not analogous
   to that of the usual integer remainder operator. Instead the ECMAScript
   language defines % on floating-point operations to behave in a manner
   analogous to that of the Java integer remainder operator; this may be
   compared with the C library function fmod.

   The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

   If either operand is NaN, the result is NaN.
   The sign of the result equals the sign of the dividend.
   If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
   If the dividend is finite and the divisor is an infinity, the result equals the dividend.
   If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
   In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
   from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
   is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
   possible without exceeding the magnitude of the true mathematical quotient of n and d.

   Author:             christine@netscape.com
   Date:               12 november 1997
*/
var SECTION = "11.5.3";
var VERSION = "ECMA_1";
var BUGNUMBER="111202";
startTest();


writeHeaderToLog( SECTION + " Applying the % operator");

// if either operand is NaN, the result is NaN.

new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );

new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );

//  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
//  dividend is an infinity

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );

new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );

new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );

// divisor is 0
new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );

new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );

new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );

// If the dividend is finite and the divisor is an infinity, the result equals the dividend.

new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );

new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );

new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );

// If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );

//        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
//      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
//      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
//      possible without exceeding the magnitude of the true mathematical quotient of n and d.

test();